2022高考 考前重点题型查漏补缺
---解答题篇02
三、解答题:本大题共5小题,共75分.解答应写出文字说明,证明过程或演算步骤.
16. 在,角所对的边分别为,已知,.
(I)求a的值;
(II)求的值;
(III)求的值.
17. 如图,在三棱柱中,平面,,点分别在棱和棱上,且为棱的中点.
(Ⅰ)求证:;
(Ⅱ)求二面角的正弦值;
(Ⅲ)求直线与平面所成角的正弦值.
18.已知椭圆C:的上顶点与椭圆的左右顶点连线的斜率之积为.
(1)求椭圆C的离心率;
(2)若直线与椭圆C相交于A,B两点,若的面积为(O为坐标原点),求椭圆C的标准方程.
19.已知数列的前n项和,是等差数列,且.
(Ⅰ)求数列的通项公式;
(Ⅱ)令.求数列的前n项和.
20.已知函数.
(1)讨论的单调性;
(2)若存在两个极值点,证明:.
C
Bi
M
A
D
IC
B
42022高考 考前重点题型查漏补缺
---解答题篇02
三、解答题:本大题共5小题,共75分.解答应写出文字说明,证明过程或演算步骤.
16. 在,角所对的边分别为,已知,.
(I)求a的值;
(II)求的值;
(III)求的值.
【答案】(I);(II);(III)
【分析】(I)由正弦定理可得,即可求出;
(II)由余弦定理即可计算;
(III)利用二倍角公式求出的正弦值和余弦值,再由两角差的正弦公式即可求出.
【解析】
(I)因为,由正弦定理可得,
,;
(II)由余弦定理可得;
(III),,
,,
所以.
17. 如图,在三棱柱中,平面,,点分别在棱和棱上,且为棱的中点.
(Ⅰ)求证:;
(Ⅱ)求二面角的正弦值;
(Ⅲ)求直线与平面所成角的正弦值.
【答案】(Ⅰ)证明见解析;(Ⅱ);(Ⅲ).
【分析】以为原点,分别以的方向为轴,轴,轴的正方向建立空间直角坐标系.
(Ⅰ)计算出向量和的坐标,得出,即可证明出;
(Ⅱ)可知平面的一个法向量为,计算出平面的一个法向量为,利用空间向量法计算出二面角的余弦值,利用同角三角函数的基本关系可求解结果;
(Ⅲ)利用空间向量法可求得直线与平面所成角的正弦值.
【解析】
依题意,以为原点,分别以、、的方向为轴、轴、轴的正方向建立空间直角坐标系(如图),
可得、、、、
、、、、.
(Ⅰ)依题意,,,
从而,所以;
(Ⅱ)依题意,是平面的一个法向量,
,.
设为平面的法向量,
则,即,
不妨设,可得.
,
.
所以,二面角的正弦值为;
(Ⅲ)依题意,.
由(Ⅱ)知为平面的一个法向量,于是.
所以,直线与平面所成角的正弦值为.
【点睛】本题考查利用空间向量法证明线线垂直,求二面角和线面角的正弦值,考查推理能力与计算能力,属于中档题.
18.已知椭圆C:的上顶点与椭圆的左右顶点连线的斜率之积为.
(1)求椭圆C的离心率;
(2)若直线与椭圆C相交于A,B两点,若的面积为(O为坐标原点),求椭圆C的标准方程.
【答案】(1);(2).
【分析】
(1)由条件可得,再根据, 求出可得答案;
(2)联立直线与椭圆方程可得,可得AB弦长,求出原点到直线的距离,代入面积公式即可求解.
【解析】
(1)椭圆上顶点的坐标为(0, b),左右项点的坐标分别为( -a,0), (a, 0),
所以,即.
则,又,
,
.
(2)设,
由得:,
,
又原点到直线的距离,
,
即,解得,满足,
,
故椭圆的方程为.
19.已知数列的前n项和,是等差数列,且.
(Ⅰ)求数列的通项公式;
(Ⅱ)令.求数列的前n项和.
【答案】(Ⅰ);(Ⅱ)
【解析】
(1)由题意知当时,,
当时,,所以.
设数列的公差为,
由,即,可解得,
所以.
(2)由(1)知,又,得, ,两式作差,得所以.
20.已知函数.
(1)讨论的单调性;
(2)若存在两个极值点,证明:.
【答案】(1)见解析;(2)见解析
【解析】
(1)的定义域为,.
(i)若,则,当且仅当,时,所以在单调递减.
(ii)若,令得,或.
当时,;
当时,.所以在单调递减,在单调递增.
(2)由(1)知,存在两个极值点当且仅当.
由于的两个极值点满足,所以,不妨设,则.由于
,
所以等价于.
设函数,由(1)知,在单调递减,又,从而当时,.
所以,即.