课件29张PPT。§1.1.4 程序框图的画法 知识探究(一):多重条件结构的程序框图知识探究(一):多重条件结构的程序框图思考1:解关于x的方程ax+b=0的算法步骤
如何设计?知识探究(一):多重条件结构的程序框图思考1:解关于x的方程ax+b=0的算法步骤
如何设计?第一步,输入实数a,b.知识探究(一):多重条件结构的程序框图思考1:解关于x的方程ax+b=0的算法步骤
如何设计?第一步,输入实数a,b.知识探究(一):多重条件结构的程序框图思考1:解关于x的方程ax+b=0的算法步骤
如何设计?第三步,判断b是否为0.若是,则输出“ 方
程的解为任意实数”;否则,输出“方程无
实数解”.第一步,输入实数a,b.知识探究(二):混合逻辑结构的程序框图知识探究(二):混合逻辑结构的程序框图知识探究(二):混合逻辑结构的程序框图第一步,令f(x)=x2-2,给定精确度d. 知识探究(二):混合逻辑结构的程序框图第一步,令f(x)=x2-2,给定精确度d. 第二步,确定区间[a,b],满足f(a)·f(b)<0. 知识探究(二):混合逻辑结构的程序框图第一步,令f(x)=x2-2,给定精确度d. 第二步,确定区间[a,b],满足f(a)·f(b)<0. 知识探究(二):混合逻辑结构的程序框图第一步,令f(x)=x2-2,给定精确度d. 第二步,确定区间[a,b],满足f(a)·f(b)<0. 第四步,若f(a)·f(m)<0,则含零点的区间为
[a,m];否则,含零点的区间为[m,b].将新
得到的含零点的区间仍记为[a,b]. 知识探究(二):混合逻辑结构的程序框图第一步,令f(x)=x2-2,给定精确度d. 第二步,确定区间[a,b],满足f(a)·f(b)<0. 第四步,若f(a)·f(m)<0,则含零点的区间为
[a,m];否则,含零点的区间为[m,b].将新
得到的含零点的区间仍记为[a,b]. 第五步,判断[a,b]的长度是否小于d或f(m)是
否等于0.若是,则m是方程的近似解;否则,
返回第三步. 思考2. 根据上述分析,你能画出表示整个算
法的程序框图吗?思考2. 根据上述分析,你能画出表示整个算
法的程序框图吗?思考2. 根据上述分析,你能画出表示整个算
法的程序框图吗?思考2. 根据上述分析,你能画出表示整个算
法的程序框图吗?1 3 6 10作业:习案 (4)