任意角的三角函数单元练习题(一)
一、选择题
1.下列叙述正确的是
A.180°的角是第二象限的角 B.第二象限的角必大于第一象限的角
C.终边相同的角必相等 D.终边相同的角的同一个三角函数的值相等
2.以下四个命题,其中,正确的命题是
①小于90°的角是锐角 ②第一象限的角一定不是负角 ③锐角是第一象限的角 ④第二象限的角必大于第一象限的角
A.①② B.③ C.②③ D.③④
3.sin1320°的值是
A. B.- C. D.-
4.的值是
A.2 B. C.- D.
5.若扇形圆心角为60°,半径为a,则内切圆与扇形面积之比为
A.1∶2 B.1∶3 C.2∶3 D.3∶4
6.若θ∈(,),则等于
A.cosθ-sinθ B.sinθ+cosθ
C.sinθ-cosθ D.-cosθ-sinθ
7.若sin=,cos=-,则θ角的终边在
A.第一象限 B.第二象限 C.第三象限 D.第四象限
8.已知sin(3π+α)=lg,则tan(π+α)的值是
A.- B. C.± D.
9.将角α的终边顺时针旋转,则它与单位圆的交点坐标是
A.(cosα,sinα) B.(cosα,-sinα)
C.(sinα,-cosα) D.(sinα,cosα)
10.若tanθ=,则cos2θ+sinθcosθ的值是
A.- B.- C. D.
二、填空题
11.tan(-π)的值是 .
12.若角α的终边在直线y=-x上,则= .
13.使tanx-有意义的x的集合为 .
14.已知α是第二象限的角,且cos=-,则是第 象限的角.
15.已知θ角终边上一点M(x,-2),且cosθ=,则sinθ=____________;tanθ=____________.
16.已知sinθ-cosθ=,则sin3θ-cos 3θ的值为____________.
第Ⅱ卷
一、选择题
题号
1
2
3
4
5
6
7
8
9
10
答案
二、填空题
11 12 13
14 15 16
三、解答题
17.设cosθ=(m>n>0),求θ的其他三角函数值.
18.化简:2-sin221°-cos 221°+sin417°+sin217°·cos 217°+cos 217°
19.证明(1) =(2)tan2θ-sin2θ=tan2θsin2θ
20.已知α是第三象限的角,且
f(α)=
(1)化简f(α); (2)若cos(α-π)=,求f(α)的值;
(3)若α=-1860°,求f(α)的值.
21.已知cos(-α)=,求cos(π+α)+sin2(α-)的值.
任意角的三角函数单元练习题(一)答案
一、选择题
题号
1
2
3
4
5
6
7
8
9
10
答案
D
B
D
D
C
A
D
C
C
D
二、填空题
11.- 12.0 13.{x|x∈R且x≠,k∈Z} 14.三 15.- ± 16.
三、解答题
17.设cosθ=(m>n>0),求θ的其他三角函数值.
解:∵m>n>0,∴cosθ=>0
∴θ是第一象限角或第四象限角.
当θ是第一象限角时:
sinθ==
tanθ=
当θ是第四象限角时:
sinθ=-
tanθ=
18.化简:2-sin221°-cos 221°+sin417°+sin217°·cos 217°+cos 217°
解:原式=2-(sin221°+cos 221°)+sin217°(sin217°+cos 217°)+cos 217°
=2-1+sin217°+cos 217°=1+1=2
19.证明(1) =(2)tan2θ-sin2θ=tan2θsin2θ
证明:左=
===
(∵cos θ≠0,∴分子、分母可同除以cosθ)
==右,证毕.
还可用其他证法.
(2)证明:左=-sin2θ=
===tan2θsin2θ=右,证毕.
20.已知α是第三象限的角,且
f(α)=
(1)化简f(α);(2)若cos(α-π)=,求f(α)的值;
(3)若α=-1860°,求f(α)的值.
解:(1)f(α)=
==-cosα
(2)由已知得sinα=-,cosα=-, ∴f(α)=
(3)f(-1860°)=-
21.已知cos(-α)=,求cos(π+α)+sin2(α-)的值.
解:cos(π+α)=cos[π-(-α)]=-cos(-α)=-.
又sin2(α-)=1-cos2(-α)=
∴原式=.
第五课时 任意角的三角函数(一)
教学目标:
理解并掌握任意角三角函数的定义,理解并掌握各种三角函数在各象限内的符号,理解三角函数是以实数为自变量的函数,掌握正弦、余弦、正切函数的定义域;使学生通过任意角三角函数的定义,认识锐角三角函数是任意角三角函数的一种特例,加深特殊与一般关系的理解.
教学重点:
任意角三角函数的定义,正弦、余弦、正切函数的定义域.
教学难点:
正弦、余弦、正切函数的定义域.
教学过程:
Ⅰ.课题导入
在初中我们学习了锐角三角函数,它是以锐角为自变量,边的比值为函数值的三角函数,前面我们对角的概念进行了扩充,并学习了弧度制,知道角的集合与实数集是一一对应的,在这个基础上,今天我们来研究任意角的三角函数.
Ⅱ.讲授新课
对于锐角三角函数,我们是在直角三角形中定义的,今天,对于任意角的三角函数,我们利用平面直角坐标系来进行研究.
设α是一个顶点在原点,始边在x轴正半轴上的任意角,α的终边上任意一点P的坐标是(x,y)(非顶点).它与原点的距离是r(r=>0)
注意:(1)以后我们在平面直角坐标系内研究角的问题,其顶点都在原点,始边都与x轴的正半轴重合.
(2)OP是角α的终边,至于是转了几圈,按什么方向旋转的不清楚,也只有这样,才能说明角α是任意的.
(3)角α的终边只要不落在坐标轴上,就只能是象限角.
(4)角α的终边不是不能落在坐标轴上,而是说落在坐标轴上的情况属于特殊情形,我们将在研究问题的过程中对其进行讨论.
那么,(1)比值 叫做α的正弦,记作sinα,即sinα= .
(2)比值 叫做α的余弦,记作cosα,即cosα=.
(3)比值 叫做α的正切,记作tanα,即tanα= .
以上三种函数统称为三角函数.
确定的角α,它的终边上任意一点P的坐标都是变量,它与原点的距离r也是变量,这三个变量的三个比值究竟是确定的还是变化的?
根据相似三角形的知识,对于终边不在坐标轴上确定的角α,上述三个比值都不会随P点在α的终边上的位置的改变而改变.当角α的终边在纵轴上时,即α=kπ+(k∈Z)时,终边上任意一点P的横坐标x都为0,所以tanα无意义,除此之外,对于确定的角α,上面的三个比值都是唯一确定的实数,这就是说,正弦、余弦、正切都是以角为自变量,以比值为函数值的函数.
注意:(1)sinα是个整体符号,不能认为是“sin”与“α”的积.其余两个符号也是这样.
(2)定义中只说怎样的比值叫做α的什么函数,并没有说α的终边在什么位置(终边在坐标轴上的除外),即函数的定义与α的终边位置无关.
(3)比值只与角的大小有关.
我们已经给出了任意角三角函数的定义,请同学们考虑并比较一下,我们给出的任意角的三角函数的定义与锐角三角函数的定义,有什么联系与区别?
正弦函数值是纵坐标比距离,余弦函数值是横坐标比距离,正切函数值是纵坐标比横坐标.
由于角的集合与实数集R之间是一一对应的,所以三角函数可以看成是以实数为自变量的函数.我们知道,函数有三个要素,即定义域、值域、对应法则,下面我们就来研究正弦、余弦、正切函数的定义域,值域问题待后再作研究.
对于正弦函数sinα=,因为r>0,所以 恒有意义,即α取任意实数,恒有意义,也就是说sinα恒有意义,所以正弦函数的定义域是R;类似地可写出余弦函数的定义域;对于正切函数tanα=,因为x=0时,无意义,即tanα无意义,又当且仅当角α的终边落在纵轴上时,才有x=0,所以当α的终边不在纵轴上时,恒有意义,即tanα恒有意义,所以正切函数的定义域是α≠kπ+(k∈Z).
为了几何表示的需要,我们先来看单位圆的概念:以原点为圆心,单位长为半径的圆称为单位圆.单位长——如1 cm、1 dm、1m、1 km等等,都是1个单位长,它们的单位虽不同,但长度都是1个单位长.即单位圆的半径是1(个单位长).
在平面直角坐标系内,作单位圆,设任意角α的顶点在原点,始边与x轴的非负半轴重合,终边与单位圆相交于点P(x,y),x轴的正半轴与单位圆相交于A(1,0),过P作x轴的垂线,垂足为M;过A作单位圆的切线,这条切线必平行于y轴(垂直于同一条直线的两直线平行),设它与角α的终边或其反向延长线交于点T.
显然,线段OM的长度为|x|,线段MP的长度为|y|,它们都只能取非负值.
当角α的终边不在坐标轴上时,我们可以把OM、MP都看作带有方向的线段。
如果x>0,OM与x轴同向,规定此时OM具有正值x;如果x<0,OM与x轴正向相反(即反向),规定此时OM具有负值x,所以不论哪一种情况,都有OM=x.
如果y>0,把MP看作与y轴同向,规定此时MP具有正值y;如果y<0,把MP看作与y轴反向,规定此时MP具有负值y,所以不论哪一种情况,都有MP=y,由上面所述,OM、MP都是带有方向的线段,这种被看作带有方向的线段叫做有向线段(即规定了起点和终点),把它们的长度添上正号或负号,这样所得的数,叫做有向线段的数量,记为AB
于是,根据正弦、余弦函数的定义,就有
sinα= = =y=MP
cosα= ==x=OM
这两条与单位圆有关的有向线段MP、OM分别叫做角α的正弦线、余弦线.
类似地,我们把OA、AT也看作有向线段,那么根据正切函数的定义和相似三角形的
知识,就有tanα= ==AT
这条与单位圆有关的有向线段AT,叫做角α的正切线.
注意:(1)当角α的终边在y轴上时,余弦线变成一个点,正切线不存在.
(2)当角α的终边在x轴上时,正弦线、正切线都变成点.
(3)正弦线、余弦线、正切线都是与单位圆有关的有向线段,所以作某角的三角函数线时,一定要先作单位圆.
(4)线段有两个端点,在用字母表示正弦线、余弦线、正切线时,要先写起点字母,再写终点字母,不能颠倒;或者说,含原点的线段,以原点为起点,不含原点的线段,以此线段与x轴的公共点为起点.
(5)三种有向线段的正负与坐标轴正反方向一致,三种有向线段的数量与三种三角函数值相同.
正弦线、余弦线、正切线统称为三角函数线.
Ⅲ.例题分析
[例1]已知角α的终边经过点P(2,-3)(如图),求α的三个三角函数值.
解:∵x=2,y=-3
∴r==
于是sinα= ==-
cosα===
tanα= =-
[例2]求下列各角的三个三角函数值.
(1)0 (2)π (3)
解:(1)因为当α=0时,x=r,y=0,所以
sin0=0 cos0=1 tan0=0
(2)因为当α=π时,x=-r,y=0,所以
sinπ=0 cosπ=-1 tanπ=0
(3)因为当α=时,x=0,y=-r,所以
sin=-1 cos=0 tan不存在
Ⅳ.课堂练习
课本P16练习 1、2、3.
Ⅴ.课时小结
任意角三角函数的定义,正弦函数、余弦函数、正切函数的定义域,单位圆的概念,有向线段的定义,正弦线、余弦线、正切线的定义,这三种三角函数线都是一些特殊的有向线段,其之所以特殊,一是其与坐标轴平行(或重合),二是其与单位圆有关,这些线段分别都可以表示相应三角函数的值,所以说它们是三角函数的一种几何表示.
Ⅵ.课后作业
课本P23习题 1、2、3.
任意角的三角函数(一)
1.sin1、cos1、tan1的大小关系是 ( )
A.tan1<cos1<sin1 B.sin1<cos1<tan1
C.sin1<tan1<cos1 D.cos1<sin1<tan1
2.已知角α的正弦线和余弦线是方向一正一反、长度相等的有向线段,则α的终边在( )
A.第一象限角平分线上 B.第二象限角平分线上
C.第二或第四象限角平分线上 D.第一或第三象限角平分线上
3.如果<θ<,那么下列各式中正确的是 ( )
A.cosθ<tanθ<sinθ B.sinθ<cosθ<tanθ
C.tanθ<sinθ<cosθ D.cosθ<sinθ<tanθ
4.若点P(-3,y)是角α终边上一点,且sinα=-,则y的值是________.
5.已知角α终边上一点P的坐标是(4a,3a)(a<0),则sinα=_________,cosα=_________,tanα=_________.
6.如果角α的顶点在坐标原点,始边与x轴的正半轴重合.终边在函数y=-3x(x≤0)的图象上,则sinα=_________,cosα=_________,tanα=_________.
7.已知角θ的终边上一点P的坐标是(x,-2)(x≠0),且cosθ=,求sinθ和tanθ的值.
8.已知角α终边上有一点P(x,1)(x≠0),且cosα=x,求sinα的值.
9.已知θ是第一象限角,试利用三角函数线证明:sinα+cosα>1.
任意角的三角函数(一)答案
1.D 2.C 3.D 4.- 5.- - 6. - -3
7.已知角θ的终边上一点P的坐标是(x,-2)(x≠0),且cosθ=,求sinθ和tanθ的值.
分析:r=,又cosθ==,即rx=3x
由于x≠0,∴r=3
∴x2+4=9 x2=5,x=±.
当x=时,P点的坐标是(,-2).
sinθ= ==-,tanθ= ==-.
当x=-时,P点的坐标是(-,-2)
sinθ= ==-,tanθ= ==.
答案:当x=时,sinθ=-,tanθ=?-?
当x=-时,sinθ=-,tanθ=
8.已知角α终边上有一点P(x,1)(x≠0),且cosα=x,求sinα的值.
分析:由任意角的三角函数的定义
cosα==x,∴r=2 ∴sinα==.
另:用x、1表示出r,即r=
再由cosα=x,求出x.
进一步求得sinα也可.
9.已知θ是第一象限角,试利用三角函数线证明:sinα+cosα>1.
提示:作出单位圆以及正弦线、余弦线,利用三角形两边和大于第三边可证得.
第六课时 任意角的三角函数(二)
教学目标:
理解并掌握终边相同的角的同一三角函数值相等,使学生认识到规律是客观存在的,只要用心去找,认真寻求,就不难发现,不难认识.客观世界中的事物也是这样,要善于发现规律,认识规律,掌握规律,利用规律,按照事物的发展规律去办事.
教学重点:
各种三角函数在各象限内的符号,终边相同的角的同一三角函数值相等.
教学难点:
各种三角函数在各象限内的符号.
教学过程:
Ⅰ.复习回顾
任意角三角函数的定义
Ⅱ.讲授新课
三角函数的定义告诉我们,各三角函数值实质上是个比值,因此,各三角函数在各象限内的符号,取决于x、y的符号(因为r恒大于零).因为P点在第一、第二象限时,纵坐标y>0,P点在第三、第四象限时,纵坐标y<0,所以正弦函数值对于第一、第二象限角是正的,对于第三、第四象限角是负的.请同学们仿照我们讨论正弦函数值在各象限内符号的方法,回答余弦函数值在各象限内的符号.
余弦函数值的正负取决于P点横坐标x的正负,因为P点在第一、第四象限时,横坐标x>0,P点在第二、第三象限时,横坐标x<0,所以余弦函数值对于第一、第四象限角是正的,对于第二、第三象限角是负的.
对于正切函数值,其正负怎样确定呢?
正切函数值 的正负,取决于x、y的符号是否相同.因为P点在第一象限时,x、y同正,P点在第三象限时,x、y同负,此时 >0,P点在第二、第四象限时,x、y异号,此时 <0,所以正切函数值对于第一、第三象限角是正的,对于第二、第四象限角是负的.
Ⅲ.例题分析
[例1]确定下列三角函数值的符号
(1)cos250° (2)sin(-) (3)tan(-672°) (4)tan
解:(1)∵250°是第三象限角,∴cos250°<0
(2)∵-是第四象限角,∴sin(-)<0
(3)tan(-672°)=tan(48°-2×360°)=tan48°
而48°是第一象限角,∴tan(-672°)>0
(4)tan=tan(+2π)=tan
而是第四象限角,∴tan<0.
[例2]如果点P(2a,-3a)(a<0)在角θ的终边上,求sinθ、cosθ、tanθ的值.
分析:依据点P(2a,-3a)(a<0)坐标,可以在一直角三角形中利用任意角的三角函数定义求.
解:如图,点P(2a,-3a)(a<0)在第二象限,
且r=-a,
∴sinθ= ==
cosθ===-
tanθ==-
[例3]已知角θ的终边在直线y=-3x上,求10sinθ+的值.
分析:依据θ的终边在直线y=-3x上,可设出其终边上任一点P(m,-3m),再对
m>0与m<0分别讨论.
解:设P(m,-3m)是θ终边上任一点,则
r===|m|
当m>0时,r=m.
∴sinθ==-,==
∴10sinθ+=-3+3=0
当m<0时,r=-m
∴sinθ==
==-
∴10sinθ+=3-3=0
综上,得10sinθ+=0
Ⅳ.课堂练习
课本P16练习 4、5、6、7、8.
Ⅴ.课时小结
本节课我们重点讨论了三角函数在各象限内的符号,这是我们日后学习的基础,经常要用,请同学们熟记.
Ⅵ.课后作业
课本P23习题 4、5、6.
任意角的三角函数(二)
1.已知角θ的终边过点P(-4a,3a)a≠0,则2sinθ+cosθ的值是 ( )
A. B.- C. 或- D.不确定
2.设A是第三象限角,且|sin|=-sin,则是 ( )
A.第一象限角 B.第二象限角
C.第三象限角 D.第四象限角
3.sin2cos3tan4的值 ( )
A.大于0 B.小于0 C.等于0 D.不确定
4.已知|cosθ|=cosθ,|tanθ|=-tanθ,则 的终边在 ( )
A.第二、四象限 B.第一、三象限
C.第一、三象限或x轴上 D.第二、四象限或x轴上
5.若sinθ·cosθ>0,则θ是第 象限的角.
6.若α的余弦线为0,则它的正弦线的长度为 .
7.角α(0<α<2π)的正弦线与余弦线的长度相等且符号相同,则α的值为 .
8.已知α是第三象限角,试判定sin(cosα)·cos(sinα)的符号.
9.已知:P(-2,y)是角α终边上一点,且sinα=-,求cosα的值.
10.已知角α的终边经过P(8m,6m)(m≠0),求log2|-tanα|的值.
任意角的三角函数(二)答案
1.C 2.D 3.B 4.D 5.一、三 6.1 7.或
8.已知α是第三象限角,试判定sin(cosα)·cos(sinα)的符号.
分析:依据α是第三象限角可得cosα<0且-1<cosα<0,与sinα<0
且-1<sinα<0,进而确定式子sin(cosα)·cos(sinα)的符号.
解:∵α是第三象限角
∴-1<cosα<0,-1<sinα<0,
∴sin(cosα)<0,cos(sinα)>0.
∴sin(cosα)·cos(sinα)<0
9.已知:P(-2,y)是角α终边上一点,且sinα=-,求cosα的值.
由P(-2,y)且sinα=-<0知y<0
又=-,y2+4=5y2,y2=1
∴y=-1
∴cosα===-
10.已知角α的终边经过P(8m,6m)(m≠0),求log2|-tanα|的值.
分析:依据点P(8m,6m)(m≠0)的坐标,求出及tanα的值,进而求出
log2|-tanα|的值.
解:∵P(8m,6m)(m≠0),∴r=10|m|
当m>0时,r=10m
∴=,tanα=, ∴log2|-tanα|=log2=-1
当m<0时,r=-10m
∴=-,tanα=, ∴log2|-tanα|=log22=1
综上,得log2|-tanα|=
1.2.1 任意角的三角函数(1)
一、课题:任意角的三角函数(1)
二、教学目标:1.掌握任意角的三角函数的定义;
2.已知角终边上一点,会求角的各三角函数值;
3.记住三角函数的定义域、值域,诱导公式(一)。
三、教学重、难点:根据定义求三角函数值。
四、教学过程:
(一)复习:初中锐角的三角函数是如何定义的?
在中,设对边为,对边为,对边为,锐角的正弦、余弦、正切依次为 .
角推广后,这样的三角函数的定义不再适用,我们必须对三角函数重新定义。
(二)新课讲解:
1.三角函数定义
在直角坐标系中,设是一个任意角,终边上任意一点(除了原点)的坐标为,它与原点的距离为,那么
(1)比值叫做的正弦,记作,即;
(2)比值叫做的余弦,记作,即;
(3)比值叫做的正切,记作,即;
(4)比值叫做的余切,记作,即;
(5)比值叫做的正割,记作,即;
(6)比值叫做的余割,记作,即.
说明:①的始边与轴的非负半轴重合,的终边没有表明一定是正角或负角,以及的大小,只表明与的终边相同的角所在的位置;
②根据相似三角形的知识,对于确定的角,六个比值不以点在的终边上的位置的改变而改变大小;
③当时,的终边在轴上,终边上任意一点的横坐标都等于,所以与无意义;同理,当时,与无意义;
④除以上两种情况外,对于确定的值,比值、、、、、分别是一个确定的实数,所以正弦、余弦、正切、余切、正割、余割是以角为自变量,一比值为函数值的函数,以上六种函数统称为三角函数。
2.三角函数的定义域、值域
函 数
定 义 域
值 域
3.例题分析
例1 已知角的终边经过点,求的六个函数制值。
解:因为,所以,于是
;;
; ;
; .
例2 求下列各角的六个三角函数值:(1);(2);(3).
解:(1)因为当时,,,所以
, ,
, 不存在,
, 不存在。
(2)因为当时,,,所以
, ,
, 不存在,
, 不存在。
(3)因为当时,,,所以
, ,
不存在, ,
不存在, .
例3 已知角的终边过点,求的六个三角函数值。
解:因为过点,所以,
当;
;;
当;
;.
4.三角函数的符号
由三角函数的定义,以及各象限内点的坐标的符号,我们可以得知:
①正弦值对于第一、二象限为正(),对于第三、四象限为负();
②余弦值对于第一、四象限为正(),对于第二、三象限为负();
③正切值对于第一、三象限为正(同号),对于第二、四象限为负(异号).
说明:若终边落在轴线上,则可用定义求出三角函数值。
5.诱导公式
由三角函数的定义,就可知道:终边相同的角三角函数值相同。
即有:,
,其中.
,
(练习)确定下列三角函数值的符号:
(1);(2);(3);(4).
五、小结:1.任意角的三角函数的定义;
2.三角函数的定义域、值域;
3.三角函数的符号及诱导公式。
六、作业: 补充:已知点,在角的终边上,求、、的值。
1.2.1 任意角的三角函数(2)
一、课题:任意角的三角函数(2)
二、教学目标:1.复习三角函数的定义、定义域与值域、符号、及诱导公式;
2.利用三角函数线表示正弦、余弦、正切的三角函数值;
3.利用三角函数线比较两个同名三角函数值的大小及表示角的范围。
三、教学重点:正弦、余弦、正切线的概念及利用。
四、教学过程:
(一)复习:(提问)
1.三角函数的定义及定义域、值域:
练习1:已知角的终边上一点,且,求的值。
解:由题设知,,所以,得,
从而,解得或.
当时,, ;
当时,,;
当时,,.
2.三角函数的符号:
练习2:已知且,
(1)求角的集合;(2)求角终边所在的象限;(3)试判断的符号。
3.诱导公式:
练习3:求下列三角函数的值:
(1), (2), (3).
(二)新课讲解:
当角的终边上一点的坐标满足时,有三角函数正弦、余弦、正切值的几何表示——三角函数线。
1.单位圆:圆心在圆点,半径等于单位长的圆叫做单位圆。
2.有向线段:
坐标轴是规定了方向的直线,那么与之平行的线段亦可规定方向。
规定:与坐标轴方向一致时为正,与坐标方向相反时为负。
3.三角函数线的定义:
设任意角的顶点在原点,始边与轴非负半轴重合,终边与单位圆相交与点P,
过作轴的垂线,垂足为;过点作单位圆的切线,它与角的终边或其反
向延长线交与点.
由四个图看出:
当角的终边不在坐标轴上时,有向线段,于是有
, ,
.
我们就分别称有向线段为正弦线、余弦线、正切线。
说明:
①三条有向线段的位置:正弦线为的终边与单位圆的交点到轴的垂直线段;余弦
线在轴上;正切线在过单位圆与轴正方向的交点的切线上,三条有向线段中两条在单位圆内,一条在单位圆外。
②三条有向线段的方向:正弦线由垂足指向的终边与单位圆的交点;余弦线由原点指向垂足;正切线由切点指向与的终边的交点。
③三条有向线段的正负:三条有向线段凡与轴或轴同向的为正值,与轴或轴反向的为负值。
④三条有向线段的书写:有向线段的起点字母在前,终点字母在后面。
4.例题分析:
例1 作出下列各角的正弦线、余弦线、正切线。
(1); (2); (3); (4).
解:图略。
例2 利用单位圆写出符合下列条件的角的范围。
(1); (2);
(3)且;
(4); (5)且.
答案:(1);(2);
(3);(4);
(5).
五、小结:1.三角函数线的定义;2.会画任意角的三角函数线
3.利用单位圆比较三角函数值的大小,求角的范围。
六、作业: 1.利用余弦线比较的大小;
2.若,则比较、、的大小;
3.分别根据下列条件,写出角的取值范围:
(1) ; (2) ; (3)