【基础夯实】1.6.1青岛版初二数学下册平行四边形①同步提高练习(含答案)

文档属性

名称 【基础夯实】1.6.1青岛版初二数学下册平行四边形①同步提高练习(含答案)
格式 zip
文件大小 2.5MB
资源类型 试卷
版本资源 青岛版
科目 数学
更新时间 2022-06-06 18:54:25

文档简介

中小学教育资源及组卷应用平台
【1.6.1】2021-2022学年初二数学下册同步系列(青岛版)
----初二数学下册第6章:平行四边形
重难点知识
★☆★ 平行四边形性质
平行四边形的对边相等;
平行四边形的对角相等;
平行四边形的对角线互相平分.
★☆★ 平行四边形判定
一组对边平行且相等的四边形是平行四边形;
两组对边分别相等的四边形是平行四边形;
对角线互相平分的四边形是平行四边形;
两组对边分别平行的四边形是平行四边形;
两组对角分别相等的四边形是平行四边形.
★☆★ 常见考法
利用平行四边形的性质,求角度、线段长、周长;
求平行四边形某边的取值范围;
考查一些综合计算问题;
利用平行四边形性质证明角相等、线段相等和直线平行;
(5)利用判定定理证明四边形是平行四边形。
★☆★ 误区辨析
平行四边形的性质较多,易把对角线互相平分,错记成对角线相等;
(2)“一组对边平行且相等的四边形是平行四边形”错记成“一组对边平行,一组对边相等的四边形是平行四边形”后者不是平行四边形的判定定理,它只是个等腰梯形。
平行四边形性质及判定基础练习
1.如图,在平行四边形ABCD中,DE平分∠ADC,AD=6,BE=2,则平行四边形ABCD的周长是( )
A.60
B.30
C.20
D.16
2.如图,在平行四边形中,平分,,,则平行四边形的周长是( )
A.16 B.14
C.20 D.24
3.如图,在 ABCD中,BF平分∠ABC,交AD于点F,CE平分∠BCD,交AD于点E,若AB=6,EF=2,则BC的长为(  )
A.8 B.10
C.12 D.14
4.□ABCD中,E、F是对角线BD上不同的两点,下列条件中,不能得出四边形AECF一定为平行四边形的是( )
A.BE=DF B.AE=CF
C.AF//CE D.∠BAE=∠DCF
5.如图,平行四边形ABCD中,E,F分别为AD,BC边上的一点,增加下列条件,不一定能得出BE∥DF的是(  )
A.AE=CF B.BE=DF
C.∠EBF=∠FDE D.∠BED=∠BFD
6.如图,在平行四边形ABCD中,过点C的直线CE⊥AB,垂足为E,若∠BAD=127°,则∠BCE=____.
7.如图,是的对角线,点在上,,,则的度数是______.
8.如图, ABCD中,AC、BD相交于点O,若AD=6,AC+BD=16,则△BOC的周长为_____.
9.如图,在四边形ABCD中,AD∥BC,AD=4,BC=12,点E是BC的中点.点P、Q分别是边AD、BC上的两点,其中点P以每秒1个单位长度的速度从点A运动到点D后再返回点A,同时点Q以每秒2个单位长度的速度从点C出发向点B运动.当其中一点到达终点时停止运动.当运动时间t为_____秒时,以点A、P,Q,E为顶点的四边形是平行四边形.
10.如图,△APB中,AB=2,∠APB=90°,在AB的同侧作正△ABD、正△APE和△BPC,则四边形PCDE面积的最大值是_____.
11.如图,在 ABCD 中,对角线 AC,BD 相交于点 O,过点 O 的一条直线分别交 AD,BC 于点 E,F.求证:AE=CF.
12.如图,在 ABCD中,E是BC的中点,连接AE并延长交DC的延长线于点F.
(1)求证:AB=CF;
(2)连接DE,若AD=2AB,求证:DE⊥AF.
13.如图, ABCD的对角线AC,BD相交于点O.E,F是AC上的两点,并且AE=CF,连接DE,BF.
(1)求证:△DOE≌△BOF;
(2)若BD=EF,连接DE,BF.判断四边形EBFD的形状,并说明理由.
14.如图,点B、E、C、F在一条直线上,AB=DF,AC=DE,BE=FC.
(1)求证:△ABC≌△DFE;
(2)连接AF、BD,求证:四边形ABDF是平行四边形.
15.已知BD垂直平分AC,∠BCD=∠ADF,AF⊥AC,
(1)证明ABDF是平行四边形;
(2)若AF=DF=5,AD=6,求AC的长.
16.已知:如图,E、F是四边形ABCD的对角线AC上的两点,AF=CE,DF=BE,DF∥BE.
求证:(1)△AFD≌△CEB.(2)四边形ABCD是平行四边形.
17.如图,四边形ABCD是平行四边形,E,F是对角线BD上的点,∠1=∠2.
求证:(1)BE=DF;(2)AF∥CE.
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
【1.6.1】2021-2022学年初二数学下册同步系列(青岛版)
----初二数学下册第6章:平行四边形
参考答案
1.C
【分析】
根据角平分线的定义以及两直线平行,内错角相等求出∠CDE=∠CED,再根据等角对等边的性质可得CE=CD,然后利用平行四边形对边相等求出CD、BC的长度,再求出 ABCD的周长.
【详解】
解:∵DE平分∠ADC,
∴∠ADE=∠CDE,
∵ ABCD中,AD∥BC,
∴∠ADE=∠CED,
∴∠CDE=∠CED,
∴CE=CD,
∵在 ABCD中,AD=6,BE=2,
∴AD=BC=6,
∴CE=BC-BE=6-2=4,
∴CD=AB=4,
∴ ABCD的周长=6+6+4+4=20.
故选:C.
【点睛】
本题考查了平行四边形的性质,角平分线的定义,等角对等边的性质,是基础题,准确识图并熟练掌握性质是解题的关键.
2.C
【分析】
根据角平分线的性质以及两直线平行,内错角相等求出∠CDE=∠CED,再根据等角对等边的性质可得CE=CD,然后利用平行四边形对边相等求出CD、BC的长度,再求出平行四边形ABCD的周长.
【详解】
解:∵DE平分∠ADC,
∴∠ADE=∠CDE,
∵在平行四边形中,AD∥BC,
∴∠ADE=∠CED,
∴∠CDE=∠CED,
∴CE=CD,
∵在平行四边形中,AD=6,BE=2,
∴AD=BC=6,
∴CE=BC-BE=6-2=4,
∴CD=AB=4,
∴平行四边形ABCD的周长=6+6+4+4=20.
故选:C.
【点睛】
本题考查了平行四边形的性质,角平分线的性质,准确识图并熟练掌握性质是解题的关键.
3.B
【解析】
试题分析:根据平行四边形的性质可知AB=CD,AD∥BC,AD=BC,然后根据平行线的性质和角平分线的性质可知AB=AF,DE=CD,因此可知AF+DE=AD+EF=2AB=12,解得AD=BC=12-2=10.
故选B.
点睛:此题主要考查了平行四边形的性质和等腰三角形的性质,解题关键是把所求线段转化为题目中已知的线段,根据等量代换可求解.
4.B
【解析】
【分析】根据平行线的判定方法结合已知条件逐项进行分析即可得.
【详解】A、如图,∵四边形ABCD是平行四边形,∴OA=OC,OB=OD,
∵BE=DF,∴OE=OF,∴四边形AECF是平行四边形,故不符合题意;
B、如图所示,AE=CF,不能得到四边形AECF是平行四边形,故符合题意;
C、如图,∵四边形ABCD是平行四边形,∴OA=OC,
∵AF//CE,∴∠FAO=∠ECO,
又∵∠AOF=∠COE,∴△AOF≌△COE,∴AF=CE,
∴AF CE,∴四边形AECF是平行四边形,故不符合题意;
D、如图,∵四边形ABCD是平行四边形,∴AB=CD,AB//CD,
∴∠ABE=∠CDF,
又∵∠BAE=∠DCF,∴△ABE≌△CDF,∴AE=CF,∠AEB=∠CFD,∴∠AEO=∠CFO,
∴AE//CF,
∴AE CF,∴四边形AECF是平行四边形,故不符合题意,
故选B.
【点睛】本题考查了平行四边形的性质与判定,熟练掌握平行四边形的判定定理与性质定理是解题的关键.
5.B
【分析】
由四边形ABCD是平行四边形,可得AD//BC,AD=BC,然后由AE=CF,∠EBF=∠FDE,∠BED=∠BFD均可判定四边形BFDE是平行四边形,则可证得BE//DF,利用排除法即可求得答案.
【详解】
四边形ABCD是平行四边形,
∴AD//BC,AD=BC,
A、∵AE=CF,
∴DE=BF,
∴四边形BFDE是平行四边形,
∴BE//DF,故本选项能判定BE//DF;
B、∵BE=DF,
四边形BFDE是等腰梯形,
本选项不一定能判定BE//DF;
C、∵AD//BC,
∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,
∵∠EBF=∠FDE,
∴∠BED=∠BFD,
四边形BFDE是平行四边形,
∴BE//DF,
故本选项能判定BE//DF;
D、∵AD//BC,
∴∠BED+∠EBF=180°,∠EDF+∠BFD=180°,
∵∠BED=∠BFD,
∴∠EBF=∠FDE,
∴四边形BFDE是平行四边形,
∴BE//DF,故本选项能判定BE//DF.
故选B.
【点睛】
本题考查了平行四边形的判定与性质,注意根据题意证得四边形BFDE是平行四边形是关键.
6.37°
【分析】
由平行四边形的性质得出∠B+∠BAD=180°,可得∠B的度数,由直角三角形的两上锐角互余得出∠BCE=90°-∠B即可.
【详解】
解:∵四边形ABCD是平行四边形,
∴AD∥BC,
∴∠B+∠BAD=180°,
∵∠BAD=127°
∴∠B=53°,
∵CE⊥AB,
∴∠E=90°,
∴∠BCE=90°-∠B=90°-53°=37°,
故答案为:37°.
【点睛】
本题考查了平行四边形的性质、直角三角形两锐角互余.熟练掌握平行四边形的性质,求出∠B的度数是解决问题的关键.
7.
【分析】
由四边形ABCD是平行四边形,得到∠ABC=∠D=102°,再AD=AE=BE,得出∠EAB=∠EBA,∠BEC=∠BCA,继而得到∠ACB=2∠BAC,再根据∠BAC+∠ACB=3∠BAC=180°-∠ABC求解即可.
【详解】
解:∵四边形ABCD是平行四边形,
∴AD=BC, ∠ABC=∠D=102°,
∵AD=AE=BE,
∴BC=AE=BE,
∴∠EAB=∠EBA,∠BEC=∠BCA,
∵∠BEC=∠EAB+∠EBA=2∠EAB,
∴∠ACB=2∠BAC,
∴∠BAC+∠ACB=3∠BAC=180°-∠ABC=180°-102°=78°,
∴3∠BAC=78°,
即∠BAC=26°,
故答案为:26°.
【点睛】
本题考查平行四边形的性质、三角形外角的性质、等腰三角形的性质,解题的关键是综合运用相关知识.
8.14
【分析】
根据平行四边形的性质,三角形周长的定义即可解决问题;
【详解】
解:∵四边形ABCD是平行四边形,
∴AD=BC=6,OA=OC,OB=OD,
∵AC+BD=16,
∴OB+OC=8,
∴△BOC的周长=BC+OB+OC=6+8=14,
故答案为14.
点睛:本题考查平行四边形的性质.三角形的周长等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
9.2或.
【分析】
分别从当Q运动到E和B之间与当Q运动到E和C之间去分析, 根据平行四边形的性质, 可得方程, 继而可求得答案.
【详解】
解:E是BC的中点,
BE=CE=BC=12=6,
①当Q运动到E和C之间, 设运动时间为t, 则AP=t, DP=AD-AP=4-t, CQ=2t,EQ=CE-CQ=6-2t
t=6-2t,
解得: t=2;
②当Q运动到E和B之间,设运动时间为t,则AP=t, DP=AD-AP=4-t, CQ=2t,
EQ=CQ-CE=2t-6,
t=2t-6,
解得: t=6(舍),
③P点当D后再返回点A时候,Q运动到E和B之间,设运动时间为t,
则AP=4-(t-4)=8-t, EQ=2t-6,
8-t=2t-6,,
当运动时间t为2、秒时,以点P,Q,E,A为顶点的四边形是平行四边形.
故答案为: 2或.
【点睛】
本题主要考查平行四边形的性质及解一元一次方程.
10.2
【解析】
【分析】
先延长EP交BC于点F,得出PF⊥BC,再判定四边形CDEP为平行四边形,根据平行四边形的性质得出:四边形CDEP的面积=EP×CF=a×b=ab,最后根据a2+b2=8,判断ab的最大值即可.
【详解】
如图,延长EP交BC于点F,
∵∠APB=90°,∠APE=∠BPC=60°,
∴∠EPC=150°,
∴∠CPF=180°-150°=30°,
∴PF平分∠BPC,
又∵PB=PC,
∴PF⊥BC,
设Rt△ABP中,AP=a,BP=b,则CF=CP=b,a2+b2=8,
∵△APE和△ABD都是等边三角形,
∴AE=AP,AD=AB,∠EAP=∠DAB=60°,
∴∠EAD=∠PAB,
∴△EAD≌△PAB(SAS),
∴ED=PB=CP,
同理可得:△APB≌△DCB(SAS),
∴EP=AP=CD,
∴四边形CDEP是平行四边形,
∴四边形CDEP的面积=EP×CF=a×b=ab,
又∵(a-b)2=a2-2ab+b2≥0,
∴2ab≤a2+b2=8,
∴ab≤2,
即四边形PCDE面积的最大值为2.
故答案为:2.
【点睛】
本题主要考查了等边三角形的性质、平行四边形的判定与性质以及全等三角形的判定与性质,解决问题的关键是作辅助线构造平行四边形的高线.
11.证明见解析.
【分析】
利用平行四边形的性质得出 AO=CO,AD∥BC,进而得出∠EAC=∠FCO, 再利用 ASA 求出△AOE≌△COF,即可得出答案.
【详解】
∵ ABCD 的对角线 AC,BD 交于点 O,
∴AO=CO,AD∥BC,
∴∠EAC=∠FCO,
在△AOE 和△COF 中,
∴△AOE≌△COF(ASA),
∴AE=CF.
【点睛】
本题考查了全等三角形的判定与性质以及平行四边形的性质,熟练掌握全等三角形的判定方法是解题关键.
12.详见解析.
【解析】
试题分析:(1)要证明AB=CF可通过△AEB≌△FEC证得,利用平行四边形ABCD的性质不难证明;(2)由平行四边形ABCD的性质可得AB=CD,由△AEB≌△FEC可得AB=CF,所以DF=2CF=2AB,所以AD=DF,由等腰三角形三线合一的性质可证得ED⊥AF .
试题解析:
(1)∵四边形ABCD是平行四边形,
∴AB∥DF,
∴∠BAE=∠F,
∵E是BC的中点,
∴BE=CE,
在△AEB和△FEC中,

∴△AEB≌△FEC(AAS),
∴AB=CF;
(2)∵四边形ABCD是平行四边形,
∴AB=CD,
∵AB=CF,DF=DC+CF ,
∴DF=2CF,
∴DF=2AB,
∵AD=2AB,
∴AD=DF,
∵△AEB≌△FEC,
∴AE=EF,
∴ED⊥AF .
点睛:掌握全等三角形的性质及判定、平行四边形的性质、等腰三角形三线合一的性质.
13.(2)证明见解析;(2)四边形EBFD是矩形.理由见解析.
【解析】
分析:(1)根据SAS即可证明;
(2)首先证明四边形EBFD是平行四边形,再根据对角线相等的平行四边形是矩形即可证明;
【解答】(1)证明:∵四边形ABCD是平行四边形,
∴OA=OC,OB=OD,
∵AE=CF,
∴OE=OF,
在△DEO和△BOF中,

∴△DOE≌△BOF.
(2)结论:四边形EBFD是矩形.
理由:∵OD=OB,OE=OF,
∴四边形EBFD是平行四边形,
∵BD=EF,
∴四边形EBFD是矩形.
点睛:本题考查平行四边形的性质,全等三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
14.(1)证明见解析;(2)证明见解析.
【分析】
(1)由SSS证明△ABC≌△DFE即可;
(2)连接AF、BD,由全等三角形的性质得出∠ABC=∠DFE,证出AB∥DF,即可得出结论.
【详解】
详解:证明:,

在和中,,
≌;
解:如图所示:
由知≌,



四边形ABDF是平行四边形.
点睛:本题考查了平行四边形的判定、全等三角形的判定与性质、平行线的判定;熟练掌握平行四边形的判定方法,证明三角形全等是解决问题的关键.
15.(1)证明见解析;(2).
【分析】
(1)先证得△ADB≌△CDB求得∠BCD=∠BAD,从而得到∠ADF=∠BAD,所以AB∥FD,因为BD⊥AC,AF⊥AC,所以AF∥BD,即可证得.
(2)先证得平行四边形是菱形,然后根据勾股定理即可求得.
【详解】
(1)证明:∵BD垂直平分AC,
∴AB=BC,AD=DC,
在△ADB与△CDB中,

∴△ADB≌△CDB(SSS)
∴∠BCD=∠BAD,
∵∠BCD=∠ADF,
∴∠BAD=∠ADF,
∴AB∥FD,
∵BD⊥AC,AF⊥AC,
∴AF∥BD,
∴四边形ABDF是平行四边形,
(2)解:∵四边形ABDF是平行四边形,AF=DF=5,
∴ ABDF是菱形,
∴AB=BD=5,
∵AD=6,
设BE=x,则DE=5-x,
∴AB2-BE2=AD2-DE2,
即52-x2=62-(5-x)2
解得:x=,
∴,
∴AC=2AE=.
考点:1.平行四边形的判定;2.线段垂直平分线的性质;3.勾股定理.
16.证明见解析
【解析】
证明:(1)∵DF∥BE,
∴∠DFE=∠BEF.
又∵AF=CE,DF=BE,
∴△AFD≌△CEB(SAS).
(2)由(1)知△AFD≌△CEB,
∴∠DAC=∠BCA,AD=BC,
∴AD∥BC.
∴四边形ABCD是平行四边形(一组对边平行且相等的四边形是平行四边形).
(1)利用两边和它们的夹角对应相等的两三角形全等(SAS),这一判定定理容易证明△AFD≌△CEB.
(2)由△AFD≌△CEB,容易证明AD=BC且AD∥BC,可根据一组对边平行且相等的四边形是平行四边形.
17.证明见解析
【分析】
(1)利用平行四边形的性质得出∠5=∠3,∠AEB=∠4,进而利用全等三角形的判定得出即可;
(2)利用全等三角形的性质得出AE=CF,进而得出四边形AECF是平行四边形,即可得出答案.
【详解】
(1)∵四边形ABCD是平行四边形,
∴AB=CD,AB∥CD,
∴∠5=∠3,
∵∠1=∠2,
∴∠AEB=∠4,
在△ABE和△CDF中,

∴△ABE≌△CDF(AAS),
∴BE=DF;
(2)由(1)得△ABE≌△CDF,
∴AE=CF,
∵∠1=∠2,
∴AE∥CF,
∴四边形AECF是平行四边形,
∴AF∥CE
21世纪教育网(www.21cnjy.com)