中小学教育资源及组卷应用平台
【1.10.2】2021-2022学年初二数学下册同步系列(青岛版)
----初二数学下册第10章:一次函数
重难点知识
★☆★ 一次函数
一次函数与正比例函数
从数的角度看:求二元一次方程组的解,x为何值时,两个函数的值相等,
从形的角度看:求二元一次方程组的解是确定两条直线交点的坐标。
一次函数与二元一次方程的关系 以二元一次方程的解为坐标的点都在相应的一次函数图象上. 反过来:一次函数图象上的点的坐标都适合相应的二元一次方程. 即每个二元一次方程都对应一个一次函数,于是也对应一条直线.
一次函数的性质与二元一次方程基础练习
1.若一次函数的函数值随的增大而增大,则( )
A. B.
C. D.
2.如图,在矩形AOBC中,A(–2,0),B(0,1).若正比例函数y=kx的图象经过点C,则k的值为( )
A.– B.
C.–2 D.2
3.如图,过A点的一次函数的图象与正比例函数y=2x的图象相交于点B,则这个一次函数的解析式是( )
A.y=2x+3 B.y=x﹣3
C.y=2x﹣3 D.y=﹣x+3
4.已知正比例函数y=kx(k≠0)的函数值y随x的增大而减小,则函数y=kx﹣k的图象大致是( )
A. B.
C. D.
5.关于正比例函数y=﹣3x,下列结论正确的是( )
A.图象不经过原点
B.y随x的增大而增大
C.图象经过第二、四象限
D.当x=时,y=1
6.如图,直线y=ax+b(a≠0)过点A(0,4),B(-3,0),则方程ax+b=0的解是( )
A.x=-3 B.x=4
C.x= D.x=
7.若正比例函数的图象经过点(,2),则这个图象必经过点( )
A.(1,2) B.(,)
C.(2,) D.(1,)
8.已知直线y=2x与y=﹣x+b的交点(﹣1,a),则方程组的解为( )
A. B.
C. D.
9.如图,在平面直角坐标系中,点,,,和,,,分别在直线和轴上,,,,是以,,,为顶点的等腰直角三角形.如果点,那么点的纵坐标是( )
B.
C. D.
10.如图,在平面直角坐标系中,一次函数y=kx+b的图象经过点A(﹣2,6),且与x轴相交于点B,与正比例函数y=3x的图象相交于点C,点C的横坐标为1.
(1)求k、b的值;
(2)若点D在y轴负半轴上,且满足S△COD=S△BOC,求点D的坐标.
11.如图,直角坐标系xOy中,一次函数y=﹣x+5的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,4).
(1)求m的值及l2的解析式;
(2)求S△AOC﹣S△BOC的值;
(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,直接写出k的值.
12.如图,过点A(2,0)的两条直线,分别交y轴于B,C,其中点B在原点上方,点C在原点下方,已知AB=.
(1)求点B的坐标;
(2)若△ABC的面积为4,求的解析式.
13.如图,在平面直角坐标系中,直线过点且与轴交于点,把点向左平移2个单位,再向上平移4个单位,得到点.过点且与平行的直线交轴于点.
(1)求直线的解析式;
(2)直线与交于点,将直线沿方向平移,平移到经过点的位置结束,求直线在平移过程中与轴交点的横坐标的取值范围.
14. 已知,直线l1:y=3x﹣2k与直线l2:y=x+k交点P的纵坐标为5,直线l1与直线l2与y轴分别交于A、B两点.
(1)求出点P的横坐标及k的值;(2)求△PAB的面积;
(3)点M为直线l1上的一个动点,当△MAB面积与△PAB面积之比为2:3时,求此时的点M的坐标
15.两个一次函数的图象如图所示,
(1)分别求出两个一次函数的解析式;
(2)求出两个一次函数图象的交点C坐标;
(3)求这两条直线与y轴围成△ABC的面积.
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
【1.10.2】2021-2022学年初二数学下册同步系列(青岛版)
----初二数学下册第10章:一次函数
参考答案
1.B
【解析】
【分析】根据一次函数图象的增减性来确定(k-2)的符号,从而求得k的取值范围.
【详解】∵在一次函数y=(k-2)x+1中,y随x的增大而增大,
∴k-2>0,
∴k>2,
故选B.
【点睛】本题考查了一次函数图象与系数的关系.在直线y=kx+b(k≠0)中,当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小.
2.A
【解析】
【分析】根据已知可得点C的坐标为(-2,1),把点C坐标代入正比例函数解析式即可求得k.
【详解】∵A(-2,0),B(0,1),
∴OA=2,OB=1,
∵四边形OACB是矩形,
∴BC=OA=2,AC=OB=1,
∵点C在第二象限,∴C点坐标为(-2,1),
∵正比例函数y=kx的图像经过点C,
∴-2k=1,
∴k=-,
故选A.
【点睛】本题考查了矩形的性质,待定系数法求正比例函数解析式,根据已知求得点C的坐标是解题的关键.
3.D
【解析】
试题分析:∵B点在正比例函数y=2x的图象上,横坐标为1,∴y=2×1=2,∴B(1,2),
设一次函数解析式为:y=kx+b,
∵过点A的一次函数的图象过点A(0,3),与正比例函数y=2x的图象相交于点B(1,2),
∴可得出方程组,
解得,
则这个一次函数的解析式为y=﹣x+3.
故选D.
考点:1.待定系数法求一次函数解析式2.两条直线相交或平行问题.
4.D
【分析】
先根据正比例函数y=kx(k≠0)的函数值y随x的增大而减小,判断出k的符号,再根据一次函数的性质即可得出结论.
【详解】
解:正比例函数y=kx的函数值y随x的增大而减小,
∴k<0,一k>0,
∴一次函数y=kx-k的图像经过一、二、四象限
故选D.
【点睛】
本题考查的是一次函数的图像与系数的关系,解题时注意:一次函数y=kx+b(k≠0)中,当k<0,b>0时,函数的图像经过一、二、四象限.
5.C
【分析】
根据正比例函数的性质直接解答即可.
【详解】
解:A、显然当x=0时,y=0,故图象经过原点,错误;
B、k<0,应y随x的增大而减小,错误;
C、k<0,图解经过二、四象限,正确;
D、把x=代入,得:y=-1,错误.
故选C.
【点睛】
本题考查了正比例函数的性质,解题的关键是了解正比例函数的比例系数的符号与正比例函数的关系.
6.A
【分析】
根据所求方程的解,即为函数y=ax+b图象与x轴交点横坐标,确定出解即可.
【详解】
方程ax+b=0的解,即为函数y=ax+b图象与x轴交点的横坐标,
∵直线y=ax+b过B(-3,0),
∴方程ax+b=0的解是x=-3,
故选A.
【点睛】
本题考查了一次函数与一元一次方程,任何一元一次方程都可以转化为ax+b=0 (a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b确定它与x轴的交点的横坐标的值.
7.D
【解析】
设正比例函数的解析式为y=kx(k≠0),
因为正比例函数y=kx的图象经过点(-1,2),
所以2=-k,
解得:k=-2,
所以y=-2x,
把这四个选项中的点的坐标分别代入y=-2x中,等号成立的点就在正比例函数y=-2x的图象上,
所以这个图象必经过点(1,-2).
故选D.
8.D
【分析】
根据一次函数图象上点的坐标特征确定两直线的交点坐标,然后根据函数图象交点坐标为两函数解析式组成的方程组的解选择答案.
【详解】
解:把(﹣1,a)代入y=2x得a=﹣2,
则直线y=2x与y=﹣x+b的交点为(﹣1,﹣2),
则方程组的解为.
故选D.
【点睛】
本题考查了一次函数与二元一次方程(组):函数图象交点坐标为两函数解析式组成的方程组的解.
9.A
【分析】
设点A2,A3,A4…,A2019坐标,结合函数解析式,寻找纵坐标规律,进而解题.
【详解】
解:在直线,
,
,
设,,,,,,,,,
则有,,,,
又△,△,△,,都是等腰直角三角形,
,,,.
将点坐标依次代入直线解析式得到:
,,,,,
又,
,,,,,
故选:A.
【点睛】
此题主要考查了一次函数点坐标特点,等腰直角三角形斜边上高等于斜边长一半,解题的关键是找出规律.
10.(1)k=-1,b=4;(2)点D的坐标为(0,-4).
【详解】
分析:(1)利用一次函数图象上点的坐标特征可求出点C的坐标,根据点A、C的坐标,利用待定系数法即可求出k、b的值;
(2)利用一次函数图象上点的坐标特征可求出点B的坐标,设点D的坐标为(0,m)(m<0),根据三角形的面积公式结合S△COD=S△BOC,即可得出关于m的一元一次方程,解之即可得出m的值,进而可得出点D的坐标.
详解:(1)当x=1时,y=3x=3,
∴点C的坐标为(1,3).
将A(﹣2,6)、C(1,3)代入y=kx+b,
得:,
解得:.
(2)当y=0时,有﹣x+4=0,
解得:x=4,
∴点B的坐标为(4,0).
设点D的坐标为(0,m)(m<0),
∵S△COD=S△BOC,即﹣m=××4×3,
解得:m=-4,
∴点D的坐标为(0,-4).
点睛:本题考查了两条直线相交或平行问题、一次函数图象上点的坐标特征、待定系数法求一次函数解析式以及三角形的面积,解题的关键是:(1)根据点的坐标,利用待定系数法求出k、b的值;(2)利用三角形的面积公式结合结合S△COD=S△BOC,找出关于m的一元一次方程.
11.(1)m=2,l2的解析式为y=2x;(2)S△AOC﹣S△BOC=15;(3)k的值为或2或﹣.
【解析】
【分析】(1)先求得点C的坐标,再运用待定系数法即可得到l2的解析式;
(2)过C作CD⊥AO于D,CE⊥BO于E,则CD=4,CE=2,再根据A(10,0),B(0,5),可得AO=10,BO=5,进而得出S△AOC﹣S△BOC的值;
(3)分三种情况:当l3经过点C(2,4)时,k=;当l2,l3平行时,k=2;当11,l3平行时,k=﹣;故k的值为或2或﹣.
【详解】(1)把C(m,4)代入一次函数y=﹣x+5,可得
4=﹣m+5,
解得m=2,
∴C(2,4),
设l2的解析式为y=ax,则4=2a,
解得a=2,
∴l2的解析式为y=2x;
(2)如图,过C作CD⊥AO于D,CE⊥BO于E,则CD=4,CE=2,
y=﹣x+5,令x=0,则y=5;令y=0,则x=10,
∴A(10,0),B(0,5),
∴AO=10,BO=5,
∴S△AOC﹣S△BOC=×10×4﹣×5×2=20﹣5=15;
(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,
∴当l3经过点C(2,4)时,k=;
当l2,l3平行时,k=2;
当11,l3平行时,k=﹣;
故k的值为或2或﹣.
【点睛】本题主要考查一次函数的综合应用,解决问题的关键是掌握待定系数法求函数解析式、等腰直角三形的性质、全等三角形的判定和性质、勾股定理及分类讨论思想等.
12.(1)(0,3);(2).
【分析】
(1)在Rt△AOB中,由勾股定理得到OB=3,即可得出点B的坐标;
(2)由=BC OA,得到BC=4,进而得到C(0,-1).设的解析式为, 把A(2,0),C(0,-1)代入即可得到的解析式.
【详解】
(1)在Rt△AOB中,
∵,
∴,
∴OB=3,
∴点B的坐标是(0,3) .
(2)∵=BC OA,
∴BC×2=4,
∴BC=4,
∴C(0,-1).
设的解析式为,
把A(2,0),C(0,-1)代入得:,
∴,
∴的解析式为是.
考点:一次函数的性质.
13.(1)(2)
【分析】
(1)由题意先求出点A的坐标,再根据平移求得点C的坐标,由直线CD与y=2x平行,可设直线CD的解析式为y=2x+b,代入点C坐标利用待定系数法即可得;
(2)先求得点B坐标,根据直线平移后经过点B,可得平移后的解析式为y=2x+3,分别求得直线CD、直线BF与x轴的交点坐标即可得到平移过程中与x轴交点横坐标的取值范围.
【详解】
(1)点在直线上,
,,
又点向左平移2个单位,又向上平移4个单位得到点,
,
直线与平行,
设直线的解析式为,
又直线过点,
∴2=6+b,解得b=-4,
直线的解析式为;
(2)将代入中,得,即,
故平移之后的直线的解析式为,
令,得,即,
将代入中,得,即,
平移过程中与轴交点的取值范围是:.
【点评】
本题主要考查了一次函数的平移,待定系数法等,明确直线平移k值不变是解题的关键.
(1)P的横坐标为3,k的值是2;(2)9;(3)(2,2)或(﹣2,﹣6).
【分析】
(1)把y=5代入两个函数的解析式,联立即可求出点P的横坐标及k的值;
(2)根据(1)中的结果可以分别求得两条直线的解析式,从而可以求得点A和点B的坐标,进而求得△PAB的面积;
(3)根据(2)中的结果和题意可以求得△MAB的面积,进而求得点M的坐标.
【详解】
解:(1)∵直线l1:y=3x﹣2k与直线l2:y=x+k交点P的纵坐标为5,
∴5=2x﹣2k,得x=,5=x+k,得x=5﹣k,
∴=5﹣k,
解得,k=2,
∴x=3,
即点P的横坐标为3,k的值是2;
(2)∵k=2,
∴直线l1:y=3x﹣4与直线l2:y=x+2,
∵直线l1与直线l2与y轴分别交于A、B两点,
∴点A(0,﹣4),点B(0,2),
又∵点P(3,5),
∴△PAB的面积是=9;
(3)∵点M为直线l1上的一个动点,△MAB面积与△PAB面积之比为2:3,△PAB的面积是9,
∴△MAB的面积是9÷3×2=6,
设点M的坐标为(m,n),
则=6,
解得,m=±2,
∵直线l1:y=3x﹣4,点M在直线l1上,
∴当m=2时,n=2,当m=﹣2时,n=﹣6,
故答案为(2,2)或(﹣2,﹣6).
【点睛】
本题考查两条直线相交或平行问题、一次函数的性质,解答本题的关键是明确题意,利用一次函数的性质和数形结合的思想解答.
15.(1)l1为y=-x+1,l2为y=-x-3;(2)C(-,);(3).
【解析】
试题分析:(1)利用待定系数法求出两个一次函数的解析式;
(2)运用两个一次函数的解析式联立得出方程组求解即可.
(3)利用三角形的面积求解.
试题解析:解:(1)设l1的解析式为y=k1x+b1,l2的解析式为y=k2x+b2,把(﹣2,0),(0,﹣3)代入l1,(4,0),(0,1)代入l2得, ,,
解得: ,.所以l1的解析式为y=﹣x﹣3,l2的解析式为y=﹣x+1;
(2)联立方程组 ,解得: ,所以两个一次函数图象的交点坐标(,);
(3)三角形的面积==.
点睛:本题主要考查了两条直线相交或平行问题,解题的关键是能正确求出一次函数的解析式
21世纪教育网(www.21cnjy.com)