高中数学 1.1.3《导数的几何意义》课件 新人教A版选修2-2

文档属性

名称 高中数学 1.1.3《导数的几何意义》课件 新人教A版选修2-2
格式 zip
文件大小 214.5KB
资源类型 教案
版本资源 人教新课标B版
科目 数学
更新时间 2013-05-06 21:43:08

图片预览

文档简介

课件13张PPT。1.1.3导数的几何意义先来复习导数的概念 定义:设函数y=f(x)在点x0处及其附近有定义,当自变量x在点x0处有改变量Δx时函数有相应的改变量Δy=f(x0+ Δx)- f(x0).如果当Δx?0 时,Δy/Δx的极限存在,这个极限就叫做函数f(x)在点x0处的导数(或变化率)记作 即:
下面来看导数的几何意义: 如图,曲线C是函数y=f(x)
的图象,P(x0,y0)是曲线C上的
任意一点,Q(x0+Δx,y0+Δy)
为P邻近一点,PQ为C的割线,
PM//x轴,QM//y轴,β为PQ的
倾斜角.斜率!PQ割线切线T请看当点Q沿着曲线逐渐向点P接近时,割线PQ绕着点P逐渐转动的情况. 我们发现,当点Q沿着曲线无限接近点P即Δx→0时,割线PQ有一个极限位置PT.则我们把直线PT称为曲线在点P处的切线. 设切线的倾斜角为α,那么当Δx→0时,割线PQ的斜率,称为曲线在点P处的切线的斜率.即: 这个概念:①提供了求曲线上某点切线的斜率的一种方法;②切线斜率的本质——函数在x=x0处的导数.初中平面几何中圆的切线的定义:直线和圆有唯一公共点时,叫做直线和圆相切。这时直线叫做圆的切线,唯一的公共点叫做切点。割线趋近于确定的位置的直线定义为切线.曲线与直线相切,并不一定只有一个公共点。因此,切线方程为y-2=2(x-1),
即y=2x.求曲线在某点处的切线方程
的基本步骤:先利用切线斜率
的定义求出切线的斜率,然后
利用点斜式求切线方程.练习:如图已知曲线 ,求:
(1)点P处的切线的斜率; (2)点P处的切线方程.即点P处的切线的斜率等于4. (2)在点P处的切线方程是y-8/3=4(x-2),即12x-3y-16=0.(1)求出函数在点x0处的变化率 ,得到曲线
在点(x0,f(x0))的切线的斜率。(2)根据直线方程的点斜式写出切线方程,即归纳:求切线方程的步骤 无限逼近的极限思想是建立导数概念、用导数定义求 函数的导数的基本思想,丢掉极限思想就无法理解导 数概念。
作业:2.