8.1.1 棱柱、棱锥、棱台
学习目标 1.通过对实物模型的观察,归纳认知棱柱、棱锥、棱台的结构特征.2.理解棱柱、棱锥、棱台之间的关系.3.能运用棱柱、棱锥、棱台的结构特征描述现实生活中简单几何体的结构并进行有关计算.
知识点一 多面体、旋转体的定义
类别 多面体 旋转体
定义 由若干个平面多边形围成的几何体 一条平面曲线(包括直线)绕它所在平面内的一条定直线旋转所形成的曲面叫做旋转面,封闭的旋转面围成的几何体叫做旋转体
图形
相关概念 面:围成多面体的各个多边形 棱:相邻两个面的公共边 顶点:棱与棱的公共点 轴:形成旋转体所绕的定直线
思考 构成空间几何体的基本元素是什么?
答案 构成空间几何体的基本元素是:点、线、面.
知识点二 棱柱的结构特征
1.棱柱的概念
名称 定义 图形及表示 相关概念
棱柱 有两个面互相平行,其余各面都是四边形,并且相邻两个四边形的公共边都互相平行,由这些面所围成的多面体叫做棱柱 如图可记作:棱柱ABCDEF—A′B′C′D′E′F′ 底面(底):两个互相平行的面 侧面:其余各面 侧棱:相邻侧面的公共边 顶点:侧面与底面的公共顶点
2.棱柱的分类
(1)按底面多边形边数来分:三棱柱、四棱柱、五棱柱……
(2)按侧棱是否与底面垂直:侧棱垂直于底面的棱柱叫做直棱柱,侧棱不垂直于底面的棱柱叫做斜棱柱.
底面是正多边形的直棱柱叫做正棱柱,底面是平行四边形的四棱柱也叫做平行六面体.
思考 棱柱的侧面一定是平行四边形吗?
答案 棱柱的侧面一定是平行四边形.
知识点三 棱锥的结构特征
1.棱锥的概念
名称 定义 图形及表示 相关概念
棱锥 有一个面是多边形,其余各面都是有一个公共顶点的三角形,由这些面所围成的多面体叫做棱锥 如图可记作:棱锥S—ABCD 底面(底):多边形面 侧面:有公共顶点的各个三角形面 侧棱:相邻侧面的公共边 顶点:各侧面的公共顶点
2.棱锥的分类
(1)按底面多边形的边数分:三棱锥、四棱锥……
(2)底面是正多边形,并且顶点与底面中心的连线垂直于底面的棱锥叫做正棱锥.
知识点四 棱台的结构特征
名称 定义 图形及表示 相关概念 分类
棱台 用一个平行于棱锥底面的平面去截棱锥,底面与截面之间那部分多面体叫做棱台 如图可记作:棱台ABCD—A′B′C′D′ 上底面:平行于棱锥底面的截面 下底面:原棱锥的底面 侧面:其余各面 侧棱:相邻侧面的公共边 顶点:侧面与上(下)底面的公共顶点 由三棱锥、四棱锥、五棱锥…… 截得的棱台分别叫做三棱台、四棱台、五棱台……
思考 棱台的各侧棱延长线一定相交于一点吗?
答案 一定相交于一点.
1.有一个面是多边形,其余各面都是三角形的几何体叫棱锥.( × )
2.棱柱的两个底面是全等的多边形.( √ )
3.棱柱最多有两个面不是四边形.( √ )
4.棱锥的所有面都可以是三角形.( √ )
一、棱柱的结构特征
例1 (1)下列关于棱柱的说法:
①所有的面都是平行四边形;②每一个面都不会是三角形;③两底面平行,并且各侧棱也平行;④被平面截成的两部分可以都是棱柱.
其中正确的说法的序号是________.
答案 ③④
解析 ①错误,棱柱的底面不一定是平行四边形.
②错误,棱柱的底面可以是三角形.
③正确,由棱柱的定义易知.
④正确,棱柱可以被平行于底面的平面截成两个棱柱,所以说法正确的序号是③④.
(2)如图所示,长方体ABCD-A1B1C1D1,M,N分别为棱A1B1,C1D1的中点.
①这个长方体是棱柱吗?如果是,是几棱柱?为什么?
②用平面BCNM把这个长方体分成两部分,各部分形成的几何体还是棱柱吗?如果是,是几棱柱,并用符号表示;如果不是,请说明理由.
解 ①是棱柱,并且是四棱柱,因为以长方体相对的两个面作底面,是互相平行的,其余各面都是矩形,且四条侧棱互相平行,符合棱柱的定义.
②截面BCNM右上方部分是三棱柱BB1M-CC1N,左下方部分是四棱柱ABMA1-DCND1.
反思感悟 棱柱结构的辨析方法
(1)扣定义:判定一个几何体是不是棱柱的关键是棱柱的定义.
①看“面”,即观察这个多面体是否有两个互相平行的面,其余各面都是四边形;②看“线”,即观察每相邻两个四边形的公共边是否平行.
(2)举反例:通过举反例,如与常见几何体或实物模型、图片等不吻合,给予排除.
跟踪训练1 下列命题中正确的是( )
A.有两个面互相平行,其余各面都是四边形的几何体叫棱柱
B.棱柱中互相平行的两个面叫棱柱的底面
C.棱柱的侧面都是平行四边形,而底面不是平行四边形
D.棱柱的侧棱都相等,侧面是平行四边形
答案 D
二、棱锥、棱台的结构特征
例2 (1)有下列三种叙述:
①用一个平面去截棱锥,棱锥底面和截面之间的部分是棱台;
②两个面平行且相似,其余各面都是梯形的多面体是棱台;
③有两个面互相平行,其余四个面都是等腰梯形的六面体是棱台.
其中正确的有( )
A.0个 B.1个 C.2个 D.3个
答案 A
解析 ①中的平面不一定平行于底面,故①错;②③可用反例去检验,如图所示,侧棱延长线不能相交于一点,故②③错.
(2)下列说法中,正确的是( )
①棱锥的各个侧面都是三角形;
②四面体的任何一个面都可以作为棱锥的底面;
③棱锥的侧棱平行.
A.① B.①② C.② D.③
答案 B
解析 由棱锥的定义,知棱锥的各个侧面都是三角形,故①正确;四面体就是由四个三角形所围成的几何体,因此四面体的任何一个面都可以作为三棱锥的底面,故②正确;棱锥的侧棱交于一点,不平行,故③错.
反思感悟 判断棱锥、棱台的方法
(1)举反例法
结合棱锥、棱台的定义举反例直接排除关于棱锥、棱台结构特征的某些不正确说法.
(2)直接法
棱锥 棱台
定底面 只有一个面是多边形,此面即为底面 两个互相平行的面,即为底面
看侧棱 相交于一点 延长后相交于一点
跟踪训练2 下列关于棱锥、棱台的说法:
①棱台的侧面一定不会是平行四边形;
②由四个平面围成的封闭图形只能是三棱锥;
③棱锥被平面截成的两部分不可能都是棱锥.
其中正确说法的序号是________.
答案 ①②
解析 ①正确,棱台的侧面一定是梯形,而不是平行四边形;
②正确,由四个平面围成的封闭图形是四面体也就是三棱锥;
③错误,如图所示的四棱锥被平面截成的两部分都是棱锥.
空间几何体的表面展开图
典例 (1)某同学制作了一个对面图案均相同的正方体礼品盒,如图所示,则这个正方体礼品盒的表面展开图应该为(对面是相同的图案)( )
答案 A
解析 其展开图是沿盒子的棱剪开,无论从哪条棱剪开,剪开的相邻面在展开图中可以不相邻,但未剪开的相邻面在展开图中一定相邻.相同的图案是盒子上相对的面,展开后不能相邻.
(2)如图是三个几何体的表面展开图,请问各是什么几何体?
解 图①中,有5个平行四边形,而且还有两个全等的五边形,符合棱柱特点;图②中,有5个三角形,且具有共同的顶点,还有一个五边形,符合棱锥特点;图③中,有3个梯形,且其腰的延长线交于一点,还有两个相似的三角形,符合棱台的特点.把表面展开图还原为原几何体,如图所示:
所以①为五棱柱,②为五棱锥,③为三棱台.
[素养提升] 多面体表面展开图可以有不同的形状,应多实践,观察并大胆想象立体图形与表面展开图的关系,一定先观察立体图形的每一个面的形状.
1.下面多面体中,是棱柱的有( )
A.1个 B.2个 C.3个 D.4个
答案 D
解析 根据棱柱的定义进行判定知,这4个图都满足.
2.下面图形中,为棱锥的是( )
A.①③ B.①③④ C.①②④ D.①②
答案 C
解析 根据棱锥的定义和结构特征可以判断,①②是棱锥,③不是棱锥,④是棱锥.故选C.
3.有一个多面体,由五个面围成,只有一个面不是三角形,则这个几何体为( )
A.四棱柱 B.四棱锥 C.三棱柱 D.三棱锥
答案 B
解析 根据棱锥的定义可知该几何体是四棱锥.
4.如图所示,在三棱台A′B′C′-ABC中,截去三棱锥A′-ABC,则剩余部分是( )
A.三棱锥 B.四棱锥
C.三棱柱 D.组合体
答案 B
解析 余下部分是四棱锥A′-BCC′B′.
5.一个无盖的正方体盒子的平面展开图如图,A,B,C是展开图上的三点,则在正方体盒子中,∠ABC=________.
答案 60°
1.知识清单:
(1)多面体、旋转体的定义.
(2)棱柱、棱锥、棱台的结构特征.
2.方法归纳:举反例法.
3.常见误区:棱台的结构特征认识不清.
1.有两个面平行的多面体不可能是( )
A.棱柱 B.棱锥 C.棱台 D.以上都错
答案 B
解析 由棱锥的结构特征可得.
2.下列关于棱柱的说法中,错误的是( )
A.三棱柱的底面为三角形
B.一个棱柱至少有五个面
C.若棱柱的底面边长相等,则它的各个侧面全等
D.五棱柱有5条侧棱、5个侧面,侧面为平行四边形
答案 C
解析 显然A正确;底面边数最少的棱柱是三棱柱,它有五个面,故B正确;底面是正方形的四棱柱,有一对侧面与底面垂直,另一对侧面不垂直于底面,此时侧面并不全等,故C错误;D正确.
3.观察如图所示的四个几何体,其中判断不正确的是( )
A.①是棱柱 B.②不是棱锥
C.③不是棱锥 D.④是棱台
答案 B
解析 结合棱柱、棱锥、棱台的定义可知①是棱柱,②是棱锥,③不是棱锥,④是棱台,故B错误.
4.下列图形中,不是三棱柱展开图的是( )
答案 C
解析 C无法将其折成三棱柱,故选C.
5.下列图形经过折叠可以围成一个棱柱的是( )
答案 D
6.四棱柱有________条侧棱,________个顶点.
答案 4 8
7.一个棱台至少有________个面,面数最少的棱台有________个顶点,有________条棱.
答案 5 6 9
8.一棱柱有10个顶点,其所有的侧棱长的和为60 cm,则每条侧棱长为________cm.
答案 12
解析 该棱柱为五棱柱,共有5条侧棱,每条侧棱长都相等,所以每条侧棱长为12 cm.
9.如图,在正方形ABCD中,E,F分别为AB,BC的中点,沿图中虚线将3个三角形折起,使点A,B,C重合,重合后记为点P.
问:(1)折起后形成的几何体是什么几何体?
(2)若正方形边长为2a,则每个面的三角形面积为多少?
解 (1)如图折起后的几何体是三棱锥.
(2)S△PEF=a2,S△DPF=S△DPE=×2a×a=a2,S△DEF=a2.
10.一个长方体的容器里装有少量水,现在将容器绕着其底部的一条棱倾斜,在倾斜的过程中,
(1)水面的形状不断变化,可能是矩形,也可能变成不是矩形的平行四边形,对吗?
(2)水的形状也不断变化,可能是棱柱,也可能变成棱台成棱锥,对吗?
解 (1)不对,水面的形状始终是矩形.
(2)不对,水的形状只能是棱柱.
11.如图,能推断这个几何体可能是三棱台的是( )
A.A1B1=2,AB=3,B1C1=3,BC=4
B.A1B1=1,AB=2,B1C1=1.5,BC=3,A1C1=2,AC=3
C.A1B1=1,AB=2,B1C1=1.5,BC=3,A1C1=2,AC=4
D.AB=A1B1,BC=B1C1,CA=C1A1
答案 C
解析 选项A中≠,故A不符合题意;选项B中≠,故B不符合题意;选项C中==,故C符合题意;选项D中满足这个条件的可能是一个三棱柱,不可能是三棱台.
12.一个棱锥的各棱长都相等,那么这个棱锥一定不是( )
A.三棱锥 B.四棱锥
C.五棱锥 D.六棱锥
答案 D
解析 由题意可知,每个侧面均为等边三角形,每个侧面的顶角均为60°,如果是六棱锥,因为6×60°=360°,所以顶点会在底面上,因此不是六棱锥.
13.下列图形中是正四面体(各棱长都相等的三棱锥)的展开图的是( )
答案 AC
解析 可选择阴影三角形作为底面进行折叠,发现AB可折成正四面体,CD不论选哪一个三角形作底面折叠都不能折成正四面体.
14.从正方体ABCD-A1B1C1D1的8个顶点中任意取4个不同的顶点,这4个顶点可能是:
(1)矩形的4个顶点;(2)每个面都是等边三角形的四面体的4个顶点;(3)每个面都是直角三角形的四面体的4个顶点;(4)有三个面是等腰直角三角形,有一个面是等边三角形的四面体的4个顶点.
其中正确结论的个数为________.
答案 4
解析 如图所示:
四边形ACC1A1为矩形,故(1)满足条件;四面体D-A1BC1为每个面均为等边三角形的四面体,故(2)满足条件;四面体D-B1C1D1为每个面都是直角三角形的四面体,故(3)满足条件;四面体C-B1C1D1为有三个面是等腰直角三角形,有一个面是等边三角形的四面体,故(4)满足条件.故正确的结论有4个.
15.一个长方体共顶点的三个面的面积分别是,,,则这个长方体对角线的长是________.
答案
解析 设长方体长、宽、高为x,y,z,则yz=,xz=,yx=,
三式相乘得x2y2z2=6,即xyz=,
解得x=,y=,z=1,所以==.
16.如图,在三棱锥V-ABC中,VA=VB=VC=4,∠AVB=∠AVC=∠BVC=30°,过点A作截面AEF,求△AEF周长的最小值.
解 将三棱锥沿侧棱VA剪开,并将其侧面展开平铺在一个平面上,如图,线段AA1的长为所求△AEF周长的最小值.
∵∠AVB=∠A1VC=∠BVC=30°,∴∠AVA1=90°.
又VA=VA1=4,∴AA1=4.
∴△AEF周长的最小值为4.