【精品解析】初中数学北师大版八年级上学期 第四章 4.4 一次函数的应用

文档属性

名称 【精品解析】初中数学北师大版八年级上学期 第四章 4.4 一次函数的应用
格式 zip
文件大小 274.7KB
资源类型 试卷
版本资源
科目 数学
更新时间 2020-09-10 14:01:56

文档简介

初中数学北师大版八年级上学期 第四章 4.4 一次函数的应用
一、单选题
1.(2020·新昌模拟)直线y=-2x+6与两坐标轴围成的三角形的面积是(  )
A.8 B.6 C.9 D.2
【答案】C
【知识点】一次函数图象与坐标轴交点问题
【解析】【解答】当x=0时,y=6,∴直线y=-2x+6与y轴的交点坐标为(0,6),
当y=0时,y=-2x+6=0,∴x=3,
∴直线y=-2x+6与 x轴的交点坐标为(3,0),
∴直线y=-2x+6与两坐标轴围成的三角形的面积为:.
故答案为:C.
【分析】先求出直线y=-2x+6与x轴,y轴的交点坐标,然后利用三角形的面积公式即可求出结论.
2.(2020·鄂尔多斯)鄂尔多斯动物园内的一段线路如图1所示,动物园内有免费的班车,从入口处出发,沿该线路开往大象馆,途中停靠花鸟馆(上下车时间忽略不计),第一班车上午9:20发车,以后每隔10分钟有一班车从入口处发车,且每一班车速度均相同.小聪周末到动物园游玩,上午9点到达入口处,因还没到班车发车时间,于是从入口处出发,沿该线路步行25分钟后到达花鸟馆,离入口处的路程y(米)与时间x(分)的函数关系如图2所示,下列结论错误的是(  )
A.第一班车离入口处的距离y(米)与时间x(分)的解析式为y=200x﹣4000(20≤x≤38)
B.第一班车从入口处到达花鸟馆所需的时间为10分钟
C.小聪在花鸟馆游玩40分钟后,想坐班车到大象馆,则小聪最早能够坐上第四班车
D.小聪在花鸟馆游玩40分钟后,如果坐第五班车到大象馆,那么比他在花鸟馆游玩结束后立即步行到大象馆提前了7分钟(假设小聪步行速度不变)
【答案】C
【知识点】一次函数的实际应用
【解析】【解答】解:由题意得,可设第一班车离入口处的距离y(米)与时间x(分)的解析式为:y=kx+b(k≠0),
把(20,0),(38,3600)代入y=kx+b,
得 ,解得: ;
∴第一班车离入口处的路程y(米)与时间x(分)的函数表达为y=200x﹣4000(20≤x≤38);
A不合题意;
把y=2000代入y=200x﹣4000,
解得:x=30,
30﹣20=10(分),
∴第一班车从入口处到达塔林所需时间10分钟;
B不合题意;
设小聪坐上了第n班车,则
30﹣25+10(n﹣1)≥40,解得n≥4.5,
∴小聪坐上了第5班车,
C符合题意;
等车的时间为5分钟,坐班车所需时间为:1600÷200=8(分),
步行所需时间:1600÷(2000÷25)=20(分),
20﹣(8+5)=7(分),
∴比他在花鸟馆游玩结束后立即步行到大象馆提前了7分钟.
D不合题意.
故答案为:C.
【分析】设y=kx+b,运用待定系数法求解即可得出第一班车离入口处的距离y(米)与时间x(分)的解析式;把y=2500代入函数解析式即可求出第一班车从入口处到达花鸟馆所需的时间;设小聪坐上了第n班车,30﹣25+10(n﹣1)≥40,解得n≥4.5,可得小聪坐上了第5班车,再根据“路程、速度与时间的关系”解答即可.
3.(2020·北京)有一个装有水的容器,如图所示.容器内的水面高度是10cm,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是(  )
A.正比例函数关系 B.一次函数关系
C.二次函数关系 D.反比例函数关系
【答案】B
【知识点】一次函数的实际应用
【解析】【解答】解:设水面高度为 注水时间为t分钟,
则由题意得:
所以容器内的水面高度与对应的注水时间满足的函数关系是一次函数关系,
故答案为:B.
【分析】设水面高度为 注水时间为 分钟,根据题意写出h与t的函数关系式,从而可得答案.
4.(2020八下·福绵期末)甲、乙两人以相同路线前往距离单位10km的培训中心参加学习.图中l甲、l乙分别表示甲、乙两人前往目的地所走的路程S(km)随时间t(分)变化的函数图象.乙出发(  )分钟后追上甲.
A.24 B.4 C.5 D.6
【答案】D
【知识点】一次函数的实际应用
【解析】【解答】解:根据图象得出:乙在28分时到达,甲在40分时到达,
设乙出发x分钟后追上甲,
则有: ,
解得x=6.
故答案为:D.
【分析】观察函数图象可知,函数的横坐标表示时间,纵坐标表示路程,然后根据图象上特殊点的意义进行解答.
5.(2020七下·高新期末)汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速公路,继续以100千米/时的速度匀速行驶,则下列图象中能近似地刻画汽车行驶路程y(千米)与时间x(时)之间关系的是(  )
A. B.
C. D.
【答案】D
【知识点】一次函数的实际应用
【解析】【解答】解:根据题意可得前1个小时的速度较小,1小时后的速度较大,则应为D选项中的图象.
故答案为:D.
【分析】通过分析题意判断速度的变化情况,根据速度越小直线越平缓,速度越大,直线越陡峭进行解答.
6.(2020·广水模拟)春节期间,王老师一家自驾游去了离家170千米的某地,下面是他们家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象,当他们离目的地还有20千米时,汽车一共行驶的时间是(  )
A.2小时 B.2.2小时 C.2.25小时 D.2.4小时
【答案】C
【知识点】一次函数的实际应用
【解析】【解答】解:设AB段的函数解析式是y=kx+b,
y=kx+b的图象过A(1.5,90),B(2.5,170),

解得
∴AB段函数的解析式是y=80x-30,
离目的地还有20千米时,即y=170-20=150km,
当y=150时,80x-30=150
解得:x=2.25h,
故答案为:C.
【分析】先求出AB段的解析式,再将y=150代入求解即可.
二、综合题
7.(2020·河池)某水果市场销售一种香蕉.甲店的香蕉价格为4元/kg;乙店的香蕉价格为5元/kg,若一次购买6kg以上,超过6kg部分的价格打7折.
(1)设购买香蕉xkg,付款金额y元,分别就两店的付款金额写出y关于x的函数解析式;
(2)到哪家店购买香蕉更省钱?请说明理由.
【答案】(1)解:甲商店:y=4x
乙商店:
(2)解:当x<6时,
此时甲商店比较省钱,
当x≥6时,
令4x=30+3.5(x-6),
解得:x=18,
此时甲乙商店的费用一样,
当x<18时,
此时甲商店比较省钱,
当x>18时,
此时乙商店比较省钱.
【知识点】一次函数的实际应用
【解析】【分析】(1)根据甲乙两商店的销售方案,可得到两商店中y与x的函数解析式。
(2)由题意分情况讨论:当x<6时;当x≥6时;当x<18时;当x>18时,分别计算可求解。
8.(2020·铁岭)小红经营的网店以销售文具为主,其中一款笔记本进价为每本10元,该网店在试销售期间发现,每周销售数量 (本)与销售单价 (元)之间满足一次函数关系,三对对应值如下表:
销售单价 (元) 12 14 16
每周的销售量 (本) 500 400 300
(1)求 与 之间的函数关系式;
(2)通过与其他网店对比,小红将这款笔记本的单价定为 元( ,且 为整数),设每周销售该款笔记本所获利润为 元,当销售单价定为多少元时每周所获利润最大,最大利润是多少元?
【答案】(1)解:设 与 之间的函数关系式是 ,
把 , 和 , 代入,得
,解得: ,

(2)解:根据题意,得


有最大值,且当 时, 随 的增大而增大,
为整数,
时, 有最大值,且w最大 (元).
答:销售单价为15元时,每周所获利润最大,最大利润是1750元.
【知识点】一次函数的实际应用;二次函数的实际应用-销售问题
【解析】【分析】(1)根据待定系数法解答即可;(2)根据每周销售利润=每本笔记本的利润×每周销售数量可得w与x的二次函数关系式,再根据二次函数的性质即可求出结果.
9.(2020·广州)粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降 .
(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;
(2)求明年改装的无人驾驶出租车是多少辆.
【答案】(1)依题意得: (万元)
(2)设明年改装的无人驾驶出租车是x辆,则今年改装的无人驾驶出租车是(260-x)辆,依题意得:
解得:
答:(1)明年每辆无人驾驶出租车的预计改装费用是25万元;(2)明年改装的无人驾驶出租车是160辆.
【知识点】一次函数的实际应用
【解析】【分析】(1)根据今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降 ,列出式子即可求出答案;(2)根据“某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场”列出方程,求解即可.
10.(2020·宁波)A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B地.两辆货车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)
(1)求货车乙在遇到货车甲前,它离开出发地的路程y关于x的函数表达式.
(2)因实际需要,要求货车乙到达B地的时间比货车甲按原来的速度正常到达B地的时间最多晚1个小时,问货车乙返回B地的速度至少为每小时多少千米
【答案】(1)解:设函数表达式为y=kx+b(k≠0),
把(1.6,0),(2.6,80)代入y=kx+b,得
解得
∴y关于x的函数表达式为y=80x-128(1.6≤x≤3.1)
(2)解:当y=200-80=120时,
120=80x-128,
解得x=3.1,
货车甲正常到达B地的时间为200-50=4(小时),
18÷60=0.3(小时),4+1=5(小时),5-3.1-0.3=1.6(小时),
设货车乙返回B地的车速为v千米/小时,
1.6v≥120,
解得v≥75
答:货车乙返回B地的车速至少为75千米/小时
【知识点】一次函数的实际应用
【解析】【分析】(1)根据货车乙的图象,在货车乙在遇到货车甲前这段图象取两点,利用待定系数法即可求出其函数关系式;
(2)先算出货车乙返回B地所需时间,然后根据速度公式求出其最小速度,关键是求出货车乙返回B地所需时间,先根据(1)的函数关系式求出甲车正常到达B地的时间,则货车乙返回B地所需时间=甲车正常到达B地的时间+晚点一小时-乙车从B到故障点时间-搬运上货的时间.
11.(2020八下·长岭期末)如图是甲、乙两人从同一地点出发后路程随时间变化的图像.根据图象回答下列问题:
(1)在此变化过程中,自变量是:   ;
(2)甲的速度   乙的速度(填“大于”“等于”或“小于”)
(3)甲出发后几小时与乙相遇:   ;
(4)甲比乙先走多长时间:   ;
(5) 时,甲在乙的   (填“前面”“后面”或“相同位置”)
(6)若行驶的路程为 千米,则甲行驶了   小时,乙行驶了   小时
【答案】(1)
(2)小于
(3)6
(4)3小时
(5)后面
(6)9;4.5
【知识点】一次函数的实际应用
【解析】【分析】(1)根据自变量的定义即可求解;
(2)根据图象可知, 甲的速度大于乙的速度;
(3)根据图象可知,当t=6时,s相等,即可求出甲出发后6小时与乙相遇 ;
(4)根据图象可知,3小时后,乙车出发,即可得出甲比乙先走3小时 ;
(5)当t=9时,甲车距离出发地比乙车距离出发地近,即可得出甲在乙的后面;
(6)先求出甲乙的函数解析式,s=150代入,分别求出t的值,即可求解.
12.(2020八下·韩城期末)端午节期间,小刚一家乘车去离家380 的某地游玩,他们离家的距离 ( )与汽车行驶时间x( )之间的三段函数图象如图所示:
(1)汽车在 段与 段哪段行驶的速度较快?
(2)
求线段AB对应的函数解析式;
(3)小刚一家出发1.5小时时离目的地多远?
【答案】(1)解: 段汽车行驶的速度为: ( ),
段汽车行驶的速度为: ( )

故汽车在 段行驶的速度较快
(2)解:设 段图象的函数表达式为 .
∵ , 在 上,

解得:
∴ ( )
(3)解:当 时, ,
( ).
故小刚一家出发1.5小时时离目的地240 远
【知识点】一次函数的实际应用
【解析】【分析】(1)根据速度=路程÷时间和函数图象,分别求出OA段,BC段的速度,进行比较;
(2)A、B两点的坐标,待定系数法求出AB段的解析式;
(3)当x=1.5时,对应AB段解析式,代入即可求出y值,进而求出离目的地的距离。
1 / 1初中数学北师大版八年级上学期 第四章 4.4 一次函数的应用
一、单选题
1.(2020·新昌模拟)直线y=-2x+6与两坐标轴围成的三角形的面积是(  )
A.8 B.6 C.9 D.2
2.(2020·鄂尔多斯)鄂尔多斯动物园内的一段线路如图1所示,动物园内有免费的班车,从入口处出发,沿该线路开往大象馆,途中停靠花鸟馆(上下车时间忽略不计),第一班车上午9:20发车,以后每隔10分钟有一班车从入口处发车,且每一班车速度均相同.小聪周末到动物园游玩,上午9点到达入口处,因还没到班车发车时间,于是从入口处出发,沿该线路步行25分钟后到达花鸟馆,离入口处的路程y(米)与时间x(分)的函数关系如图2所示,下列结论错误的是(  )
A.第一班车离入口处的距离y(米)与时间x(分)的解析式为y=200x﹣4000(20≤x≤38)
B.第一班车从入口处到达花鸟馆所需的时间为10分钟
C.小聪在花鸟馆游玩40分钟后,想坐班车到大象馆,则小聪最早能够坐上第四班车
D.小聪在花鸟馆游玩40分钟后,如果坐第五班车到大象馆,那么比他在花鸟馆游玩结束后立即步行到大象馆提前了7分钟(假设小聪步行速度不变)
3.(2020·北京)有一个装有水的容器,如图所示.容器内的水面高度是10cm,现向容器内注水,并同时开始计时,在注水过程中,水面高度以每秒0.2cm的速度匀速增加,则容器注满水之前,容器内的水面高度与对应的注水时间满足的函数关系是(  )
A.正比例函数关系 B.一次函数关系
C.二次函数关系 D.反比例函数关系
4.(2020八下·福绵期末)甲、乙两人以相同路线前往距离单位10km的培训中心参加学习.图中l甲、l乙分别表示甲、乙两人前往目的地所走的路程S(km)随时间t(分)变化的函数图象.乙出发(  )分钟后追上甲.
A.24 B.4 C.5 D.6
5.(2020七下·高新期末)汽车以60千米/时的速度在公路上匀速行驶,1小时后进入高速公路,继续以100千米/时的速度匀速行驶,则下列图象中能近似地刻画汽车行驶路程y(千米)与时间x(时)之间关系的是(  )
A. B.
C. D.
6.(2020·广水模拟)春节期间,王老师一家自驾游去了离家170千米的某地,下面是他们家的距离y(千米)与汽车行驶时间x(小时)之间的函数图象,当他们离目的地还有20千米时,汽车一共行驶的时间是(  )
A.2小时 B.2.2小时 C.2.25小时 D.2.4小时
二、综合题
7.(2020·河池)某水果市场销售一种香蕉.甲店的香蕉价格为4元/kg;乙店的香蕉价格为5元/kg,若一次购买6kg以上,超过6kg部分的价格打7折.
(1)设购买香蕉xkg,付款金额y元,分别就两店的付款金额写出y关于x的函数解析式;
(2)到哪家店购买香蕉更省钱?请说明理由.
8.(2020·铁岭)小红经营的网店以销售文具为主,其中一款笔记本进价为每本10元,该网店在试销售期间发现,每周销售数量 (本)与销售单价 (元)之间满足一次函数关系,三对对应值如下表:
销售单价 (元) 12 14 16
每周的销售量 (本) 500 400 300
(1)求 与 之间的函数关系式;
(2)通过与其他网店对比,小红将这款笔记本的单价定为 元( ,且 为整数),设每周销售该款笔记本所获利润为 元,当销售单价定为多少元时每周所获利润最大,最大利润是多少元?
9.(2020·广州)粤港澳大湾区自动驾驶产业联盟积极推进自动驾驶出租车应用落地工作,无人化是自动驾驶的终极目标.某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场.今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降 .
(1)求明年每辆无人驾驶出租车的预计改装费用是多少万元;
(2)求明年改装的无人驾驶出租车是多少辆.
10.(2020·宁波)A,B两地相距200千米.早上8:00货车甲从A地出发将一批物资运往B地,行驶一段路程后出现故障,即刻停车与B地联系.B地收到消息后立即派货车乙从B地出发去接运甲车上的物资.货车乙遇到甲后,用了18分钟将物资从货车甲搬运到货车乙上,随后开往B地.两辆货车离开各自出发地的路程y(千米)与时间x(小时)的函数关系如图所示.(通话等其他时间忽略不计)
(1)求货车乙在遇到货车甲前,它离开出发地的路程y关于x的函数表达式.
(2)因实际需要,要求货车乙到达B地的时间比货车甲按原来的速度正常到达B地的时间最多晚1个小时,问货车乙返回B地的速度至少为每小时多少千米
11.(2020八下·长岭期末)如图是甲、乙两人从同一地点出发后路程随时间变化的图像.根据图象回答下列问题:
(1)在此变化过程中,自变量是:   ;
(2)甲的速度   乙的速度(填“大于”“等于”或“小于”)
(3)甲出发后几小时与乙相遇:   ;
(4)甲比乙先走多长时间:   ;
(5) 时,甲在乙的   (填“前面”“后面”或“相同位置”)
(6)若行驶的路程为 千米,则甲行驶了   小时,乙行驶了   小时
12.(2020八下·韩城期末)端午节期间,小刚一家乘车去离家380 的某地游玩,他们离家的距离 ( )与汽车行驶时间x( )之间的三段函数图象如图所示:
(1)汽车在 段与 段哪段行驶的速度较快?
(2)
求线段AB对应的函数解析式;
(3)小刚一家出发1.5小时时离目的地多远?
答案解析部分
1.【答案】C
【知识点】一次函数图象与坐标轴交点问题
【解析】【解答】当x=0时,y=6,∴直线y=-2x+6与y轴的交点坐标为(0,6),
当y=0时,y=-2x+6=0,∴x=3,
∴直线y=-2x+6与 x轴的交点坐标为(3,0),
∴直线y=-2x+6与两坐标轴围成的三角形的面积为:.
故答案为:C.
【分析】先求出直线y=-2x+6与x轴,y轴的交点坐标,然后利用三角形的面积公式即可求出结论.
2.【答案】C
【知识点】一次函数的实际应用
【解析】【解答】解:由题意得,可设第一班车离入口处的距离y(米)与时间x(分)的解析式为:y=kx+b(k≠0),
把(20,0),(38,3600)代入y=kx+b,
得 ,解得: ;
∴第一班车离入口处的路程y(米)与时间x(分)的函数表达为y=200x﹣4000(20≤x≤38);
A不合题意;
把y=2000代入y=200x﹣4000,
解得:x=30,
30﹣20=10(分),
∴第一班车从入口处到达塔林所需时间10分钟;
B不合题意;
设小聪坐上了第n班车,则
30﹣25+10(n﹣1)≥40,解得n≥4.5,
∴小聪坐上了第5班车,
C符合题意;
等车的时间为5分钟,坐班车所需时间为:1600÷200=8(分),
步行所需时间:1600÷(2000÷25)=20(分),
20﹣(8+5)=7(分),
∴比他在花鸟馆游玩结束后立即步行到大象馆提前了7分钟.
D不合题意.
故答案为:C.
【分析】设y=kx+b,运用待定系数法求解即可得出第一班车离入口处的距离y(米)与时间x(分)的解析式;把y=2500代入函数解析式即可求出第一班车从入口处到达花鸟馆所需的时间;设小聪坐上了第n班车,30﹣25+10(n﹣1)≥40,解得n≥4.5,可得小聪坐上了第5班车,再根据“路程、速度与时间的关系”解答即可.
3.【答案】B
【知识点】一次函数的实际应用
【解析】【解答】解:设水面高度为 注水时间为t分钟,
则由题意得:
所以容器内的水面高度与对应的注水时间满足的函数关系是一次函数关系,
故答案为:B.
【分析】设水面高度为 注水时间为 分钟,根据题意写出h与t的函数关系式,从而可得答案.
4.【答案】D
【知识点】一次函数的实际应用
【解析】【解答】解:根据图象得出:乙在28分时到达,甲在40分时到达,
设乙出发x分钟后追上甲,
则有: ,
解得x=6.
故答案为:D.
【分析】观察函数图象可知,函数的横坐标表示时间,纵坐标表示路程,然后根据图象上特殊点的意义进行解答.
5.【答案】D
【知识点】一次函数的实际应用
【解析】【解答】解:根据题意可得前1个小时的速度较小,1小时后的速度较大,则应为D选项中的图象.
故答案为:D.
【分析】通过分析题意判断速度的变化情况,根据速度越小直线越平缓,速度越大,直线越陡峭进行解答.
6.【答案】C
【知识点】一次函数的实际应用
【解析】【解答】解:设AB段的函数解析式是y=kx+b,
y=kx+b的图象过A(1.5,90),B(2.5,170),

解得
∴AB段函数的解析式是y=80x-30,
离目的地还有20千米时,即y=170-20=150km,
当y=150时,80x-30=150
解得:x=2.25h,
故答案为:C.
【分析】先求出AB段的解析式,再将y=150代入求解即可.
7.【答案】(1)解:甲商店:y=4x
乙商店:
(2)解:当x<6时,
此时甲商店比较省钱,
当x≥6时,
令4x=30+3.5(x-6),
解得:x=18,
此时甲乙商店的费用一样,
当x<18时,
此时甲商店比较省钱,
当x>18时,
此时乙商店比较省钱.
【知识点】一次函数的实际应用
【解析】【分析】(1)根据甲乙两商店的销售方案,可得到两商店中y与x的函数解析式。
(2)由题意分情况讨论:当x<6时;当x≥6时;当x<18时;当x>18时,分别计算可求解。
8.【答案】(1)解:设 与 之间的函数关系式是 ,
把 , 和 , 代入,得
,解得: ,

(2)解:根据题意,得


有最大值,且当 时, 随 的增大而增大,
为整数,
时, 有最大值,且w最大 (元).
答:销售单价为15元时,每周所获利润最大,最大利润是1750元.
【知识点】一次函数的实际应用;二次函数的实际应用-销售问题
【解析】【分析】(1)根据待定系数法解答即可;(2)根据每周销售利润=每本笔记本的利润×每周销售数量可得w与x的二次函数关系式,再根据二次函数的性质即可求出结果.
9.【答案】(1)依题意得: (万元)
(2)设明年改装的无人驾驶出租车是x辆,则今年改装的无人驾驶出租车是(260-x)辆,依题意得:
解得:
答:(1)明年每辆无人驾驶出租车的预计改装费用是25万元;(2)明年改装的无人驾驶出租车是160辆.
【知识点】一次函数的实际应用
【解析】【分析】(1)根据今年每辆无人驾驶出租车的改装费用是50万元,预计明年每辆无人驾驶出租车的改装费用可下降 ,列出式子即可求出答案;(2)根据“某公交集团拟在今明两年共投资9000万元改装260辆无人驾驶出租车投放市场”列出方程,求解即可.
10.【答案】(1)解:设函数表达式为y=kx+b(k≠0),
把(1.6,0),(2.6,80)代入y=kx+b,得
解得
∴y关于x的函数表达式为y=80x-128(1.6≤x≤3.1)
(2)解:当y=200-80=120时,
120=80x-128,
解得x=3.1,
货车甲正常到达B地的时间为200-50=4(小时),
18÷60=0.3(小时),4+1=5(小时),5-3.1-0.3=1.6(小时),
设货车乙返回B地的车速为v千米/小时,
1.6v≥120,
解得v≥75
答:货车乙返回B地的车速至少为75千米/小时
【知识点】一次函数的实际应用
【解析】【分析】(1)根据货车乙的图象,在货车乙在遇到货车甲前这段图象取两点,利用待定系数法即可求出其函数关系式;
(2)先算出货车乙返回B地所需时间,然后根据速度公式求出其最小速度,关键是求出货车乙返回B地所需时间,先根据(1)的函数关系式求出甲车正常到达B地的时间,则货车乙返回B地所需时间=甲车正常到达B地的时间+晚点一小时-乙车从B到故障点时间-搬运上货的时间.
11.【答案】(1)
(2)小于
(3)6
(4)3小时
(5)后面
(6)9;4.5
【知识点】一次函数的实际应用
【解析】【分析】(1)根据自变量的定义即可求解;
(2)根据图象可知, 甲的速度大于乙的速度;
(3)根据图象可知,当t=6时,s相等,即可求出甲出发后6小时与乙相遇 ;
(4)根据图象可知,3小时后,乙车出发,即可得出甲比乙先走3小时 ;
(5)当t=9时,甲车距离出发地比乙车距离出发地近,即可得出甲在乙的后面;
(6)先求出甲乙的函数解析式,s=150代入,分别求出t的值,即可求解.
12.【答案】(1)解: 段汽车行驶的速度为: ( ),
段汽车行驶的速度为: ( )

故汽车在 段行驶的速度较快
(2)解:设 段图象的函数表达式为 .
∵ , 在 上,

解得:
∴ ( )
(3)解:当 时, ,
( ).
故小刚一家出发1.5小时时离目的地240 远
【知识点】一次函数的实际应用
【解析】【分析】(1)根据速度=路程÷时间和函数图象,分别求出OA段,BC段的速度,进行比较;
(2)A、B两点的坐标,待定系数法求出AB段的解析式;
(3)当x=1.5时,对应AB段解析式,代入即可求出y值,进而求出离目的地的距离。
1 / 1