2021-2022学年安徽池州市东至县高考全国统考预测密卷
注意事项:
1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。
2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。
3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。
4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.如图所示,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,其中左视图中三角形为等腰直角三角形,则该几何体外接球的体积是( )
A. B.
C. D.
2.执行如下的程序框图,则输出的是( )
A. B.
C. D.
3.已知等差数列的前n项和为,且,则( )
A.4 B.8 C.16 D.2
4.设,则( )
A. B. C. D.
5.已知函数,若,则的取值范围是( )
A. B. C. D.
6.已知集合,集合,则等于( )
A. B.
C. D.
7.已知复数满足,则( )
A. B.2 C.4 D.3
8.已知向量,则是的( )
A.充分不必要条件 B.必要不充分条件
C.既不充分也不必要条件 D.充要条件
9.已知正项等比数列的前项和为,则的最小值为( )
A. B. C. D.
10.中,如果,则的形状是( )
A.等边三角形 B.直角三角形 C.等腰三角形 D.等腰直角三角形
11.设递增的等比数列的前n项和为,已知,,则( )
A.9 B.27 C.81 D.
12.已知为虚数单位,复数,则其共轭复数( )
A. B. C. D.
二、填空题:本题共4小题,每小题5分,共20分。
13.(5分)已知曲线的方程为,其图象经过点,则曲线在点处的切线方程是____________.
14.在中,角,,的对边分别为,,.若;且,则周长的范围为__________.
15.在中,,,,则________,的面积为________.
16.已知椭圆的离心率是,若以为圆心且与椭圆有公共点的圆的最大半径为,此时椭圆的方程是____.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(12分)某商场为改进服务质量,随机抽取了200名进场购物的顾客进行问卷调查.调查后,就顾客“购物体验”的满意度统计如下:
满意 不满意
男 40 40
女 80 40
(1)是否有97.5%的把握认为顾客购物体验的满意度与性别有关?
(2)为答谢顾客,该商场对某款价格为100元/件的商品开展促销活动.据统计,在此期间顾客购买该商品的支付情况如下:
支付方式 现金支付 购物卡支付 APP支付
频率 10% 30% 60%
优惠方式 按9折支付 按8折支付 其中有1/3的顾客按4折支付,1/2的顾客按6折支付,1/6的顾客按8折支付
将上述频率作为相应事件发生的概率,记某顾客购买一件该促销商品所支付的金额为,求的分布列和数学期望.
附表及公式:.
0.15 0.10 0.05 0.025 0.010 0.005 0.001
2.072 2.706 3.841 5.024 6.635 7.879 10.828
18.(12分)为调研高中生的作文水平.在某市普通高中的某次联考中,参考的文科生与理科生人数之比为,且成绩分布在的范围内,规定分数在50以上(含50)的作文被评为“优秀作文”,按文理科用分层抽样的方法抽取400人的成绩作为样本,得到成绩的频率分布直方图,如图所示.其中构成以2为公比的等比数列.
(1)求的值;
(2)填写下面列联表,能否在犯错误的概率不超过0.01的情况下认为“获得优秀作文”与“学生的文理科”有关?
文科生 理科生 合计
获奖 6
不获奖
合计 400
(3)将上述调查所得的频率视为概率,现从全市参考学生中,任意抽取2名学生,记“获得优秀作文”的学生人数为,求的分布列及数学期望.
附:,其中.
0.15 0.10 0.05 0.025 0.010 0.005 0.001
2.072 2.706 3.841 5.024 6.635 7.879 10.828
19.(12分)在平面直角坐标系中,直线的参数方程为(为参数),以坐标原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.
(1)求直线的普通方程和曲线的直角坐标方程;
(2)若直线与曲线交于、两点,求的面积.
20.(12分)已知不等式对于任意的恒成立.
(1)求实数m的取值范围;
(2)若m的最大值为M,且正实数a,b,c满足.求证.
21.(12分)已知
(1)若 ,且函数 在区间 上单调递增,求实数a的范围;
(2)若函数有两个极值点 ,且存在 满足 ,令函数 ,试判断 零点的个数并证明.
22.(10分)在平面直角坐标系中,已知直线的参数方程为(为参数),圆的方程为,以坐标原点为极点,轴正半轴为极轴建立极坐标系.
(1)求和的极坐标方程;
(2)过且倾斜角为的直线与交于点,与交于另一点,若,求的取值范围.
参考答案
一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。
1.C
【解析】
作出三视图所表示几何体的直观图,可得直观图为直三棱柱,并且底面为等腰直角三角形,即可求得外接球的半径,即可得外接球的体积.
【详解】
如图为几何体的直观图,上下底面为腰长为的等腰直角三角形,三棱柱的高为4,其外接球半径为,所以体积为.
故选:C
【点睛】
本题考查三视图还原几何体的直观图、球的体积公式,考查空间想象能力、运算求解能力,求解时注意球心的确定.
2.A
【解析】
列出每一步算法循环,可得出输出结果的值.
【详解】
满足,执行第一次循环,,;
成立,执行第二次循环,,;
成立,执行第三次循环,,;
成立,执行第四次循环,,;
成立,执行第五次循环,,;
成立,执行第六次循环,,;
成立,执行第七次循环,,;
成立,执行第八次循环,,;
不成立,跳出循环体,输出的值为,故选:A.
【点睛】
本题考查算法与程序框图的计算,解题时要根据算法框图计算出算法的每一步,考查分析问题和计算能力,属于中等题.
3.A
【解析】
利用等差的求和公式和等差数列的性质即可求得.
【详解】
.
故选:.
【点睛】
本题考查等差数列的求和公式和等差数列的性质,考查基本量的计算,难度容易.
4.D
【解析】
结合指数函数及对数函数的单调性,可判断出,,,即可选出答案.
【详解】
由,即,
又,即,
,即,
所以.
故选:D.
【点睛】
本题考查了几个数的大小比较,考查了指数函数与对数函数的单调性的应用,属于基础题.
5.B
【解析】
对分类讨论,代入解析式求出,解不等式,即可求解.
【详解】
函数,由
得或
解得.
故选:B.
【点睛】
本题考查利用分段函数性质解不等式,属于基础题.
6.B
【解析】
求出中不等式的解集确定出集合,之后求得.
【详解】
由,
所以,
故选:B.
【点睛】
该题考查的是有关集合的运算的问题,涉及到的知识点有一元二次不等式的解法,集合的运算,属于基础题目.
7.A
【解析】
由复数除法求出,再由模的定义计算出模.
【详解】
.
故选:A.
【点睛】
本题考查复数的除法法则,考查复数模的运算,属于基础题.
8.A
【解析】
向量,,,则,即,或者-1,判断出即可.
【详解】
解:向量,,
,则,即,
或者-1,
所以是或者的充分不必要条件,
故选:A.
【点睛】
本小题主要考查充分、必要条件的判断,考查向量平行的坐标表示,属于基础题.
9.D
【解析】
由,可求出等比数列的通项公式,进而可知当时,;当时,,从而可知的最小值为,求解即可.
【详解】
设等比数列的公比为,则,
由题意得,,得,解得,
得.
当时,;当时,,
则的最小值为.
故选:D.
【点睛】
本题考查等比数列的通项公式的求法,考查等比数列的性质,考查学生的计算求解能力,属于中档题.
10.B
【解析】
化简得lgcosA=lg=﹣lg2,即,结合, 可求,得代入sinC=sinB,从而可求C,B,进而可判断.
【详解】
由,可得lgcosA==﹣lg2,∴,
∵,∴,,∴sinC=sinB==,∴tanC=,C=,B=.
故选:B
【点睛】
本题主要考查了对数的运算性质的应用,两角差的正弦公式的应用,解题的关键是灵活利用基本公式,属于基础题.
11.A
【解析】
根据两个已知条件求出数列的公比和首项,即得的值.
【详解】
设等比数列的公比为q.
由,得,解得或.
因为.且数列递增,所以.
又,解得,
故.
故选:A
【点睛】
本题主要考查等比数列的通项和求和公式,意在考查学生对这些知识的理解掌握水平.
12.B
【解析】
先根据复数的乘法计算出,然后再根据共轭复数的概念直接写出即可.
【详解】
由,所以其共轭复数.
故选:B.
【点睛】
本题考查复数的乘法运算以及共轭复数的概念,难度较易.
二、填空题:本题共4小题,每小题5分,共20分。
13.
【解析】
依题意,将点的坐标代入曲线的方程中,解得.由,得,则曲线在点处切线的斜率,所以在点处的切线方程是,即.
14.
【解析】
先求角,再用余弦定理找到边的关系,再用基本不等式求的范围即可.
【详解】
解:
所以三角形周长
故答案为:
【点睛】
考查正余弦定理、基本不等式的应用以及三条线段构成三角形的条件;基础题.
15.
【解析】
利用余弦定理可求得的值,进而可得出的值,最后利用三角形的面积公式可得出的面积.
【详解】
由余弦定理得,则,
因此,的面积为.
故答案为:;.
【点睛】
本题考查利用余弦定理解三角形,同时也考查了三角形面积的计算,考查计算能力,属于基础题.
16.
【解析】
根据题意设为椭圆上任意一点,表达出,再根据二次函数的对称轴与求解的关系分析最值求解即可.
【详解】
因为椭圆的离心率是,,所以,故椭圆方程为.
因为以为圆心且与椭圆有公共点的圆的最大半径为,所以椭圆上的点到点的距离的最大值为.
设为椭圆上任意一点,则.
所以
因为的对称轴为.
(i)当时,在上单调递增,在上单调递减.
此时,解得.
(ii)当时, 在上单调递减.
此时,解得舍去.
综上,椭圆方程为.
故答案为:
【点睛】
本题主要考查了椭圆上的点到定点的距离最值问题,需要根据题意设椭圆上的点,再求出距离,根据二次函数的对称轴与区间的关系分析最值的取值点分类讨论求解.属于中档题.
三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。
17.(1)有97.5%的把握认为顾客购物体验的满意度与性别有关; (2)67元,见解析.
【解析】
(1)根据表格数据代入公式,结合临界值即得解;
(2)的可能取值为40,60,80,1,根据题意依次计算概率,列出分布列,求数学期望即可.
【详解】
(1)由题得
,
所以,有97.5%的把握认为顾客购物体验的满意度与性别有关.
(2)由题意可知的可能取值为40,60,80,1.
,,
,.
则的分布列为
40 60 80 1
所以,(元).
【点睛】
本题考查了统计和概率综合,考查了列联表,随机变量的分布列和数学期望等知识点,考查了学生数据处理,综合分析,数学运算的能力,属于中档题.
18.(1),,.(2)填表见解析;在犯错误的概率不超过0.01的情况下,不能认为“获得优秀作文”与“学生的文理科”有关(3)详见解析
【解析】
(1)根据频率分步直方图和构成以2为公比的等比数列,即可得解;
(2)由频率分步直方图算出相应的频数即可填写列联表,再用的计算公式运算即可;
(3)获奖的概率为,随机变量,再根据二项分布即可求出其分布列与期望.
【详解】
解:(1)由频率分布直方图可知,,
因为构成以2为公比的等比数列,所以,解得,
所以,.
故,,.
(2)获奖的人数为人,
因为参考的文科生与理科生人数之比为,所以400人中文科生的数量为,理科生的数量为.
由表可知,获奖的文科生有6人,所以获奖的理科生有人,不获奖的文科生有人.
于是可以得到列联表如下:
文科生 理科生 合计
获奖 6 14 20
不获奖 74 306 380
合计 80 320 400
所以在犯错误的概率不超过0.01的情况下,不能认为“获得优秀作文”与“学生的文理科”有关.
(3)由(2)可知,获奖的概率为,
的可能取值为0,1,2,
,
,
,
分布列如下:
0 1 2
数学期望为.
【点睛】
本题考查频率分布直方图、统计案例和离散型随机变量的分布列与期望,考查学生的阅读理解能力和计算能力,属于中档题.
19.(1),;(2).
【解析】
(1)在直线的参数方程中消去参数可得出直线的普通方程,在曲线的极坐标方程两边同时乘以,结合可将曲线的极坐标方程化为直角坐标方程;
(2)计算出直线截圆所得弦长,并计算出原点到直线的距离,利用三角形的面积公式可求得的面积.
【详解】
(1)由得,故直线的普通方程是.
由,得,代入公式得,得,
故曲线的直角坐标方程是;
(2)因为曲线的圆心为,半径为,
圆心到直线的距离为,
则弦长.
又到直线的距离为,
所以.
【点睛】
本题考查参数方程、极坐标方程与普通方程之间的转化,同时也考查了直线与圆中三角形面积的计算,考查计算能力,属于中等题.
20.(1)(2)证明见解析
【解析】
(1)法一:,,得,则,由此可得答案;
法二:由题意,令,易知是偶函数,且时为增函数,由此可得出答案;
(2)由(1)知,,即,结合“1”的代换,利用基本不等式即可证明结论.
【详解】
解:(1)法一:(当且仅当时取等号),
又(当且仅当时取等号),
所以(当且仅当时取等号),
由題意得,则,解得,
故的取值范围是;
法二:因为对于任意恒有成立,即,
令,易知是偶函数,且时为增函数,
所以,即,则,解得,
故的取值范围是;
(2)由(1)知,,即,
∴
,
故不等式成立.
【点睛】
本题主要考查绝对值不等式的恒成立问题,考查基本不等式的应用,属于中档题.
21.(1)(2)函数有两个零点和
【解析】
试题分析:(1)求导后根据函数在区间单调递增,导函数大于或等于0(2)先判断为一个零点,然后再求导,根据,化简求得另一个零点。
解析:(1)当时,,因为函数在上单调递增,
所以当时,恒成立.
函数的对称轴为.
①,即时,,
即,解之得,解集为空集;
②,即时,
即,解之得,所以
③,即时,
即,解之得,所以
综上所述,当 函数在区间 上单调递增.
(2)∵有两个极值点,
∴是方程的两个根,且函数在区间和上单调递增,在上单调递减.
∵
∴函数也是在区间和上单调递增,在上单调递减
∵,∴是函数的一个零点.
由题意知:
∵,∴,∴∴,∴又
∵是方程的两个根,
∴,,
∴
∵函数图像连续,且在区间上单调递增,在上单调递减,在上单调递增
∴当时,,当时,当时,
∴函数有两个零点和.
22.(1);(2)
【解析】
(1)直接利用转换公式,把参数方程,直角坐标方程与极坐标方程进行转化;
(2)利用极坐标方程将转化为三角函数求解即可.
【详解】
(1)因为,所以的普通方程为,
又,,,
的极坐标方程为,
的方程即为,对应极坐标方程为.
(2)由己知设,,则,,
所以,
又,,
当,即时,取得最小值;
当,即时,取得最大值.
所以,的取值范围为.
【点睛】
本题主要考查了直角坐标方程,参数方程与极坐标方程的互化,三角函数的值域求解等知识,考查了学生的运算求解能力.