必修五第一章正弦定理教学设计
一、教学目标
1、知识与技能:通过对任意三角形的边与其对角的关系的探索,掌握正弦定理的内容及其证明方法。
2、过程与方法:让学生从已有的知识出发,共同探究在任意三角形中,边与其对角的关系,引导学生通过观察、归纳、猜想、证明,由特殊到一般得到正弦定理等方法,体验数学发现和创造的历程。
3、情感态度与价值观:在平等的教学氛围中,通过学生之间、师生之间的交流、合作和评价,实现共同探究、教学相长的教学情境。
二、教学重点与难点
重点:正弦定理的发现和推导
难点:正弦定理的推导
教学准备:制作多媒体课件,学生准备计算器,直尺,量角器。
三、教学过程设计
(一)设置情境
教师:展示情景图如图1,船从港口B航行到港口C,测得BC的距离为,船在港口C卸货后继续向港口A航行,由于船员的疏忽没有测得CA距离,如果船上有测角仪我们能否计算出A、B的距离?
学生:思考提出测量角A,C。
教师:若已知测得,
,如何计算A、B两地距离?
师生共同回忆解直角三角形,①直角三角形中,已知两边,可以求第三边及两个角。②直角三角形中,已知一边和一角,可以求另两边及第三个角。
教师引导:是斜三角形,能否利用解直角三角形,精确计算AB呢?
学生:(思考交流)得出过作于(如图2),把分为两个直角三角形,解题过程,学生阐述,教师板书。
解:过作于
在中,
,
在中,
教师继续引导:在上述问题中,若,,能否用、、表示呢?
学生:发现,
教师:引导 ,在刚才的推理过程中,你能想到什么?你能发现什么?
学生:发现即然有,那么也有,。
教师:引导 ,,,我们习惯写成对称形式,,,因此我们可以发现,是否任意三角形都有这种边角关系呢?
(二)证明猜想,得出定理
师生活动:
教师:我们虽然经历了数学实验,多媒体技术支持,对任意的三角形,如何用数学的思想方法证明呢?前面探索过程对我们有没有启发?学生分组讨论,每组派一个代表总结。(以下证明过程,根据学生回答情况进行叙述)
学生:思考得出
(1)在中,成立,如前面检验。
(2)在锐角三角形中,如图5设,,
作:,垂足为
在中,
在中,
同理,在中,
(3)在钝角三角形中,如图6设为钝角,,,,作交的延长线于
在中,
在中,
同锐角三角形证明可知
教师:我们把这条性质称为正弦定理:在一个三角形中,各边和它所对角的正弦的比相等,即
教师:还有其它证明方法吗?
(三)运用定理,解决例题
师生活动:
教师:引导学生从分析方程思想分析正弦定理可以解决的问题。
学生:讨论正弦定理可以解决的问题类型:
(1)如果已知三角形的任意两个角与一边,求三角形的另一角和另两边,如;
(2)如果已知三角形任意两边与其中一边的对角,求另一边与另两角,如。
师生:例1的处理,先让学生思考回答解题思路,教师板书,让学生思考主要是突出主体,教师板书的目的是规范解题步骤。
例1:在中,已知,,,解三角形。
分析“已知三角形中两角及一边,求其他元素”,第一步可由三角形内角和为求出第三个角∠C,再由正弦定理求其他两边。
例2:在中,已知,,,解三角形。
例2的处理,目的是让学生掌握分类讨论的数学思想,可先让中等学生讲解解题思路,其他同学补充交流。
学生:反馈练习(教科书第5页的练习)
用实物投影仪展示学生中解题步骤规范的解答。
设计意图:自己解决问题,提高学生学习的热情和动力,使学生体验到成功的愉悦感,变“要我学”为“我要学”,“我要研究”的主动学习。
(四)尝试小结:
教师:提示引导学生总结本节课的主要内容。
学生:思考交流,归纳总结。
师生:让学生尝试小结,教师及时补充,要体现:
(1)正弦定理的内容()及其证明思想方法。
(2)正弦定理的应用范围:①已知三角形中两角及一边,求其他元素;②已知三角形中两边和其中一边所对的角,求其他元素。
(3)分类讨论的数学思想。
设计意图:通过学生的总结,培养学生的归纳总结能力和语言表达能力。
(五)作业设计
作业:第10页[习题1.1]A组第1、2题。
PAGE
1