(共17张PPT)
*4.5 相似三角形判定定理的证明
第四章 图形的相似
导入新课
问题:相似三角形的判定方法有哪些?
① 两角对应相等,两三角形相似.
② 两边对应成比例且夹角相等,两三角形相似.
③ 三边对应成比例,两三角形相似.
讲授新课
证明相似三角形的判定定理
一
在上两节中,我们探索了三角形相似的条件,稍候我们将对它们进行证明.
定理1:两角分别相等的两个三角形相似.
已知:如图,在 △ABC 和
△A'B'C' 中,∠A = ∠A',
∠B =∠B'.
求证:△ABC ∽△A'B'C'.
A′
B′
C′
A
B
C
∠1=∠B,∠2 =∠C,
过点 D 作 AC 的平行线,交 BC 于点 F,则
∴ ∴
∵ DE∥BC, DF∥AC,
∴ 四边形 DFCE 是平行
四边形.
∴ DE = CF.
∴ ∴
A′
B′
C′
A
B
C
证明:在 △ABC 的边 AB(或它的延长线)上截取AD =A'B',过点D作BC的平行线,交 AC 于点E,则
E
D
F
1
2
而 ∠ 1 = ∠ B,∠ DAE = ∠ BAC,∠ 2=∠ C,
∴ △ADE ∽ △ABC.
∵ ∠ A = ∠ A',∠ ADE = ∠ B =∠ B',AD = A'B',
∴ △ADE ≌△A' B ' C ' .
∴ △ABC ∽△A'B'C.
A′
B′
C′
A
B
C
E
D
F
1
2
我们来证明一下前面得出的结论:
如图,在△ABC与△A′B′C′中,已知∠A= ∠A′,
证明:在 △A′B′C′ 的边 A′B′ 上截取点D,
使 A′D = AB.过点 D 作 DE∥B′C′,
交 A′C′ 于点 E.
∵ DE∥B′C′,
∴ △A′DE∽△A′B′C′.
求证:△ABC∽△A′B′C′.
B
A
C
D
E
B'
A'
C'
∴
定理2:两边成比例且夹角相等的两个三角形相似.
∴ A′E = AC .
又 ∠A′ = ∠A.
∴ △A′DE ≌ △ABC,
∴ △A′B′C′ ∽ △ABC.
B
A
C
D
E
B'
A'
C'
∵ A′D=AB,
∴
定理3:三边成比例的两个三角形相似.
已知:如图,在 △ABC 和△A'B'C' 中,
求证:△ABC ∽ △A'B'C' .
A′
B′
C′
A
C
E
D
B
∴
C′
B′
A′
证明:
在线段 AB (或延长线) 上截取 AD=A′B′,
过点 D 作 DE∥BC 交AC于点 E.
∵ DE∥BC ,∴ △ADE ∽ △ABC.
∴ DE=B′C′,EA=C′A′.
∴△ADE≌△A′B′C′,
△A′B′C′ ∽△ABC.
B
C
A
D
E
又 ,AD=A′B′,
∴ , .
相似三角形判定定理的运用
二
例1:已知:如图,∠ABD=∠C,AD=2, AC=8,求AB.
C
D
A
B
解: ∵ ∠ A= ∠ A , ∠ABD=∠C,
∴ △ABD ∽ △ACB ,
∴ AB : AC = AD : AB,
∴ AB2 = AD · AC.
∵ AD = 2 , AC = 8,
∴ AB = 4.
例2 如图,已知:∠ACB =∠ADC = 90°,AD = 2,CD = ,当 AB 的长为 时,△ACB 与△ADC相似.
C
A
B
D
解析:∵∠ADC = 90°,AD = 2,CD = ,
要使这两个直角三角形相似,有两种情况:
(1) 当 Rt△ABC ∽ Rt△ACD 时,有 AC : AD =
AB : AC, 即 : 2 =AB : ,解得 AB=3;
∴
C
A
B
D
2
(2) 当 Rt△ACB ∽ Rt△CDA 时,有 AC : CD =
AB : AC , 即 : =AB : ,解得 AB= .
∴ 当 AB 的长为 3 或 时,这两个直角三角形相似.
C
A
B
D
2
在 Rt△ABC 和 Rt△A′B′C′ 中,∠C=∠C′=90°,依据下列各组条件判定这两个三角形是否相似.
(1) ∠A=35°,∠B′=55°: ;
(2) AC=3,BC=4,A′C′=6,B′C′=8: ;
(3) AB=10,AC=8,A′B′=25,B′C′=15: .
练一练
相似
相似
相似
1.如下图,在大小为4×4的正方形网格中,是相似三角形的是( )
①
②
③
④
①③
当堂练习
2.已知:如图,在四边形ABCD中,∠B=∠ACD,AB=6,BC=4,AC=5,CD= ,求AD的长.
解: ∵ AB=6,BC=4,AC=5,CD =
∴
又∠B =∠ACD,
∴△ABC∽△DCA,
∴
∴AD=
A
B
C
D
相似三角形判定定理的证明
定理1:两角分别相等的两个三角形相似.
定理的运用
定理证明
定理2:两边成比例且夹角相等的两个三角形相似.
定理3:三边成比例的两个三角形相似.
课堂小结