人教A版(2019)选择性必修第三册 6.1分类加法计数原理与分步乘法计数原理
一、单选题
1.从集合中任意选择三个不同的数,使得这三个数组成等差数列,这样的等差数列有( )个
A.98 B.56 C.84 D.49
2.某夜市的一排摊位上共有9个铺位,现有6家小吃类店铺,3家饮料类店铺打算入驻,若要排出一个摊位规划,要求饮料类店铺不能相邻,则可以排出的摊位规划总个数为( )
A. B. C. D.
3.某职校选出甲 乙 丙等6名学生参加职业技能比赛,并决出第1~6名的名次(无并列).甲 乙 丙3名学生一同去询问成绩,评委对甲说:很遗憾,你和乙都没有得到冠军,对乙说:你当然不是最后两名,对丙说:你比甲和乙都好,但也不是冠军.从这个人的回答中分析,6人的名次情况共有( )
A.72种 B.36种 C.96种 D.48种
4.从1,2,3,4,5,6中任取三个不同的数相加,则不同的结果共有( )
A.6种 B.9种 C.10种 D.15种
5.为响应国家“节约粮食”的号召,某同学决定在某食堂提供的2种主食、3种素菜、2种大荤、4种小荤中选取一种主食、一种素菜、一种荤菜作为今日伙食,并在用餐时积极践行“光盘行动”,则不同的选取方法有( )
A.48种 B.36种 C.24种 D.12种
6.如图,用四种不同的颜色给图中的A,B,C,D,E,F,G七个点涂色,要求每个点涂一种颜色,且图中每条线段的两个端点涂不同颜色,则不同的涂色方法有( )
A.192种 B.336种 C.600种 D.624种
7.如图,小圆圈表示网络的结点,结点之间的连线表示它们有网相联.连线标注的数字表示该段网线单位时间内可以通过的最大信息量,现从结点向结点传递信息,信息可以分开沿不同的路线同时传递,则单位时间内传递的最大信息量为( )
A.26 B.24 C.20 D.19
8.中国有十二生肖,又叫十二属相,每一个人的出生年份对应了十二种动物(鼠、牛、虎、兔、龙、蛇、马、羊、猴、鸡、狗、猪)中的一种.现有十二生肖的吉祥物各一个,已知甲同学喜欢牛、马和猴,乙同学喜欢牛、狗和羊,丙同学所有的吉祥物都喜欢,让甲乙丙三位同学依次从中选一个作为礼物珍藏,若各人所选取的礼物都是自己喜欢的,则不同的选法有( )
A.50种 B.60种 C.70种 D.80种
9.用黑白两种颜色随机地染如图所示表格中6个格子,每个格子染一种颜色,并且从左到右数,不管数到哪个格子,总有黑色格子不少于白色格 的染色方法种数为( )
A.15 B.16 C.18 D.20
10.某同学从3本不同的哲学图书 4本不同的自然科学图书 2本不同的社会科学图书中任选1本阅读,则不同的选法共有( )
A.24种 B.12种 C.9种 D.3种
11.作家马伯庸的小说《长安十二时辰》中,靖安司通过长安城内的望楼传递信息.如图所示是望楼传递信息的一种方式,在九宫格中,每个小方格可以在白色和紫色(此处以阴影代表紫色)之间变换,从而一共可以有512种不同的颜色组合,即代表512种不同的信息.现要求每一行、每一列上有且只有1个紫色小方格(如图所示即满足要求),则一共可以传递的不同信息种数是( )
A.14 B.12 C.9 D.6
12.现有5种不同颜色要对如图所示的四个部分进行着色,要求有公共边界的两块不能用同一种颜色,则不同的着色方法共有( )
A.150种 B.180种 C.240种 D.120种
二、填空题
13.已知某种新产品的编号由1个英文字母和1个数字组成,且英文字母在前,数字在后.已知英文字母是,,,,这5个字母中的1个,数字是1,2,3,4,5,6,7,8,9这9个数字中的一个,则共有__________个不同的编号(用数字作答).
14.中国体育彩票坚持“公益体彩乐善人生”公益理念,为支持中国体育事业发展做出了贡献,其中“大乐透”是群众特别喜欢购买的一种体育彩票,其规则是从前区1到35的号码中选5个,后区1到12的号码中选2个组成一注彩票.其中复式玩法允许从前区选5个以上,后区选2个以上号码,那么从前区1到35的号码中选7个号码,从后区1到12的号码中选3个,组成的彩票注数为___________.
15.某省派出5个医疗队去支援4个灾区,每个灾区至少分配一个医疗队,则不同的分配方案共有___________种(用数字填写答案)
16.现有红、黄、蓝三种颜色,对如图所示的正五角星的内部涂色(分割成六个不同部分),要求每个区域涂一种颜色且相邻部分(有公共边的两个区域)的颜色不同,则不同的涂色方案有________种.(用数字作答).
17.某公司招牌5名员工,分给下属的甲乙两个部门,其中2名英语翻译人员不能分给同一部门,另3名电脑编程人员不能都分给同一部门,则不同的分配方案种数是______.
三、解答题
18.某人有枚明朝不同年代的古币和枚清朝不同年代的古币.
(1)若从中任意取出枚,则有多少种不同取法?
(2)若从中任意取出明、清古币各枚,则有多少种不同取法?
19.用1,5,9,13中的任意一个数作分子,4,8,12,16中任意一个数作分母,可构成多少个不同的分数?可构成多少个不同的真分数?
20.把5本书全部借给3名学生,有多少种不同的借法?
21.在10张奖券中有3张可以中奖,求从中抽出4张,至少有1张中奖的抽法的种数.
试卷第1页,共3页
试卷第1页,共3页
参考答案:
1.A
分类讨论当公差为,,……,时,对应的等差数列个数,再根据三个数成公差数列有两种情况,递增或递减,即可得到答案.
【详解】
当公差为时,数列可以是:,,,……,共13种情况.
当公差为时,数列可以是:,,,……,共11种情况.
当公差为时,数列可以是:,,,……,共9种情况.
当公差为时,数列可以是:,,,……,共7种情况.
当公差为时,数列可以是:,,,,,共5种情况.
当公差为时,数列可以是:,,,共3种情况.
当公差为时,数列可以是:,共1种情况.
总的情况是.
又因为三个数成公差数列有两种情况,递增或递减,
所以这样的等差数列共有个.
故选:A
本题主要考查分类计数原理,同时考查了等差数列的定义,属于简单题.
2.D
不相邻问题用插空法,先排好小吃类店铺,然后将饮料类店铺进行插空即可.
【详解】
先将6个小吃类店铺进行全排列,有种排法,再从这6个小吃类店铺形成的7个空中选3个进行排列,有种排法,故排出的摊位规划总个数为.
故选:D
3.D
由题意,知甲 乙 丙都不是第1名且乙不是最后两名,丙比甲和乙都好,则丙只能是第2名或第3名,然后利用分步分类计数原理求解即可
【详解】
由题意,知甲 乙 丙都不是第1名且乙不是最后两名,丙比甲和乙都好,则丙只能是第2名或第3名,
当丙是第2名时,乙只能是第3名或第4名,甲只能是3至6名中除乙外的3个名次中的一个,所以有种情况;
当丙是第3名时,乙只能是第4名,甲只能是第5名或第6名,所以有种情况.
故共有种不同的情况.
故选:D.
4.C
利用列举法即能求出结果.
【详解】
解:从1,2,3,4,5,6中任取三个不同的数相加,
所得的最小值为,
最大值为,
,,,,,
,,,,
共有:10种不同结果.
故选:C.
5.B
利用分步计数原理,分3步即可求出
【详解】
解:由题意可知,分三步完成:
第一步,从2种主食中任选一种有2种选法;
第二步,从3种素菜中任选一种有3种选法;
第三步,从6种荤菜中任选一种有6种选法,
根据分步计数原理,共有不同的选取方法,
故选:B
6.C
由题意,点E,F,G分别有4,3,2种涂法,再分当A与F相同、A与G相同和A既不同于F又不同于G,三种情况讨论,进而求解.
【详解】
由题意,点E,F,G分别有4,3,2种涂法,
(1)当A与F相同时,A有1种涂色方法,此时B有2种涂色方法,
①若C与F相同,则C有1种涂色方法,此时D有3种涂色方法;
②若C与F不同,则D有2种涂色方法.
故此时共有种涂色方法.
(2)当A与G相同时,A有1种涂色方法,
①若C与F相同,则C有1种涂色方法,此时B有2种涂色方法,D有2种涂色方法;
②若C与F不同,则C有2种涂色方法,此时B有2种涂色方法,D有1种涂色方法.
故此时共有种涂色方法.
(3)当A既不同于F又不同于G时,A有1种涂色方法.
①若B与F相同,则C与A相同时,D有2种涂色方法,C与A不同时,C和D均只有1种涂色方法;
②若B与F不同,则B有1种涂色方法,
(i)若C与F相同,则C有1种涂色方法,此时D有2种涂色方法;
(ii)若C与F不同,则必与A相同,C有1种涂色方法,此时D有2种涂色方法.
故此时共有种涂色方法.
综上,共有种涂色方法.
故选:C.
利用两个计数原理解题的策:
1、利用分类计数原理解题分类时应注意完成这件事情的任何一种方法必须属于某一类,并且分步属于不同种类的两种方法是不同的方法,不能重复,分类时除了不能交叉重复外,还不能有遗漏;
2、利用分步计数原理解题时要注意按事件发生的过程合理分步,即分步时有先有后顺序的,并且分步必须满足:完成一件事的各个步骤是相互依存的,只有各个步骤都完成了,才算完成这件事,分步必须满足两个条件:一是各步骤相互独立,互不干扰;二是步与步之间确保连续,逐步完成.
7.D
要想求得单位时间内从结点向结点传递的最大信息量,关键是分析出每段网线在单位时间内传递的最大信息量.
【详解】
解:依题意,首先找出到的路线,
①单位时间内从结点经过上面一个中间节点向结点传递的最大信息量,从结点向中间的结点传出12个信息量,在该结点处分流为6个和5个,此时信息量为11;再传到结点最大传递分别是4个和3个,此时信息量为个.
②单位时间内从结点经过下面一个中间结点向结点传递的最大信息量是12个信息量,在中间结点分流为6个和8个,但此时总信息量为12(因为总共只有12个信息量);再往下到结点最大传递7个但此时前一结点最多只有6个,另一条路线到最大只能传输6个结点,所以此时信息量为个.
③综合以上结果,单位时间内从结点向结点传递的最大信息量是个.
故选:.
本题考查分类计数的加法原理,对于此类问题,首先应分清是用分步计数还是分类计数.
8.D
根据题意,按甲的选择不同分成2种情况讨论,求出确定乙,丙的选择方法,即可得每种情况的选法数目,由分类加法计数原理,即可求出答案.
【详解】
解:根据题意,按甲的选择不同分成2种情况讨论:
若甲选择牛,此时乙的选择有2种,丙的选择有10种,
此时有种不同的选法;
若甲选择马或猴,此时甲的选法有2种,乙的选择有3种,丙的选择有10种,
此时有种不同的选法;
则一共有种不同的选法.
故选:D.
9.D
根据题意,分情况讨论,求出每种情况对应的染色方法种数,即可得出结果.
【详解】
依题意,第一个格子必须为黑色,设格子从左到右的编号分别为1~6.
故①当1,3,5号格子为黑色时:有23=8种;
②当1,3号为黑色且5号为白色时:若2号为黑色则有22=4种,若2号为白色,则4号为黑色有2种,故此时共有4+2=6种;
③当1号为黑色,3号为白色时:2号必为黑色,若4号为白色,则有1×1×1×1×1×2=2种,若4号为黑色,则有1×1×1×1×2×2=4种,故此时共有2+4=6种;
综上,共有8+6+6=20种.
故选:D.
本题主要考查排列组合,意在考查考生的化归与转化能力、运算求解能力、逻辑推理能力,考查的核心素养是数学运算、逻辑推理.本题解题的关键在于对1,3,5号格子的颜色进行讨论求解.
10.C
利用分类加法计数原理直接求出答案即可.
【详解】
解:由分类加法计数原理知,不同的选法种数为.
故选:C.
11.D
由分步乘法原理求传递的不同信息种数.
【详解】
根据每行中紫色小方格的位置,可分三步:第一步,在第一行中,有且只有1个紫色小方格,有3种情况;第二步,在第二行的3个方格中,要求每列有且只有1个紫色小方格,则第二行有2种情况;第三步,在第三行,只有1种情况,则一共可以传递的信息种数是,
故选:D.
12.B
分步完成涂色,先涂,再涂,然后涂,.
【详解】
分步涂色,第一步对涂色有5种方法,第二步对涂色有4种方法,第三步对涂色有3种方法,第四步对涂色有3种方法,
∴总的方法数为.
故选:B.
本题考查分步乘法原理,解题关键是确定完成涂色这件事的方法:分类还是分步.
13.45
通过分步乘法原理即可得到答案.
【详解】
对于英文字母来说,共有5种可能,对于数字来说,共有9种可能,按照分步乘法原理,即可知道共有个不同的编号.
本题主要考查分步乘法原理的相关计算,难度很小.
14.63
由题意分两步,第一步从前区所选7个号码中任选5个号码,第二步从后区所选3个号码中任选2个号码,再由由分步计数乘法原理求解.
【详解】
第一步从前区所选7个号码中任选5个号码有(种)情况,
第二步从后区所选3个号码中任选2个号码有(种)情况,
由分步计数乘法原理,组成的彩票注数为(注).
故答案为:63
15.240
分2步进行,先选出一个灾区分配2个医疗队,再将剩下的3个医疗队均分到3个灾区,然后利用分步计数原理求解.
【详解】
由题意得,先选出一个灾区分配2个医疗队,有种分配方案,
再将剩下的3个医疗队均分到3个灾区,有种分配方案
不同的分配方案共有种方案
故答案为:240
16.
根据题意,假设正五角星的区域依此为、、、、、,分析6个区域的涂色方案数,再根据分步计数原理计算即可.
【详解】
根据题意,假设正五角星的区域依此为、、、、、,如图所示:
要将每个区域都涂色才做完这件事,由分步计数原理,先对区域涂色有3种方法,
、、、、这5个区域都与相邻,每个区域都有2种涂色方法,
所以共有种涂色方案.
故答案为:
方法点睛:涂色问题常用方法:
(1)根据分步计数原理,对各个区域分步涂色,这是处理区域染色问题的基本方法;
(2)根据共用了多少种颜色讨论,分别计算出各种情形的种数,再用分类计数原理求出不同的涂色方法种数;
(3)根据某两个不相邻区域是否同色分类讨论.从某两个不相邻区域同色与不同色入手,分别计算出两种情形的种数,再用分类计数原理求出不同涂色方法总数.
17.12
分甲部门2名电脑编程人员和1名电脑编程人员两种情况讨论,按照分步乘法计数原理和分类加法计数原理计算可得;
【详解】
解:由题意可得,
①若甲部门要2名电脑编程人员,则有3种情况;2名英语翻译人员的分配方法有2种.根据分步乘法计数原理,分配方案共有(种).
②若甲部门要1名电脑编程人员,则有3种情况;2名英语翻译人员的分配方法有2种.根据分步乘法计数原理,分配方案有(种).由分类加法计数原理,可得不同的分配方案共有(种).
故答案为:
18.(1)
(2)
(1)利用分类加法计数原理可得结果;
(2)利用分步乘法计数原理可得结果.
(1)
解:从枚不同的古币中,取出枚为明朝的古币有种不同的取法,取出枚为清朝的古币有种不同的取法,
由分类加法计数原理可知,共有种不同的取法.
(2)
解:分两步进行,第一步,从枚明朝的古币中取出枚,有种不同的取法;
第二步,从枚清朝的古币中取出枚古币,有种不同的取法.
由分步乘法计数原理,共有种不同的取法.
19.16个不同的分数;真分数有10个.
由分子、分母的选择个数及分步乘法计数原理可得分数的个数;按照分子取值分类,结合分类加法计数原理即可得真分数得个数.
【详解】
从1,5,9,13中的任选一个数作分子,4,8,12,16中任选一个数作分母,
可构成个不同的分数;
由真分数的定义,
①若1为分子,分母有4种选择;
②若5为分子,分母有3种选择;
③若9为分子,分母有2种选择;
④若13为分子,分母有1种选择;
所以真分数共有个.
20.243种
根据分步乘法计数原理计算出正确答案.
【详解】
依题意知:每本书应借给三个人中的一个,即每本书都有3种不同的借法,
由分步乘法计数原理,得共有种不同的借法.
21.175(种)
分有1张、2张、3张中奖,三种情况讨论,即可
【详解】
有3张可以中奖的奖券,7张不能中奖的奖券,分三类:
第一类:有1张中奖的抽法是种;
第二类:有2张中奖的抽法是种;
第三类:有3张中奖的抽法是种;
因此,共有(种).
答案第1页,共2页
答案第1页,共2页