【精品解析】初中数学人教版九年级上学期 第二十五章 25.2用列举法求概率

文档属性

名称 【精品解析】初中数学人教版九年级上学期 第二十五章 25.2用列举法求概率
格式 zip
文件大小 457.5KB
资源类型 试卷
版本资源
科目 数学
更新时间 2020-10-30 17:26:20

文档简介

初中数学人教版九年级上学期 第二十五章 25.2用列举法求概率
一、单选题
1.(2020·绵阳)将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为(  )
A. B. C. D.
【答案】A
【知识点】用列表法或树状图法求概率;概率公式
【解析】【解答】解:三个不同的篮子分别用A、B、C表示,根据题意画图如下:
共有9种等可能的情况数,其中恰有一个篮子为空的有6种,
则恰有一个篮子为空的概率为 .
故答案为:A.
【分析】根据题意画出树状图得出所有等可能的情况数,找出恰有一个篮子为空的情况数,然后根据概率公式即可得出答案.
2.(2020·东营)如图,随机闭合开关 , , 中的两个,则能让两盏灯泡同时发光的概率为(  )
A. B. C. D.
【答案】C
【知识点】用列表法或树状图法求概率
【解析】【解答】根据题意画出树状图如下:
共有6种等可能的结果,能让两盏灯泡同时发光的有2种情况,
∴ ,
故答案为:C.
【分析】画出树状图,找出所有等可能的结果,计算即可.
3.(2020·长沙)一个不透明的袋子中装有1个红球,2个绿球,除颜色外无其他差别,从中随机摸出一个球,然后放回摇匀,再随机摸出一个,下列说法中,错误的是(  )
A.第一次摸出的球是红球,第二次摸出的球一定是绿球
B.第一次摸出的球是红球,第二次摸出的球不一定是绿球
C.第一次摸出的球是红球,第二次摸出的球不一定是红球
D.第一次摸出的球是红球的概率是 ;两次摸出的球都是红球的概率是
【答案】A
【知识点】用列表法或树状图法求概率;概率公式
【解析】【解答】A、第一次摸出的球是红球,第二次摸出的球不一定是绿球,故不符合题意;
B、第一次摸出的球是红球,第二次摸出的球不一定是绿球,故符合题意;
C、第一次摸出的球是红球,第二次摸出的球不一定是红球,故符合题意;
D、第一次摸出的球是红球的概率是 ;
两次摸到球的情况共有(红,红),(红,绿1),(红,绿2),(绿1,红),(绿1,绿1),(绿1,绿2),(绿2,红),(绿2,绿1),(绿2,绿2)9种等可能的情况,两次摸出的球都是红球的有1种,∴两次摸出的球都是红球的概率是 ,故符合题意;
故答案为:A.
【分析】根据摸出球的颜色可能出现的情形及概率依次分析即可得到答案.
4.(2020八下·西安期末)如图,有两个可以自由转动的转盘(每个转盘均被等分),同时转动这两个转盘,待转盘停止后,两个指针同时指在偶数上的概率是(  )
A. B. C. D.
【答案】B
【知识点】用列表法或树状图法求概率
【解析】【解答】解:根据题意列树状图得:
∵共有25可能出现的情况,两个指针同时指在偶数上的情况有6种,
∴两个指针同时指在偶数上的概率为: ,
故答案为:B
【分析】根据题意画出树状图,然后由树状图求得所有可能的结果与两个指针同时指在偶数上的情况,再利用概率公式即可求得答案.
二、填空题
5.(2020·大庆)两个人做游戏:每个人都从-1,0,1这三个整数中随机选择一个写在纸上,则两人所写整数的绝对值相等的概率为   .
【答案】
【知识点】用列表法或树状图法求概率;概率公式
【解析】【解答】由题可得到树状图如下图所示:
∴ .
故答案为 .
【分析】画出树状图进行求解即可;
6.(2020·广元)在如图所示的电路图中,当随机闭合开关 , , 中的两个时,能够让灯泡发光的概率为   .
【答案】
【知识点】用列表法或树状图法求概率;概率公式
【解析】【解答】分析电路图知:要让灯泡发光, 必须闭合,同时 , 中任意一个关闭时,满足:
一共有: , ,、 , 、 , 三种情况,满足条件的有 , 、 , 两种,
∴能够让灯泡发光的概率为:
故答案为: .
【分析】分析电路图知:要让灯泡发光, 必须闭合,同时 , 中任意一个关闭时,满足条件,从而求算概率.
7.(2020·锦州)A,B两个不透明的盒子里分别装有三张卡片,其中A盒里三张卡片上分别标有数字1,2,3,B盒里三张卡片上分别标有数字4,5,6,这些卡片除数字外其余都相同,将卡片充分摇匀.
(1)从A盒里班抽取一张卡、抽到的卡片上标有数字为奇数的概率是   ;
(2)从A盒,B盒里各随机抽取一张卡片,请用列表或画树状图的方法,求抽到的两张卡片上标有的数字之和大于7的概率.
【答案】(1)
(2)解:根据题意可列表格如下:
B A 4 5 6
1
2
3
总共有9种结果,每种结果出现的可能性相同,其中两张卡片数字之和大于7的有三种: ,
(两张卡片数字之和大于7) .
【知识点】用列表法或树状图法求概率
【解析】【解答】解:(1)A盒里有三张卡片上,有两张是奇数,
∴抽到的卡片上标有数字为奇数的概率是 ,
故答案为: ;
【分析】(1)根据简单的概率公式进行计算即可;(2)用列表法列出所有等可能的情况,即可得出概率.
三、解答题
8.(2020·吉林)“中国结”是我国特有的手工编织工艺品,也是一种传统吉祥装饰物,如图,现有三张正面印有“中国结”图案的不透明卡片A,B,C,卡片除正面图案不同外,其余均相同.将三张卡片正面向下洗匀,小吉同学从中随机抽取一张卡片,记下图案后正面向下放回,洗匀后再从中随机抽取一张卡片.请用画树状图或列表的方法,求小吉同学抽出的两张卡片中含有A卡片的概率.
【答案】解:解法一:画树状图,根据题意,画树状图结果如下:
由树状图可以看出,所有等可能出现的概率一共有9种,而两张卡片中含有A卡片的结果有5种,所以P(小吉抽到两张卡片中有A卡片)= .
解法二:用列表法,根据题意,列表结果如下:
A B C
A (A,A) (B,A) (C,A)
B (A,B) (B,B) (C,B)
C (A,C) (B,C) (C,C)
结果为:(第一次抽取情况,第二次抽取情况)
由表可以看出,所有等可能出现的概率一共有9种,而两张卡片中含有A卡片的结果有5种,所以P(小吉抽到两张卡片中有A卡片)= .
【知识点】用列表法或树状图法求概率
【解析】【分析】分别使用树状图法或列表法将小吉同学抽取卡片的结果表示出来,第一次共有3种不同的抽取情况,第二次同样也有3种不同的抽取情况,所有等可能出现的结果有9种,找出含有A卡片的抽取结果,即可算出概率.
9.(2020·长春)现有三张不透明的卡片,其中两张卡片的正面图案为“神舟首飞”,第三张卡片的正面图案为“保卫和平”,卡片除正面图案不同外,其余均相同.将这三张卡片背面向上洗匀,从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求两次抽出的卡片上的图案都是“保卫和平”的概率.(图案为“神舟首飞”的两张卡片分别记为 、 ,图案为“保卫和平”的卡片记为B)
【答案】解:树状图如下:
P(两次抽取的卡片上图案都是“保卫和平”) .
列表法如下表:
第一张 结果 第二张 B
B
P(两次抽取的卡片上图案都是“保卫和平”) .
【知识点】用列表法或树状图法求概率;概率公式
【解析】【分析】根据题意,采用树状图或利用列表法,表示出符合题意的所有可能,根据概率公式进行计算得到答案即可。
四、综合题
10.(2020九上·杭州月考)小明、小亮和小强三人准备下象棋,他们约定用“抛硬币”的游戏方式来确定哪个人先下棋,规则如下:三人手中各持有一枚质地均匀的硬币,他们同时将手中硬币抛落到水平地面为一个回合,落地后,三枚硬币中,恰有两枚正面向上或者反面向上的两人先下棋;若三枚硬币均为正面向上或反面向上,则不能确定其中两人先下棋.
(1)请你完成下面表示游戏一个回合所有可能出现的结果的树状图;
解:树状图为:
(2)求出一个回合能确定两人下棋的概率.
【答案】(1)解:画树状图得:
(2)解:∴一共有8种等可能的结果,
一个回合能确定两人先下棋的有6种情况,
∴一个回合能确定两人先下棋的概率为:
【知识点】用列表法或树状图法求概率
【解析】【分析】(1)此题需两步完成,可根据题意画树状图求得所有可能出现的结果;(2)根据树状图求得一个回合能确定两人先下棋的情况,再根据概率公式求解即可.
11.(2020·烟台)奥体中心为满足暑期学生对运动的需求,欲开设球类课程,该中心随机抽取部分学生进行问卷调查,被调查学生须从“羽毛球”、“篮球”、“足球”、“排球”、“乒乓球”中选择自己最喜欢的一项.根据调查结果绘制了不完整的条形统计图和扇形统计图,请根据图中信息,解答下列问题:
(1)此次共调查了多少名学生?
(2)将条形统计图补充完整;
(3)我们把“羽毛球”“篮球”,“足球”、“排球”、“乒乓球”分别用A,B,C,D,E表示.小明和小亮分别从这些项目中任选一项进行训练,利用树状图或表格求出他俩选择不同项目的概率.
【答案】(1)解:此次共调查的学生有:40÷ =200(名);
(2)解:足球的人数有:200﹣40﹣60﹣20﹣30=50(人),
补全统计图如下:
(3)解:根据题意画树状图如下:
共用25种等可能的情况数,其中他俩选择不同项目的有20种,
则他俩选择不同项目的概率是 = .
【知识点】用样本估计总体;扇形统计图;条形统计图;用列表法或树状图法求概率;概率公式
【解析】【分析】(1)用羽毛球的人数除以所占的百分比即可得出答案;(2)用总人数减去其他项目的人数求出足球的人数,从而补全统计图;(3)根据题意画出树状图得出所有等可能的情况数和他俩选择不同项目的情况数,然后根据概率公式即可得出答案.
12.(2020·宿迁)将4张印有“梅”“兰”“竹”“菊”字样的卡片(卡片的形状、大小、质地都相同)放在一个不透明的盒子中,将卡片搅匀.
(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为   .
(2)先从盒子中任意取出1张卡片,记录后放回并搅匀,再从中任意取出1张卡片,求取出的两张卡片中,至少有1张印有“兰”字的概率(请用画树状图或列表等方法求解).
【答案】(1)
(2)解:画树状图如下:
由树状图知,共有16种等可能结果,其中至少有1张印有“兰”字的有7种结果,
∴至少有1张印有“兰”字的概率为 .
【知识点】用列表法或树状图法求概率
【解析】【解答】解:(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为 ,
故答案为: ;
【分析】(1)直接利用概率公式求解可得;
(2)画树状图列出所有等可能结果,从中找到符合条件的结果数,再利用概率公式求解可得.
13.(2020·广州)为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下:
甲社区 67 68 73 75 76 78 80 82 83 84 85 85 90 92 95
乙社区 66 69 72 74 75 78 80 81 85 85 88 89 91 96 98
根据以上信息解答下列问题:
(1)求甲社区老人年龄的中位数和众数;
(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.
【答案】(1)甲社区老人的15个年龄居中的数为:82,故中位数为82,
出现次数最多的年龄是85,故众数是85;
(2)这4名老人的年龄分别为67,68,66,69岁,分别表示为A、B、C、D,
列树状图如下:
共有12种等可能的情况,其中2名老人恰好来自同一个社区的有4种,分别为AB,BA,CD,DC,
∴P(这2名老人恰好来自同一个社区)= .
【知识点】用列表法或树状图法求概率;中位数
【解析】【分析】(1)根据中位数及众数的定义解答;(2)列树状图解答即可.
1 / 1初中数学人教版九年级上学期 第二十五章 25.2用列举法求概率
一、单选题
1.(2020·绵阳)将一个篮球和一个足球随机放入三个不同的篮子中,则恰有一个篮子为空的概率为(  )
A. B. C. D.
2.(2020·东营)如图,随机闭合开关 , , 中的两个,则能让两盏灯泡同时发光的概率为(  )
A. B. C. D.
3.(2020·长沙)一个不透明的袋子中装有1个红球,2个绿球,除颜色外无其他差别,从中随机摸出一个球,然后放回摇匀,再随机摸出一个,下列说法中,错误的是(  )
A.第一次摸出的球是红球,第二次摸出的球一定是绿球
B.第一次摸出的球是红球,第二次摸出的球不一定是绿球
C.第一次摸出的球是红球,第二次摸出的球不一定是红球
D.第一次摸出的球是红球的概率是 ;两次摸出的球都是红球的概率是
4.(2020八下·西安期末)如图,有两个可以自由转动的转盘(每个转盘均被等分),同时转动这两个转盘,待转盘停止后,两个指针同时指在偶数上的概率是(  )
A. B. C. D.
二、填空题
5.(2020·大庆)两个人做游戏:每个人都从-1,0,1这三个整数中随机选择一个写在纸上,则两人所写整数的绝对值相等的概率为   .
6.(2020·广元)在如图所示的电路图中,当随机闭合开关 , , 中的两个时,能够让灯泡发光的概率为   .
7.(2020·锦州)A,B两个不透明的盒子里分别装有三张卡片,其中A盒里三张卡片上分别标有数字1,2,3,B盒里三张卡片上分别标有数字4,5,6,这些卡片除数字外其余都相同,将卡片充分摇匀.
(1)从A盒里班抽取一张卡、抽到的卡片上标有数字为奇数的概率是   ;
(2)从A盒,B盒里各随机抽取一张卡片,请用列表或画树状图的方法,求抽到的两张卡片上标有的数字之和大于7的概率.
三、解答题
8.(2020·吉林)“中国结”是我国特有的手工编织工艺品,也是一种传统吉祥装饰物,如图,现有三张正面印有“中国结”图案的不透明卡片A,B,C,卡片除正面图案不同外,其余均相同.将三张卡片正面向下洗匀,小吉同学从中随机抽取一张卡片,记下图案后正面向下放回,洗匀后再从中随机抽取一张卡片.请用画树状图或列表的方法,求小吉同学抽出的两张卡片中含有A卡片的概率.
9.(2020·长春)现有三张不透明的卡片,其中两张卡片的正面图案为“神舟首飞”,第三张卡片的正面图案为“保卫和平”,卡片除正面图案不同外,其余均相同.将这三张卡片背面向上洗匀,从中随机抽取一张,记录图案后放回,重新洗匀后再从中随机抽取一张.请用画树状图(或列表)的方法,求两次抽出的卡片上的图案都是“保卫和平”的概率.(图案为“神舟首飞”的两张卡片分别记为 、 ,图案为“保卫和平”的卡片记为B)
四、综合题
10.(2020九上·杭州月考)小明、小亮和小强三人准备下象棋,他们约定用“抛硬币”的游戏方式来确定哪个人先下棋,规则如下:三人手中各持有一枚质地均匀的硬币,他们同时将手中硬币抛落到水平地面为一个回合,落地后,三枚硬币中,恰有两枚正面向上或者反面向上的两人先下棋;若三枚硬币均为正面向上或反面向上,则不能确定其中两人先下棋.
(1)请你完成下面表示游戏一个回合所有可能出现的结果的树状图;
解:树状图为:
(2)求出一个回合能确定两人下棋的概率.
11.(2020·烟台)奥体中心为满足暑期学生对运动的需求,欲开设球类课程,该中心随机抽取部分学生进行问卷调查,被调查学生须从“羽毛球”、“篮球”、“足球”、“排球”、“乒乓球”中选择自己最喜欢的一项.根据调查结果绘制了不完整的条形统计图和扇形统计图,请根据图中信息,解答下列问题:
(1)此次共调查了多少名学生?
(2)将条形统计图补充完整;
(3)我们把“羽毛球”“篮球”,“足球”、“排球”、“乒乓球”分别用A,B,C,D,E表示.小明和小亮分别从这些项目中任选一项进行训练,利用树状图或表格求出他俩选择不同项目的概率.
12.(2020·宿迁)将4张印有“梅”“兰”“竹”“菊”字样的卡片(卡片的形状、大小、质地都相同)放在一个不透明的盒子中,将卡片搅匀.
(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为   .
(2)先从盒子中任意取出1张卡片,记录后放回并搅匀,再从中任意取出1张卡片,求取出的两张卡片中,至少有1张印有“兰”字的概率(请用画树状图或列表等方法求解).
13.(2020·广州)为了更好地解决养老问题,某服务中心引入优质社会资源为甲,乙两个社区共30名老人提供居家养老服务,收集得到这30名老人的年龄(单位:岁)如下:
甲社区 67 68 73 75 76 78 80 82 83 84 85 85 90 92 95
乙社区 66 69 72 74 75 78 80 81 85 85 88 89 91 96 98
根据以上信息解答下列问题:
(1)求甲社区老人年龄的中位数和众数;
(2)现从两个社区年龄在70岁以下的4名老人中随机抽取2名了解居家养老服务情况,求这2名老人恰好来自同一个社区的概率.
答案解析部分
1.【答案】A
【知识点】用列表法或树状图法求概率;概率公式
【解析】【解答】解:三个不同的篮子分别用A、B、C表示,根据题意画图如下:
共有9种等可能的情况数,其中恰有一个篮子为空的有6种,
则恰有一个篮子为空的概率为 .
故答案为:A.
【分析】根据题意画出树状图得出所有等可能的情况数,找出恰有一个篮子为空的情况数,然后根据概率公式即可得出答案.
2.【答案】C
【知识点】用列表法或树状图法求概率
【解析】【解答】根据题意画出树状图如下:
共有6种等可能的结果,能让两盏灯泡同时发光的有2种情况,
∴ ,
故答案为:C.
【分析】画出树状图,找出所有等可能的结果,计算即可.
3.【答案】A
【知识点】用列表法或树状图法求概率;概率公式
【解析】【解答】A、第一次摸出的球是红球,第二次摸出的球不一定是绿球,故不符合题意;
B、第一次摸出的球是红球,第二次摸出的球不一定是绿球,故符合题意;
C、第一次摸出的球是红球,第二次摸出的球不一定是红球,故符合题意;
D、第一次摸出的球是红球的概率是 ;
两次摸到球的情况共有(红,红),(红,绿1),(红,绿2),(绿1,红),(绿1,绿1),(绿1,绿2),(绿2,红),(绿2,绿1),(绿2,绿2)9种等可能的情况,两次摸出的球都是红球的有1种,∴两次摸出的球都是红球的概率是 ,故符合题意;
故答案为:A.
【分析】根据摸出球的颜色可能出现的情形及概率依次分析即可得到答案.
4.【答案】B
【知识点】用列表法或树状图法求概率
【解析】【解答】解:根据题意列树状图得:
∵共有25可能出现的情况,两个指针同时指在偶数上的情况有6种,
∴两个指针同时指在偶数上的概率为: ,
故答案为:B
【分析】根据题意画出树状图,然后由树状图求得所有可能的结果与两个指针同时指在偶数上的情况,再利用概率公式即可求得答案.
5.【答案】
【知识点】用列表法或树状图法求概率;概率公式
【解析】【解答】由题可得到树状图如下图所示:
∴ .
故答案为 .
【分析】画出树状图进行求解即可;
6.【答案】
【知识点】用列表法或树状图法求概率;概率公式
【解析】【解答】分析电路图知:要让灯泡发光, 必须闭合,同时 , 中任意一个关闭时,满足:
一共有: , ,、 , 、 , 三种情况,满足条件的有 , 、 , 两种,
∴能够让灯泡发光的概率为:
故答案为: .
【分析】分析电路图知:要让灯泡发光, 必须闭合,同时 , 中任意一个关闭时,满足条件,从而求算概率.
7.【答案】(1)
(2)解:根据题意可列表格如下:
B A 4 5 6
1
2
3
总共有9种结果,每种结果出现的可能性相同,其中两张卡片数字之和大于7的有三种: ,
(两张卡片数字之和大于7) .
【知识点】用列表法或树状图法求概率
【解析】【解答】解:(1)A盒里有三张卡片上,有两张是奇数,
∴抽到的卡片上标有数字为奇数的概率是 ,
故答案为: ;
【分析】(1)根据简单的概率公式进行计算即可;(2)用列表法列出所有等可能的情况,即可得出概率.
8.【答案】解:解法一:画树状图,根据题意,画树状图结果如下:
由树状图可以看出,所有等可能出现的概率一共有9种,而两张卡片中含有A卡片的结果有5种,所以P(小吉抽到两张卡片中有A卡片)= .
解法二:用列表法,根据题意,列表结果如下:
A B C
A (A,A) (B,A) (C,A)
B (A,B) (B,B) (C,B)
C (A,C) (B,C) (C,C)
结果为:(第一次抽取情况,第二次抽取情况)
由表可以看出,所有等可能出现的概率一共有9种,而两张卡片中含有A卡片的结果有5种,所以P(小吉抽到两张卡片中有A卡片)= .
【知识点】用列表法或树状图法求概率
【解析】【分析】分别使用树状图法或列表法将小吉同学抽取卡片的结果表示出来,第一次共有3种不同的抽取情况,第二次同样也有3种不同的抽取情况,所有等可能出现的结果有9种,找出含有A卡片的抽取结果,即可算出概率.
9.【答案】解:树状图如下:
P(两次抽取的卡片上图案都是“保卫和平”) .
列表法如下表:
第一张 结果 第二张 B
B
P(两次抽取的卡片上图案都是“保卫和平”) .
【知识点】用列表法或树状图法求概率;概率公式
【解析】【分析】根据题意,采用树状图或利用列表法,表示出符合题意的所有可能,根据概率公式进行计算得到答案即可。
10.【答案】(1)解:画树状图得:
(2)解:∴一共有8种等可能的结果,
一个回合能确定两人先下棋的有6种情况,
∴一个回合能确定两人先下棋的概率为:
【知识点】用列表法或树状图法求概率
【解析】【分析】(1)此题需两步完成,可根据题意画树状图求得所有可能出现的结果;(2)根据树状图求得一个回合能确定两人先下棋的情况,再根据概率公式求解即可.
11.【答案】(1)解:此次共调查的学生有:40÷ =200(名);
(2)解:足球的人数有:200﹣40﹣60﹣20﹣30=50(人),
补全统计图如下:
(3)解:根据题意画树状图如下:
共用25种等可能的情况数,其中他俩选择不同项目的有20种,
则他俩选择不同项目的概率是 = .
【知识点】用样本估计总体;扇形统计图;条形统计图;用列表法或树状图法求概率;概率公式
【解析】【分析】(1)用羽毛球的人数除以所占的百分比即可得出答案;(2)用总人数减去其他项目的人数求出足球的人数,从而补全统计图;(3)根据题意画出树状图得出所有等可能的情况数和他俩选择不同项目的情况数,然后根据概率公式即可得出答案.
12.【答案】(1)
(2)解:画树状图如下:
由树状图知,共有16种等可能结果,其中至少有1张印有“兰”字的有7种结果,
∴至少有1张印有“兰”字的概率为 .
【知识点】用列表法或树状图法求概率
【解析】【解答】解:(1)从盒子中任意取出1张卡片,恰好取出印有“兰”字的卡片的概率为 ,
故答案为: ;
【分析】(1)直接利用概率公式求解可得;
(2)画树状图列出所有等可能结果,从中找到符合条件的结果数,再利用概率公式求解可得.
13.【答案】(1)甲社区老人的15个年龄居中的数为:82,故中位数为82,
出现次数最多的年龄是85,故众数是85;
(2)这4名老人的年龄分别为67,68,66,69岁,分别表示为A、B、C、D,
列树状图如下:
共有12种等可能的情况,其中2名老人恰好来自同一个社区的有4种,分别为AB,BA,CD,DC,
∴P(这2名老人恰好来自同一个社区)= .
【知识点】用列表法或树状图法求概率;中位数
【解析】【分析】(1)根据中位数及众数的定义解答;(2)列树状图解答即可.
1 / 1