第十章 概率章末复习(Word版学案)

文档属性

名称 第十章 概率章末复习(Word版学案)
格式 docx
文件大小 384.5KB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2022-06-12 12:39:39

图片预览

文档简介

章末复习
一、互斥事件、对立事件与相互独立事件
1.互斥事件是不可能同时发生的两个事件;对立事件除要求这两个事件不同时发生外,还要求二者必须有一个发生.因此对立事件一定是互斥事件,但互斥事件不一定是对立事件,对立事件是互斥事件的特殊情况.
2.掌握互斥事件和对立事件的概率公式及应用,提升逻辑推理和数学运算素养.
例1 (1)袋内有3个白球和2个黑球,从中有放回地摸球,用A表示“第一次摸到白球”,如果“第二次摸到白球”记为B,否则记为C,那么事件A与B,A与C间的关系是(  )
A.A与B,A与C均相互独立
B.A与B相互独立,A与C互斥
C.A与B,A与C均互斥
D.A与B互斥,A与C相互独立
(2)从1,2,3,…,7这7个数中任取两个数,其中:
①恰有一个是偶数和恰有一个是奇数;
②至少有一个是奇数和两个都是奇数;
③至少有一个是奇数和两个都是偶数;
④至少有一个是奇数和至少有一个是偶数.
上述事件中,是对立事件的是(  )
A.① B.②④ C.③ D.①③
答案 (1)A (2)C
解析 (1)有放回地摸球,第一次摸球与第二次摸球之间没有影响.(2)③中“至少有一个是奇数”,即“两个奇数或一奇一偶”,而从1~7中任取两个数,根据取到数的奇偶性可认为共有三个事件:“两个都是奇数”、“一奇一偶”、“两个都是偶数”,故“至少有一个是奇数”与“两个都是偶数”是对立事件,易知其余都不是对立事件.
反思感悟 事件间的关系的判断方法
(1)判断事件间的关系时,可把所有的试验结果写出来,看所求事件包含哪几个试验结果,从而断定所给事件间的关系.
(2)对立事件一定是互斥事件,也就是说不互斥的两事件一定不是对立事件,在确定了两个事件互斥的情况下,就要看这两个事件的和事件是不是必然事件,这是判断两个事件是否为对立事件的基本方法.判断互斥事件、对立事件时,注意事件的发生与否都是对于同一次试验而言的,不能在多次试验中判断.
(3)判断两事件是否相互独立,有两种方法:①直接法;②看P(AB)与P(A)·P(B)是否相等,若相等,则A,B相互独立,否则不相互独立.
跟踪训练1 (1)在5张电话卡中,有3张移动卡和2张联通卡,从中任取2张,若事件“2张全是移动卡”的概率是,那么概率是的事件是(  )
A.至多有一张移动卡 B.恰有一张移动卡
C.都不是移动卡 D.至少有一张移动卡
(2)下列事件A,B是相互独立事件的是(  )
A.一枚硬币掷两次,A表示“第一次为正面”,B表示“第二次为反面”
B.袋中有2个白球,2个黑球,不放回地摸球两次,每次摸一球,A表示“第一次摸到白球”,B表示“第二次摸到白球”
C.掷一枚骰子,A表示“掷出点数为奇数”,B表示“掷出点数为偶数”
D.有一个灯泡,A表示“灯泡能用1 000小时”,B表示“灯泡能用2 000小时”
答案 (1)A (2)A
解析 (1)“至多有一张移动卡”包含“一张移动卡,一张联通卡”,“两张全是联通卡”两个事件,它是“2张全是移动卡”的对立事件,其概率为1-=.
(2)B选项由于是不放回摸球,故事件A与B不相互独立,C选项中A与B为对立事件,D选项中事件B受事件A影响,故选A.
二、古典概型
1.古典概型是一种最基本的概率模型,是学习其他概率模型的基础,解题时要紧紧抓住古典概型的两个基本特征,即有限性和等可能性.在应用公式P(A)=时,关键在于正确理解试验的发生过程,求出试验的样本空间的样本点总数n和事件A的样本点个数m.
2.掌握古典概型的概率公式及其应用,提升数学抽象、数据分析的数学素养.
例2 袋中装有除颜色外其他均相同的6个球,其中4个白球、2个红球,从袋中任取两球,求下列事件的概率.
(1)A:取出的两球都是白球;
(2)B:取出的两球一个是白球,另一个是红球.
解 设4个白球的编号为1,2,3,4,2个红球的编号为5,6.从袋中的6个球中任取2个球,样本空间Ω={(1,2),(1,3),(1,4),(1,5),(1,6),(2,3),(2,4),(2,5),(2,6),(3,4),(3,5),(3,6),(4,5),(4,6),(5,6)},共15个样本点,且每个样本点出现的可能性相同.
(1)“从袋中的6个球中任取2球,所取的2球全是白球”为事件A,则A={(1,2),(1,3),(1,4),(2,3),(2,4),(3,4)},共含有6个样本点.所以P(A)==.
(2)“从袋中的6个球中任取2球,其中一个是白球,另一个是红球”为事件B,则B={(1,5),(1,6),(2,5),(2,6),(3,5),(3,6),(4,5),(4,6)},共含有8个样本点,所以P(B)=.
反思感悟 在古典概型中,计算概率的关键是准确找到样本点的数目,这就需要我们能够熟练运用图表和树状图,把样本点一一列出.而有许多试验,它们的可能结果非常多,以至于我们不可能将所有结果全部列出,这时我们不妨找找其规律,算出样本点的数目.
跟踪训练2 某中学调查了某班全部45名同学参加书法社团和演讲社团的情况,数据如下表:(单位:人)
参加书法社团 未参加书法社团
参加演讲社团 8 5
未参加演讲社团 2 30
(1)从该班随机选1名同学,求该同学至少参加上述一个社团的概率;
(2)在既参加书法社团又参加演讲社团的8名同学中,有5名男同学A1,A2,A3,A4,A5,3名女同学B1,B2,B3.现从这5名男同学和3名女同学中各随机选1人,求A1被选中且B1未被选中的概率.
解 (1)由调查数据可知,既未参加书法社团又未参加演讲社团的有30人,
故至少参加上述一个社团的共有45-30=15(人),
所以从该班随机选1名同学,该同学至少参加上述一个社团的概率为P==.
(2)从这5名男同学和3名女同学中各随机选1人,其一切可能的结果组成的样本空间Ω={A1B1,A1B2,A1B3,A2B1,A2B2,A2B3,A3B1,A3B2,A3B3,A4B1,A4B2,A4B3,A5B1,A5B2,A5B3},共含15个样本点.
根据题意这些样本点出现的可能性相等.事件“A1被选中且B1未被选中”所包含的样本点有A1B2,A1B3,共2个.
所以其概率为P=.
三、相互独立事件概率的计算
1.相互独立事件的概率通常和互斥事件的概率综合在一起考查,这类问题具有一个明显的特征,那就是在题目的条件中已经出现一些概率值,解题时先要判断事件的性质(是互斥还是相互独立),再选择相应的公式计算求解.
2.掌握相互独立事件的概率公式的应用,提升数学抽象和逻辑推理的数学素养.
例3 某项选拔共有三轮考核,每轮设有一个问题,能正确回答问题者进入下一轮,否则被淘汰.已知某选手能正确回答第一、二、三轮的问题的概率分别为,,,且各轮问题能否正确回答互不影响.
(1)求该选手进入第三轮才被淘汰的概率;
(2)求该选手至多进入第二轮考核的概率.
解 记“该选手正确回答第i轮问题”为事件Ai(i=1,2,3),则P(A1)=,P(A2)=,P(A3)=.
(1)该选手进入第三轮才被淘汰的概率为
P(A1A2)=P(A1)P(A2)P()=××=.
(2)该选手至多进入第二轮考核的概率为
P(+A1)=P()+P(A1)P()=+×=.
反思感悟 解此类题的步骤如下
(1)标记事件.
(2)判断事件的独立性.
(3)分清所涉及的事件及事件状态(互斥还是对立).
(4)套用公式.
跟踪训练3 设甲、乙、丙三台机器是否需要照顾相互之间没有影响,已知在某一小时内,甲、乙都需要照顾的概率为0.05,甲、丙都需要照顾的概率为0.1,乙、丙都需要照顾的概率为0.125.
(1)分别求甲、乙、丙每台机器在这一小时内需要照顾的概率;
(2)计算这一小时内至少有一台机器需要照顾的概率.
解 记甲、乙、丙三台机器在某一小时内需要照顾分别为事件A,B,C,则A,B,C两两相互独立.
(1)由题意得
P(AB)=P(A)P(B)=0.05,
P(AC)=P(A)P(C)=0.1,
P(BC)=P(B)P(C)=0.125,
∴P(A)=0.2,P(B)=0.25,P(C)=0.5,
∴甲、乙、丙每台机器在这一小时内需要照顾的概率分别为0.2,0.25,0.5.
(2)∵A,B,C两两相互独立,
∴,,两两相互独立,
∴甲、乙、丙每台机器在一个小时内都不需要照顾的概率为
P()=P()P()P()=0.8×0.75×0.5=0.3,
∴这一小时内至少有一台需要照顾的概率为
P=1-P()=1-0.3=0.7.
1.从装有2个红球和2个黑球的口袋中任取2个球,那么互斥而不对立的事件是(  )
A.“至少有一个黑球”与“都是黑球”
B.“至少有一个黑球”与“都是红球”
C.“至少有一个黑球”与“至少有一个红球”
D.“恰有一个黑球”与“恰有两个黑球”
答案 D
解析 A中的两个事件是包含关系,不是互斥事件;B中的两个事件是对立事件;C中的两个事件都包含“一个黑球,一个红球”这一事件,不是互斥关系;D中的两个事件是互斥而不对立的关系.
2.甲、乙两人下棋,和棋的概率是,乙获胜的概率是,则下列说法正确的是(  )
A.甲获胜的概率是 B.甲不输的概率是
C.乙输了的概率是 D.乙不输的概率是
答案 A
解析 “甲获胜”是“和棋或乙获胜”的对立事件,所以“甲获胜”的概率是P=1--=,故A正确;“乙输了”等于“甲获胜”,其概率为,故C不正确;设事件A为“甲不输”,则A是“甲胜”、“和棋”这两个互斥事件的并事件,所以P(A)=+=(或设事件A为“甲不输”,则A是“乙获胜”的对立事件,所以P(A)=1-=),故B不正确;同理,“乙不输”的概率为,故D不正确.
3.古代“五行”学说认为:“物质分金、木、水、火、土五种属性,金克木,木克土,土克水,水克火,火克金”,从五种不同属性的物质中随机抽取两种,则抽取的两种物质不相克的概率为(  )
A. B. C. D.
答案 C
解析 从五种不同属性的物质中随机抽取两种,出现的情况有(金,木),(金,水),(金,火),(金,土),(木,水),(木,火),(木,土),(水,火)(水,土),(火,土),共10种等可能情况,其中金克木,木克土,土克水,水克火,火克金,即相克的有5种,则不相克的也有5种,所以抽取的两种物质不相克的概率为.
4.某校高二(1)班甲、乙两同学进行投篮比赛,他们进球的概率分别是和,现甲、乙各投篮一次,恰有一人投进球的概率是(  )
A. B. C. D.
答案 D
解析 有甲进球乙不进球,甲不进球乙进球两种情况,故所求概率P=×+×=.
5.在一个不透明的箱子里装有5个完全相同的小球,球上分别标有数字1,2,3,4,5,甲先从箱子中摸出一个小球,记下球上数字后,再将该小球放回箱子中摇匀,然后乙从该箱子中摸出一个小球.
(1)若甲、乙两人谁摸出的球上标的数字大谁就获胜(若数字相同则为平局),求甲获胜的概率;
(2)若规定:两人摸到的球上所标数字之和小于6,则甲获胜,否则乙获胜,这样规定公平吗?
解 用(x,y)(x表示甲摸到的数字,y表示乙摸到的数字)表示甲、乙各摸一球构成的样本点,则样本点有(1,1),(1,2),(1,3),(1,4),(1,5),(2,1),(2,2),(2,3),(2,4),(2,5),(3,1),(3,2),(3,3),(3,4),(3,5),(4,1),(4,2),(4,3),(4,4),(4,5),(5,1),(5,2),(5,3),(5,4),(5,5),共25个.
(1)设甲获胜的事件为A,则事件A包含的样本点有(2,1),(3,1),(3,2),(4,1),(4,2),(4,3),(5,1),(5,2),(5,3),(5,4),共10个.
则P(A)==.
(2)设甲获胜的事件为B,乙获胜的事件为C.事件B所包含的样本点有(1,1),(1,2),(1,3),(1,4),(2,1),(2,2),(2,3),(3,1),(3,2),(4,1),共10个.
则P(B)==,所以P(C)=1-P(B)=.
因为P(B)≠P(C),所以这样规定不公平.