中小学教育资源及组卷应用平台
【1.8.2】2021-2022学年初二数学下册同步系列(青岛版)
----初二数学下册第8章:一元一次不等式
重难点知识
★☆★ 列不等式解应用题步骤:
1.审清题意、设未知数,只能设一个未知数。
2.找等量关系列不等式方程
3.解方程
4.写出结果(也就是答)
5.检验
6.回答
★☆★ 一元一次不等式组
①几个一元一次不等式合在一起,就组成了一个一元一次不等式组。
②几个一元一次不等式的解集的公共部分,叫做它们所组成的一元一次不等式组的解集。
③求不等式组的解集的过程,叫做解不等式组。
④当任何数x都不能使不等式同时成立,我们就说这个不等式组无解或其解为空集。
解应用题与不等式组基础练习
1.小明要从甲地到乙地,两地相距1.8千米.已知他步行的平均速度为90米/分,跑步的平均速度为210米/分,若他要在不超过15分钟的时间内从甲地到达乙地,至少需要跑步多少分钟?设他需要跑步x分钟,则列出的不等式为( )
A.210x+90(15﹣x)≥1.8
B.90x+210(15﹣x)≤1800
C.210x+90(15﹣x)≥1800
D.90x+210(15﹣x)≤1.8
2.一次智力测验,有20道选择题.评分标准是:对1题给5分,错1题扣2分,不答题不给分也不扣分,小明有两道题未答,至少答对几道题,总分才不会低于60分,则小明至少答对的题数是( )
A.14道 B.13道
C.12道 D.11道
3.若不等式组无解,则的取值范围为( )
A. B.
C. D.
4.在直角坐标系中,若点P(2x-6,x-5)在第四象限,则x的取值范围是( )
A.3<x<5 B.-5<x<3
C.-3<x<5 D.-5<x<-3
5.某青春党支部在精准扶贫活动中,给结对帮扶的贫困家庭赠送甲、乙两种树苗让其栽种.已知乙种树苗的价格比甲种树苗贵10元,用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同.
(1)求甲、乙两种树苗每棵的价格各是多少元?
(2)在实际帮扶中,他们决定再次购买甲、乙两种树苗共50棵,此时,甲种树苗的售价比第一次购买时降低了10%,乙种树苗的售价不变,如果再次购买两种树苗的总费用不超过1500元,那么他们最多可购买多少棵乙种树苗?
6.某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.
(1)该商家购进的第一批衬衫是多少件?
(2)若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元?
7.为落实“美丽抚顺”的工作部署,市政府计划对城区道路进行了改造,现安排甲、乙两个工程队完成.已知甲队的工作效率是乙队工作效率的倍,甲队改造360米的道路比乙队改造同样长的道路少用3天.
(1)甲、乙两工程队每天能改造道路的长度分别是多少米?
(2)若甲队工作一天需付费用7万元,乙队工作一天需付费用5万元,如需改造的道路全长1200米,改造总费用不超过145万元,至少安排甲队工作多少天?
8.六 一前夕,某幼儿园园长到厂家选购A、B两种品牌的儿童服装,每套A品牌服装进价比B品牌服装每套进价多25元,用2000元购进A种服装数量是用750元购进B种服装数量的2倍.
(1)求A、B两种品牌服装每套进价分别为多少元;
(2)该服装A品牌每套售价为130元,B品牌每套售价为95元,服装店老板决定,购进B品牌服装的数量比购进A品牌服装的数量的2倍还多4套,两种服装全部售出后,可使总的获利超过1200元,则最少购进A品牌的服装多少套.
9.某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元已知乙种商品每件进价比甲种商品每件进价多8元,且购进的甲、乙两种商品件数相同.
求甲、乙两种商品的每件进价;
该商场将购进的甲、乙两种商品进行销售,甲种商品的销售单价为60元,乙种商品的销售单价为88元,销售过程中发现甲种商品销量不好,商场决定:甲种商品销售一定数量后,将剩余的甲种商品按原销售单价的七折销售;乙种商品销售单价保持不变要使两种商品全部售完后共获利不少于2460元,问甲种商品按原销售单价至少销售多少件?
10.已知不等式组的解集为﹣1<x<1,则(m+n)2014的值等于多少.
11.已知关于x的不等式组恰有两个整数解,求实数a的取值范围.
12.对一个实数x按如图所示的程序进行操作,规定:程序运行从“输入一个实数x”到“结果是否大于88?”为一次操作.如果操作只进行一次就停止,则x的取值范围是________.
13.已知关于x的不等式组无解,则a的取值范围是_____.
14.若不等式组有解,则a的取值范围是_____.
15.若不等式组恰有个整数解,则的取值范围是____________
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
【1.8.2】2021-2022学年初二数学下册同步系列(青岛版)
----初二数学下册第8章:一元一次不等式
参考答案
1.C
【分析】
根据题意,利用要在不超过15分钟的时间内从甲地到达乙地建立不等式即可解题.
【详解】
解:由题可知只需要小明在15分钟之内走过的路程大于1800即可,
即210x+90(15﹣x)≥1800
故选C.
【点睛】
本题考查了一次不等式的实际应用,属于简单题,建立不等关系是解题关键.
2.A
【分析】
设小明答对的题数是x道,根据“总分不会低于60分”列出不等式5x﹣2(20﹣2﹣x)≥60,解不等式求得x的取值范围,根据x为整数,结合题意即可求解.
【详解】
设小明答对的题数是x道,
5x﹣2(20﹣2﹣x)≥60,
x≥13,
∵x为整数,
∴x的最小整数为14,
故选A.
【点睛】
本题了一元一次不等式的应用,关键是设出相应的未知数,以得分做为不等量关系列不等式求解.
3.A
【分析】
求出第一个不等式的解集,根据口诀:大大小小无解了可得关于m的不等式,解之可得.
【详解】
解不等式,得:x>8,
∵不等式组无解,
∴4m≤8,
解得m≤2,
故选A.
【点睛】
本题考查的是解一元一次不等式组,正确求出每一个不等式解集是基础,熟知“同大取大;同小取小;大小小大中间找;大大小小找不到”的原则是解答此题的关键.
4.A
【解析】
【分析】
点在第四象限的条件是:横坐标是正数,纵坐标是负数.
【详解】
解:∵点P(2x-6,x-5)在第四象限,
∴,
解得:3<x<5.
故选:A.
【点睛】
主要考查了平面直角坐标系中第四象限的点的坐标的符号特点.
5.(1)甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;(2)他们最多可购买11棵乙种树苗.
【分析】
(1)可设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,根据等量关系:用480元购买乙种树苗的棵数恰好与用360元购买甲种树苗的棵数相同,列出方程求解即可;
(2)可设他们可购买y棵乙种树苗,根据不等关系:再次购买两种树苗的总费用不超过1500元,列出不等式求解即可.
【详解】
(1)设甲种树苗每棵的价格是x元,则乙种树苗每棵的价格是(x+10)元,
依题意有 ,
解得:x=30,
经检验,x=30是原方程的解,
x+10=30+10=40,
答:甲种树苗每棵的价格是30元,乙种树苗每棵的价格是40元;
(2)设他们可购买y棵乙种树苗,依题意有
30×(1﹣10%)(50﹣y)+40y≤1500,
解得y≤11,
∵y为整数,
∴y最大为11,
答:他们最多可购买11棵乙种树苗.
【点睛】
本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找准等量关系与不等关系列出方程或不等式是解决问题的关键.
6.(1)120件;(2)150元.
【解析】
试题分析:(1)设该商家购进的第一批衬衫是x件,则购进第二批这种衬衫可设为2x件,由已知可得,,这种衬衫贵10元,列出方程求解即可.(2)设每件衬衫的标价至少为a元,由(1)可得出第一批和第二批的进价,从而求出利润表达式,然后列不等式解答即可.
试题解析:(1)设该商家购进的第一批衬衫是件,则第二批衬衫是件.
由题意可得:,解得,经检验是原方程的根.
(2)设每件衬衫的标价至少是元.
由(1)得第一批的进价为:(元/件),第二批的进价为:(元)
由题意可得:
解得:,所以,,即每件衬衫的标价至少是150元.
考点:1、分式方程的应用 2、一元一次不等式的应用.
7.(1)乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米.(2)10天.
【分析】
(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,根据工作时间=工作总量÷工作效率结合甲队改造360米的道路比乙队改造同样长的道路少用3天,即可得出关于x的分式方程,解之经检验后即可得出结论;
(2)设安排甲队工作m天,则安排乙队工作天,根据总费用=甲队每天所需费用×工作时间+乙队每天所需费用×工作时间结合总费用不超过145万元,即可得出关于m的一元一次不等式,解之取其中的最大值即可得出结论.
【详解】
(1)设乙工程队每天能改造道路的长度为x米,则甲工程队每天能改造道路的长度为x米,
根据题意得:,
解得:x=40,
经检验,x=40是原分式方程的解,且符合题意,
∴x=×40=60,
答:乙工程队每天能改造道路的长度为40米,甲工程队每天能改造道路的长度为60米;
(2)设安排甲队工作m天,则安排乙队工作天,
根据题意得:7m+5×≤145,
解得:m≥10,
答:至少安排甲队工作10天.
【点睛】
本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量间的关系,正确列出一元一次不等式.
8.(1)A、B两种品牌服装每套进价分别为100元、75元;(2)17套.
【分析】
(1)首先设A品牌服装每套进价为x元,则B品牌服装每套进价为(x-25)元,根据关键语句“用2000元购进A种服装数量是用750元购进B种服装数量的2倍.”列出方程,解方程即可;
(2)首先设购进A品牌的服装a套,则购进B品牌服装(2a+4)套,根据“可使总的获利超过1200元”可得不等式(130-100)a+(95-75)(2a+4)>1200,再解不等式即可.
【详解】
解:(1)设A品牌服装每套进价为x元,则B品牌服装每套进价为元,由题意得:,
解得:,
经检验:是原分式方程的解,
,
答:A、B两种品牌服装每套进价分别为100元、75元;
(2)设购进A品牌的服装a套,则购进B品牌服装套,由题意得:
,
解得:,
答:至少购进A品牌服装的数量是17套.
【点睛】
本题考查了分式方程组的应用和一元一次不等式的应用,弄清题意,表示出A、B两种品牌服装每套进价,根据购进的服装的数量关系列出分式方程,求出进价是解决问题的关键.
9. 甲种商品的每件进价为40元,乙种商品的每件进价为48元;甲种商品按原销售单价至少销售20件.
【解析】
【分析】设甲种商品的每件进价为x元,乙种商品的每件进价为(x+8))元根据“某商场购进甲、乙两种商品,甲种商品共用了2000元,乙种商品共用了2400元购进的甲、乙两种商品件数相同”列出方程进行求解即可;
设甲种商品按原销售单价销售a件,则由“两种商品全部售完后共获利不少于2460元”列出不等式进行求解即可.
【详解】设甲种商品的每件进价为x元,则乙种商品的每件进价为元,
根据题意得,,
解得,
经检验,是原方程的解,
答:甲种商品的每件进价为40元,乙种商品的每件进价为48元;
甲乙两种商品的销售量为,
设甲种商品按原销售单价销售a件,则
,
解得,
答:甲种商品按原销售单价至少销售20件.
【点睛】本题考查了分式方程的应用,一元一次不等式的应用,弄清题意,找出等量关系列出方程,找出不等关系列出不等式是解题的关键.
10.1
【分析】
解不等式解不等式2x﹣m>n﹣1得x>,由不等式组的解集为﹣1<x<1可得=﹣1,从而知m+n的值,代入即可.
【详解】
解:解不等式2x﹣m>n﹣1,得:x>,
∵不等式组的解集为﹣1<x<1,
∴=﹣1,
∴m+n=﹣1,
则(m+n)2014=(﹣1)2014=1.
【点睛】
本题主要考查解不等式的基本能力,根据不等式组的解集得出m+n的值是解题的关键.
11.-4≤a<-3.
【解析】
试题分析:首先解不等式组求得解集,然后根据不等式组只有两个整数解,确定整数解,则可以得到一个关于a的不等式组求得a的范围.
试题解析:解:由5x+1>3(x﹣1)得:x>﹣2,由x≤8﹣x+2a得:x≤4+a.
则不等式组的解集是:﹣2<x≤4+a.
不等式组只有两个整数解,是﹣1和0.
根据题意得:0≤4+a<1.
解得:﹣4≤a<﹣3.
点睛:本题考查了不等式组的解法及整数解的确定.求不等式组的解集,应遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.
12.x>49
【详解】
解:根据程序可得:第一次的结果为2x﹣10,没有输出,
则2x﹣10>88,解得x>49
故答案为:x>49.
考点:一元一次不等式的应用.
13.a≥2
【分析】
先把a当作已知条件求出各不等式的解集,再根据不等式组无解求出a的取值范围即可.
【详解】
解:,
由①得:x≤2,
由②得:x>a,
∵不等式组无解,
∴a≥2,
故答案为a≥2.
【点睛】
本题主要考查了解一元一次不等式组,解题的关键关键是掌握解集的规律:同大取大;同小取小;大小小大中间找;大大小小无处找.
14.a>﹣1
【解析】
分析:∵由得x≥﹣a;由得x<1.
∴解集为﹣a≤x<1.
∴﹣a<1,即a>﹣1.
∴a的取值范围是a>﹣1.
15.
【分析】
先不等式组得:,由不等式组恰有三个整数解,知该不等式组的三个整数解为1、0、-1,即可解得-2≤m<-1.
【详解】
∵不等式组解得:,
又∵恰有三个整数解,
∴该不等式组的三个整数解为1、0、-1,
则-2≤m<-1,
故答案为:.
【点睛】
题主要考查一元一次不等式组的整数解,根据整数解的个数得出关于m的不等式组是解题的关键
21世纪教育网(www.21cnjy.com)