2022年高考真题和模拟题理科数学分项汇编5【函数与导数】(原卷版+解析版)

文档属性

名称 2022年高考真题和模拟题理科数学分项汇编5【函数与导数】(原卷版+解析版)
格式 zip
文件大小 2.6MB
资源类型 试卷
版本资源 通用版
科目 数学
更新时间 2022-06-14 11:18:33

文档简介

中小学教育资源及组卷应用平台
2022高考数学真题分类汇编
五、函数与导数
一、选择题
1.(2022·全国甲(文T7)(理T5))函数在区间的图象大致为( )
A. B.
C. D.
2.(2022·全国甲(文T8)(理T6)). 当时,函数取得最大值,则( )
A. B. C. D. 1
3.(2022·全国乙(文T8) 如图是下列四个函数中的某个函数在区间的大致图像,则该函数是( )
A. B. C. D.
4.(2022·全国乙(理)T12) 已知函数的定义域均为R,且.若的图像关于直线对称,,则( )
A. B. C. D.
5.(2022·新高考Ⅰ卷T10)已知函数,则( )
A. 有两个极值点 B. 有三个零点
C. 点是曲线的对称中心 D. 直线是曲线的切线
6.(2022·新高考Ⅰ卷T12) 已知函数及其导函数的定义域均为,记,若,均为偶函数,则( )
A. B. C. D.
7.(2022·新高考Ⅱ卷T8) 若函数的定义域为R,且,则( )
A. B. C. 0 D. 1
8.(2022·北京卷T4) 己知函数,则对任意实数x,有( )
A. B.
C. D.
9.(2022·北京卷T7) 在北京冬奥会上,国家速滑馆“冰丝带”使用高效环保的二氧化碳跨临界直冷制冰技术,为实现绿色冬奥作出了贡献.如图描述了一定条件下二氧化碳所处的状态与T和的关系,其中T表示温度,单位是K;P表示压强,单位是.下列结论中正确的是( )
A. 当,时,二氧化碳处于液态
B. 当,时,二氧化碳处于气态
C. 当,时,二氧化碳处于超临界状态
D. 当,时,二氧化碳处于超临界状态
10.(2022·浙江卷T7) 已知,则( )
A. 25 B. 5 C. D.
二、填空题
11.(2022·全国乙(文T16) 若是奇函数,则_____,______.
12.(2022·全国乙(理)T16) 已知和分别是函数(且)的极小值点和极大值点.若,则a的取值范围是____________.
13.(2022·新高考Ⅰ卷T15)若曲线有两条过坐标原点的切线,则a的取值范围是______________.
14.(2022·新高考Ⅱ卷T14) 写出曲线过坐标原点的切线方程:____________,____________.
15.(2022·北京卷T11) 函数的定义域是_________.
16.(2022·北京卷T14)设函数若存在最小值,则a的一个取值为________;a的最大值为___________.
17.(2022·浙江卷T14) 已知函数则________;若当时,,则的最大值是_________.
3、解答题
18.(2022·全国甲(文)T20) 已知函数,曲线在点处的切线也是曲线的切线.
(1)若,求a;
(2)求a的取值范围.
19(2022·全国甲(理)T21) 已知函数.
(1)若,求a的取值范围;
(2)证明:若有两个零点,则环.
20.(2022·全国乙(文)T20) 已知函数.
(1)当时,求的最大值;
(2)若恰有一个零点,求a的取值范围.
20.(2022·全国乙(理)T21)已知函数
(1)当时,求曲线在点处的切线方程;
(2)若在区间各恰有一个零点,求a的取值范围.
21(2022·新高考Ⅰ卷T22) 已知函数和有相同最小值.
(1)求a;
(2)证明:存在直线,其与两条曲线和共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.
21.(2022·新高考Ⅱ卷T22) 已知函数.
(1)当时,讨论的单调性;
(2)当时,,求a的取值范围;
(3)设,证明:.
22.(2022·北京卷T20) 已知函数.
(1)求曲线在点处切线方程;
(2)设,讨论函数在上的单调性;
(3)证明:对任意的,有.
8.(2022·浙江卷T22) 设函数.
(1)求的单调区间;
(2)已知,曲线上不同的三点处的切线都经过点.证明:
(ⅰ)若,则;
(ⅱ)若,则.
(注:是自然对数底数)
变式训练
一、单选题
1.(2022·山师大附中高三模拟)已知定义在R上的函数满足,且是奇函数,则( )
A.是偶函数 B.的图象关于直线对称
C.是奇函数 D.的图象关于点对称
2.(2022·吉林吉林·模拟预测(文))定义在R上的函数满足,且函数为奇函数.当时,,则( )
A.-2 B.2 C.3 D.
3.(2022·黑龙江·鸡西市第四中学三模(理))若两个函数的图象经过若干次平移后能够重合,则称这两个函数为“同形”函数,给出下列三个函数:,,,则( )
A.,,为“同形”函数
B.,为“同形”函数,且它们与不为“同形”函数
C.,为“同形”函数,且它们与不为“同形”函数
D.,为“同形”函数,且它们与不为“同形”函数
【答案】A
4.(2022·河南·平顶山市第一高级中学模拟预测(文))函数的部分图像大致为( )
A. B.
C. D.
5.(2022·浙江·模拟预测)已知函数的定义域为,对任意,都有.现已知,那么( )
A. B. C. D.
6.(2022·山东·德州市教育科学研究院三模)已知函数是定义在上的奇函数,对于任意,必有,若函数只有一个零点,则函数有( )
A.最小值为 B.最大值为 C.最小值为4 D.最大值为4
7.(2022·河南·平顶山市第一高级中学模拟预测(文))定义在R上的函数满足,当时,若对任意的,不等式恒成立,则实数t的取值范围是( )
A. B.
C. D.
8.(2022·四川·树德中学模拟预测(理))已知函数的零点为a,函数的零点为b,则下列不等式中成立的是( )
A. B.
C. D.
9.(2022·湖北·模拟预测)若过点可作曲线三条切线,则( )
A. B. C. D.
10.(2022·贵州·贵阳一中模拟预测(文))已知奇函数的导函数为,且在上恒有成立,则下列不等式成立的( )
A. B.
C. D.
11.(2022·河南安阳·模拟预测(理))已知函数,若时,在处取得最大值,则实数a的取值范围是( )
A. B. C. D.
12.(2022·山东·德州市教育科学研究院三模)已知对数函数的图像经过点与点,,,,则( )
A. B. C. D.
二、多选题
13.(2022·江苏盐城·三模)已知函数为上的奇函数,为偶函数,下列说法正确的有( )
A.图象关于直线对称 B.
C.的最小正周期为4 D.对任意都有
14.(2022·广东·深圳市光明区高级中学模拟预测)若图像上存在两点,关于原点对称,则点对称为函数的“友情点对”(点对与视为同一个“友情点对”).若,且,,,则( )
A.有无数个“友情点对” B.恰有个“友情点对”
C. D.
15.(2022·湖南·模拟预测)已知,,且,则下列结论一定正确的是( )
A. B.
C. D.
16.(2022·江苏·模拟预测)设函数的导函数存在两个零点、,当变化时,记点构成的曲线为,点构成的曲线为,则( )
A.曲线恒在轴上方
B.曲线与有唯一公共点
C.对于任意的实数,直线与曲线有且仅有一个公共点
D.存在实数,使得曲线、分布在直线两侧
三、填空题
17.(2022·江西·上高二中模拟预测(文))已知函数与的图像上存在关于轴对称的点,则实数的取值范围为_________
18.(2022·山东师范大学附中模拟预测)已知函数,若存在一条直线同时与两个函数图象相切,则实数a的取值范围__________.
四、解答题
19.(2022·山东泰安·模拟预测)已知函数.
(1)若函数,讨论的单调性.
(2)若函数,证明:.
20.(2022·山东聊城·三模)已知函数,.
(1)当b=1时,讨论函数的单调性;
(2)若函数在处的切线方程为,且不等式恒成立,求实数m的取值范围.
21.(2022·湖北·模拟预测)已知
(1)若,讨论函数的单调性;
(2)有两个不同的零点,,若恒成立,求的范围.
22.(2022·河南·平顶山市第一高级中学模拟预测(理))已知函数.
(1)若,讨论的单调性;
(2)若有两个零点,求实数a的取值范围.
23.(2022·辽宁·沈阳二中模拟预测)已知函数.
(1)讨论的单调性;
(2)当时,,求的取值范围;
(3)判断与的大小,并证明.
24.(2022·四川省泸县第二中学模拟预测(理))已知函数(e为自然对数的底数)有两个零点.
(1)若,求在处的切线方程;
(2)若的两个零点分别为,证明:.
25.(2022·山东潍坊·模拟预测)已知函数.
(1)若,证明:当时,;当时,;
(2)若是的极大值点,求实数a.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
2022高考数学真题分类汇编
五、函数与导数
一、选择题
1.(2022·全国甲(文T7)(理T5))函数在区间的图象大致为( )
A. B.
C. D.
【答案】A
【解析】
【分析】由函数的奇偶性结合指数函数、三角函数的性质逐项排除即可得解.
【详解】令,
则,
所以为奇函数,排除BD;
又当时,,所以,排除C.
故选:A.
2.(2022·全国甲(文T8)(理T6)). 当时,函数取得最大值,则( )
A. B. C. D. 1
【答案】B
【解析】
【分析】根据题意可知,即可解得,再根据即可解出.
【详解】因为函数定义域为,所以依题可知,,,而,所以,即,所以,因此函数在上递增,在上递减,时取最大值,满足题意,即有.
故选:B.
3.(2022·全国乙(文T8) 如图是下列四个函数中的某个函数在区间的大致图像,则该函数是( )
A. B. C. D.
【答案】A
【解析】
【分析】由函数图像的特征结合函数的性质逐项排除即可得解.
【详解】设,则,故排除B;
设,当时,,
所以,故排除C;
设,则,故排除D.
故选:A.
4.(2022·全国乙(理)T12) 已知函数的定义域均为R,且.若的图像关于直线对称,,则( )
A. B. C. D.
【答案】D
【解析】
【分析】根据对称性和已知条件得到,从而得到,,然后根据条件得到的值,再由题意得到从而得到的值即可求解.
【详解】因为的图像关于直线对称,
所以,
因为,所以,即,
因为,所以,
代入得,即,
所以,
.
因为,所以,即,所以.
因为,所以,又因为,
联立得,,
所以的图像关于点中心对称,因为函数的定义域为R,
所以
因为,所以.
所以故选:D
5.(2022·新高考Ⅰ卷T10)已知函数,则( )
A. 有两个极值点 B. 有三个零点
C. 点是曲线的对称中心 D. 直线是曲线的切线
【答案】AC
【解析】
【分析】利用极值点的定义可判断A,结合的单调性、极值可判断B,利用平移可判断C;利用导数的几何意义判断D.
【详解】由题,,令得或,
令得,
所以在上单调递减,在,上单调递增,
所以是极值点,故A正确;
因,,,
所以,函数在上有一个零点,
当时,,即函数在上无零点,
综上所述,函数有一个零点,故B错误;
令,该函数的定义域为,,
则是奇函数,是的对称中心,
将的图象向上移动一个单位得到的图象,
所以点是曲线的对称中心,故C正确;
令,可得,又,
当切点为时,切线方程为,当切点为时,切线方程为,
故D错误.
故选:AC
6.(2022·新高考Ⅰ卷T12) 已知函数及其导函数的定义域均为,记,若,均为偶函数,则( )
A. B. C. D.
【答案】BC
【解析】
【分析】转化题设条件为函数的对称性,结合原函数与导函数图象的关系,根据函数的性质逐项判断即可得解.
【详解】因为,均为偶函数,
所以即,,
所以,,则,故C正确;
函数,的图象分别关于直线对称,
又,且函数可导,
所以,
所以,所以,
所以,,故B正确,D错误;
若函数满足题设条件,则函数(C为常数)也满足题设条件,所以无法确定的函数值,故A错误.
故选:BC.
7.(2022·新高考Ⅱ卷T8) 若函数的定义域为R,且,则( )
A. B. C. 0 D. 1
【答案】A
【解析】
【分析】根据题意赋值即可知函数的一个周期为,求出函数一个周期中的的值,即可解出.
【详解】因为,令可得,,所以,令可得,,即,所以函数为偶函数,令得,,即有,从而可知,,故,即,所以函数的一个周期为.
因为,,,,,所以
一个周期内的.由于22除以6余4,
所以.
故选:A.
8.(2022·北京卷T4) 己知函数,则对任意实数x,有( )
A. B.
C. D.
【答案】C
【解析】
【分析】直接代入计算,注意通分不要计算错误.
【详解】,故A错误,C正确;
,不是常数,故BD错误;
故选:C.
9.(2022·北京卷T7) 在北京冬奥会上,国家速滑馆“冰丝带”使用高效环保的二氧化碳跨临界直冷制冰技术,为实现绿色冬奥作出了贡献.如图描述了一定条件下二氧化碳所处的状态与T和的关系,其中T表示温度,单位是K;P表示压强,单位是.下列结论中正确的是( )
A. 当,时,二氧化碳处于液态
B. 当,时,二氧化碳处于气态
C. 当,时,二氧化碳处于超临界状态
D. 当,时,二氧化碳处于超临界状态
【答案】D
【解析】
【分析】根据与的关系图可得正确的选项.
【详解】当,时,,此时二氧化碳处于固态,故A错误.
当,时,,此时二氧化碳处于液态,故B错误.
当,时,与4非常接近,故此时二氧化碳处于固态,
另一方面,时对应的是非超临界状态,故C错误.
当,时,因, 故此时二氧化碳处于超临界状态,故D正确.
故选:D
10.(2022·浙江卷T7) 已知,则( )
A. 25 B. 5 C. D.
【答案】C
【解析】
【分析】根据指数式与对数式的互化,幂的运算性质以及对数的运算性质即可解出.
【详解】因为,,即,所以.
故选:C.
二、填空题
11.(2022·全国乙(文T16) 若是奇函数,则_____,______.
【答案】 ①. ; ②. .
【解析】
【分析】根据奇函数的定义即可求出.
【详解】因为函数为奇函数,所以其定义域关于原点对称.
由可得,,所以,解得:,即函数的定义域为,再由可得,.即,在定义域内满足,符合题意.
故答案为:;.
12.(2022·全国乙(理)T16) 已知和分别是函数(且)的极小值点和极大值点.若,则a的取值范围是____________.
【答案】
【解析】
【分析】由分别是函数的极小值点和极大值点,可得时,,时,,再分和两种情况讨论,方程的两个根为,即函数与函数的图象有两个不同的交点,构造函数,根据导数的结合意义结合图象即可得出答案.
【详解】解:,
因为分别是函数的极小值点和极大值点,
所以函数在和上递减,在上递增,
所以当时,,当时,,
若时,
当时,,
则此时,与前面矛盾,
故不符合题意,
若时,
则方程的两个根为,
即方程的两个根为,
即函数与函数的图象有两个不同的交点,
令,则,
设过原点且与函数的图象相切的直线的切点为,
则切线的斜率为,
故切线方程为,
则有,
解得,
则切线的斜率为,
因为函数与函数的图象有两个不同的交点,
所以,解得,
又,所以,
综上所述,的范围为.
13.(2022·新高考Ⅰ卷T15)若曲线有两条过坐标原点的切线,则a的取值范围是______________.
【答案】
【解析】
【分析】设出切点横坐标,利用导数的几何意义求得切线方程,根据切线经过原点得到关于的方程,根据此方程应有两个不同的实数根,求得的取值范围.
【详解】∵,∴,
设切点为,则,切线斜率,
切线方程为:,
∵切线过原点,∴,
整理得:,
∵切线有两条,∴,解得或,
∴的取值范围是,
故答案为:
14.(2022·新高考Ⅱ卷T14) 写出曲线过坐标原点的切线方程:____________,____________.
【答案】 ①. ②.
【解析】
【分析】分和两种情况,当时设切点为,求出函数导函数,即可求出切线的斜率,从而表示出切线方程,再根据切线过坐标原点求出,即可求出切线方程,当时同理可得;
【详解】解: 因为,
当时,设切点为,由,所以,所以切线方程为,
又切线过坐标原点,所以,解得,所以切线方程为,即;
当时,设切点为,由,所以,所以切线方程为,
又切线过坐标原点,所以,解得,所以切线方程为,即;故答案为:;
15.(2022·北京卷T11) 函数的定义域是_________.
【答案】
【解析】
【分析】根据偶次方根的被开方数非负、分母不为零得到方程组,解得即可;
【详解】解:因为,所以,解得且,
故函数的定义域为;
故答案为:
16.(2022·北京卷T14)设函数若存在最小值,则a的一个取值为________;a的最大值为___________.
【答案】 ① 0(答案不唯一) ②. 1
【解析】
【分析】根据分段函数中的函数的单调性进行分类讨论,可知,符合条件,不符合条件,时函数没有最小值,故的最小值只能取的最小值,根据定义域讨论可知或, 解得 .
【详解】解:若时,,∴;
若时,当时,单调递增,当时,,故没有最小值,不符合题目要求;
若时,
当时,单调递减,,
当时,
∴或,
解得,
综上可得;
故答案为:0(答案不唯一),1
17.(2022·浙江卷T14) 已知函数则________;若当时,,则的最大值是_________.
【答案】 ①. ②. ##
【解析】
【分析】结合分段函数的解析式求函数值,由条件求出的最小值,的最大值即可.
【详解】由已知,,
所以,
当时,由可得,所以,
当时,由可得,所以,
等价于,所以,
所以的最大值为.
故答案为:,.
3、解答题
18.(2022·全国甲(文)T20) 已知函数,曲线在点处的切线也是曲线的切线.
(1)若,求a;
(2)求a的取值范围.
【答案】(1)3 (2)
【解析】
【分析】(1)先由上的切点求出切线方程,设出上的切点坐标,由斜率求出切点坐标,再由函数值求出即可;
(2)设出上的切点坐标,分别由和及切点表示出切线方程,由切线重合表示出,构造函数,求导求出函数值域,即可求得的取值范围.
【小问1详解】
由题意知,,,,则在点处的切线方程为,
即,设该切线与切于点,,则,解得,则,解得;
【小问2详解】
,则在点处的切线方程为,整理得,
设该切线与切于点,,则,则切线方程为,整理得,
则,整理得,
令,则,令,解得或,
令,解得或,则变化时,的变化情况如下表:
0 1
0 0 0
则的值域为,故的取值范围为.
19(2022·全国甲(理)T21) 已知函数.
(1)若,求a的取值范围;
(2)证明:若有两个零点,则环.
【答案】(1)
(2)证明见的解析
【解析】
【分析】(1)由导数确定函数单调性及最值,即可得解;
(2)利用分析法,转化要证明条件为,再利用导数即可得证.
【小问1详解】
的定义域为,
令,得
当单调递减
当单调递增,
若,则,即
所以的取值范围为
【小问2详解】
由题知,一个零点小于1,一个零点大于1
不妨设
要证,即证
因为,即证
因为,即证
即证
即证
下面证明时,
设,


所以,而
所以,所以
所以在单调递增
即,所以

所以在单调递减
即,所以;
综上, ,所以.
20.(2022·全国乙(文)T20) 已知函数.
(1)当时,求的最大值;
(2)若恰有一个零点,求a的取值范围.
【答案】(1)
(2)
【解析】
【分析】(1)由导数确定函数的单调性,即可得解;
(2)求导得,按照、及结合导数讨论函数的单调性,求得函数的极值,即可得解.
【小问1详解】
当时,,则,
当时,,单调递增;
当时,,单调递减;
所以;
【小问2详解】
,则,
当时,,所以当时,,单调递增;
当时,,单调递减;
所以,此时函数无零点,不合题意;
当时,,在上,,单调递增;
在上,,单调递减;
又,当x趋近正无穷大时,趋近于正无穷大,
所以仅在有唯一零点,符合题意;
当时,,所以单调递增,又,
所以有唯一零点,符合题意;
当时,,在上,,单调递增;
在上,,单调递减;此时,
又,当n趋近正无穷大时,趋近负无穷,
所以在有一个零点,在无零点,
所以有唯一零点,符合题意;
综上,a的取值范围为.
20.(2022·全国乙(理)T21)已知函数
(1)当时,求曲线在点处的切线方程;
(2)若在区间各恰有一个零点,求a的取值范围.
【答案】(1)
(2)
【解析】
【分析】(1)先算出切点,再求导算出斜率即可
(2)求导,对分类讨论,对分两部分研究
【小问1详解】
的定义域为
当时,,所以切点为,所以切线斜率为2
所以曲线在点处的切线方程为
【小问2详解】

若,当,即
所以在上单调递增,
故在上没有零点,不合题意
若,当,则
所以在上单调递增所以,即
所以在上单调递增,
故在上没有零点,不合题意

(1)当,则,所以在上单调递增
所以存在,使得,即
当单调递减
当单调递增
所以


所以在上有唯一零点
又没有零点,即在上有唯一零点
(2)当

所以在单调递增
所以存在,使得
当单调递减
当单调递增

所以存在,使得,即
当单调递增,当单调递减

而,所以当
所以在上有唯一零点,上无零点
即在上有唯一零点
所以,符合题意
所以若在区间各恰有一个零点,求的取值范围为
21(2022·新高考Ⅰ卷T22) 已知函数和有相同最小值.
(1)求a;
(2)证明:存在直线,其与两条曲线和共有三个不同的交点,并且从左到右的三个交点的横坐标成等差数列.
【答案】(1)
(2)见解析
【解析】
【分析】(1)根据导数可得函数的单调性,从而可得相应的最小值,根据最小值相等可求a.注意分类讨论.
(2)根据(1)可得当时, 的解的个数、的解的个数均为2,构建新函数,利用导数可得该函数只有一个零点且可得的大小关系,根据存在直线与曲线、有三个不同的交点可得的取值,再根据两类方程的根的关系可证明三根成等差数列.
【小问1详解】
的定义域为,而,
若,则,此时无最小值,故.
的定义域为,而.
当时,,故在上为减函数,
当时,,故在上为增函数,
故.
当时,,故在上为减函数,
当时,,故在上为增函数,
故.
因为和有相同的最小值,
故,整理得到,其中,
设,则,
故为上的减函数,而,
故的唯一解为,故的解为.
综上,.
【小问2详解】
由(1)可得和的最小值为.
当时,考虑的解的个数、的解的个数.
设,,
当时,,当时,,
故在上为减函数,在上为增函数,
所以,
而,,
设,其中,则,
故在上为增函数,故,
故,故有两个不同的零点,即的解的个数为2.
设,,
当时,,当时,,
故在上为减函数,在上为增函数,
所以,
而,,
有两个不同的零点即的解的个数为2.
当,由(1)讨论可得、仅有一个零点,
当时,由(1)讨论可得、均无零点,
故若存在直线与曲线、有三个不同的交点,
则.
设,其中,故,
设,,则,
故在上为增函数,故即,
所以,所以在上为增函数,
而,,
故在上有且只有一个零点,且:
当时,即即,
当时,即即,
因此若存在直线与曲线、有三个不同交点,
故,
此时有两个不同的零点,
此时有两个不同的零点,
故,,,
所以即即,
故为方程的解,同理也为方程的解
又可化为即即,
故为方程的解,同理也为方程的解,
所以,而,
故即.
21.(2022·新高考Ⅱ卷T22) 已知函数.
(1)当时,讨论的单调性;
(2)当时,,求a的取值范围;
(3)设,证明:.
【答案】(1)的减区间为,增区间为.
(2)
(3)见解析
【解析】
【分析】(1)求出,讨论其符号后可得的单调性.
(2)设,求出,先讨论时题设中的不等式不成立,再就结合放缩法讨论符号,最后就结合放缩法讨论的范围后可得参数的取值范围.
(3)由(2)可得对任意的恒成立,从而可得对任意的恒成立,结合裂项相消法可证题设中的不等式.
【小问1详解】
当时,,则,
当时,,当时,,
故的减区间为,增区间为.
【小问2详解】
设,则,
又,设,
则,
若,则,
因为为连续不间断函数,
故存在,使得,总有,
故在为增函数,故,
故在为增函数,故,与题设矛盾.
若,则,
下证:对任意,总有成立,
证明:设,故,
故在上为减函数,故即成立.
由上述不等式有,
故总成立,即在上为减函数,
所以.
当时,有,
所以在上为减函数,所以.
综上,.
【小问3详解】
取,则,总有成立,
令,则,
故即对任意的恒成立.
所以对任意的,有,
整理得到:,


故不等式成立.
22.(2022·北京卷T20) 已知函数.
(1)求曲线在点处切线方程;
(2)设,讨论函数在上的单调性;
(3)证明:对任意的,有.
【答案】(1)
(2)在上单调递增.
(3)证明见解析
【解析】
【分析】(1)先求出切点坐标,在由导数求得切线斜率,即得切线方程;
(2)在求一次导数无法判断的情况下,构造新的函数,再求一次导数,问题即得解;
(3)令,,即证,由第二问结论可知在[0,+∞)上单调递增,即得证.
【小问1详解】
解:因为,所以,
即切点坐标为,
又,
∴切线斜率
∴切线方程为:
【小问2详解】
解:因为,
所以,
令,
则,
∴在上单调递增,

∴在上恒成立,
∴上单调递增.
【小问3详解】
解:原不等式等价于,
令,,
即证,
∵,

由(2)知在上单调递增,
∴,

∴在上单调递增,又因为,
∴,所以命题得证.
8.(2022·浙江卷T22) 设函数.
(1)求的单调区间;
(2)已知,曲线上不同的三点处的切线都经过点.证明:
(ⅰ)若,则;
(ⅱ)若,则.
(注:是自然对数底数)
【答案】(1)的减区间为,增区间为.
(2)(ⅰ)见解析;(ⅱ)见解析.
【解析】
【分析】(1)求出函数的导数,讨论其符号后可得函数的单调性.
(2)(ⅰ)由题设构造关于切点横坐标的方程,根据方程有3个不同的解可证明不等式成立,(ⅱ) ,,则题设不等式可转化为,结合零点满足的方程进一步转化为,利用导数可证该不等式成立.
【小问1详解】

当,;当,,
故的减区间为,的增区间为.
【小问2详解】
(ⅰ)因为过有三条不同的切线,设切点为,
故,
故方程有3个不同的根,
该方程可整理为,
设,


当或时,;当时,,
故在上为减函数,在上为增函数,
因为有3个不同的零点,故且,
故且,
整理得到:且,
此时,
设,则,
故为上的减函数,故,

(ⅱ)当时,同(ⅰ)中讨论可得:
故在上为减函数,在上为增函数,
不妨设,则,
因为有3个不同的零点,故且,
故且,
整理得到:,
因为,故,
又,
设,,则方程即为:
即为,

则为有三个不同的根,
设,,
要证:,即证,
即证:,
即证:,
即证:,
而且,
故,
故,
故即证:,
即证:
即证:,
记,则,
设,则即,
故在上为增函数,故,
所以,
记,
则,
所以在为增函数,故,
故即,
故原不等式得证:
变式训练
一、单选题
1.(2022·山师大附中高三模拟)已知定义在R上的函数满足,且是奇函数,则( )
A.是偶函数 B.的图象关于直线对称
C.是奇函数 D.的图象关于点对称
【答案】C
【解析】
【分析】
由周期函数的概念易知函数的周期为2,根据图象平移可得的图象关于点对称,进而可得奇偶性.
【详解】
由可得2是函数的周期,
因为是奇函数,所以函数的图象关于点对称,
所以,,所以是奇函数,
故选:C.
2.(2022·吉林吉林·模拟预测(文))定义在R上的函数满足,且函数为奇函数.当时,,则( )
A.-2 B.2 C.3 D.
【答案】D
【解析】
【分析】
由函数的对称性可以找到函数的周期,然后通过周期性和对称性即可求出的值.
【详解】
由可得,函数关于对称,函数为奇函数,所以,所以函数关于对称,则有,即,又,
,的周期为4.
.
故选:D.
3.(2022·黑龙江·鸡西市第四中学三模(理))若两个函数的图象经过若干次平移后能够重合,则称这两个函数为“同形”函数,给出下列三个函数:,,,则( )
A.,,为“同形”函数
B.,为“同形”函数,且它们与不为“同形”函数
C.,为“同形”函数,且它们与不为“同形”函数
D.,为“同形”函数,且它们与不为“同形”函数
【答案】A
【解析】
【分析】
根据题中“同形”函数的定义和、均可化简成以3为底的指数形式,可得答案.
【详解】
解:,

故,的图象可分别由的图象向左平移个单位、向右平移1个单位得到,
故,,为“同形”函数.
故选:A.
4.(2022·河南·平顶山市第一高级中学模拟预测(文))函数的部分图像大致为( )
A. B.
C. D.
【答案】A
【解析】
【分析】
设,分析函数的定义域、奇偶性及其在上的函数值符号,结合排除法可得出合适的选项.
【详解】
设,则对任意的,,
则,所以函数是偶函数,排除B、D.
当时,,则,所以,排除C.
故选:A.
5.(2022·浙江·模拟预测)已知函数的定义域为,对任意,都有.现已知,那么( )
A. B. C. D.
【答案】D
【解析】
【分析】
先由求出,再由得到,结合单调性和零点存在定理进行判断即可.
【详解】
不妨设,则,所以,得,,
因为,所以.令,易得在上单调递增,
因为,,
由零点存在定理知:.
故选:D.
6.(2022·山东·德州市教育科学研究院三模)已知函数是定义在上的奇函数,对于任意,必有,若函数只有一个零点,则函数有( )
A.最小值为 B.最大值为 C.最小值为4 D.最大值为4
【答案】A
【解析】
【分析】
由函数只有一个零点,结合条件可得方程只有一个根,即可求出,然后可求出的最值情况.
【详解】
由可得,
因为函数是定义在上的奇函数,所以,
因为对于任意,必有,所以,即,
因为函数只有一个零点,
所以方程只有一个根,所以,解得,
所以,令,则,
所以,
当且仅当,即时等号成立,
所以函数有最小值为,
故选:A
7.(2022·河南·平顶山市第一高级中学模拟预测(文))定义在R上的函数满足,当时,若对任意的,不等式恒成立,则实数t的取值范围是( )
A. B.
C. D.
【答案】D
【解析】
【分析】
由解析式得到函数的单调性和对称轴,结合条件可得,两边平方转为恒成立求解即可.
【详解】
当时,单调递减,;当时,单调递减,故在上单调递减:由,得的对称轴方程为.若对任意的,不等式恒成立,所以,即,即对任意的恒成立,所以解得.
故选:D.
8.(2022·四川·树德中学模拟预测(理))已知函数的零点为a,函数的零点为b,则下列不等式中成立的是( )
A. B.
C. D.
【答案】C
【解析】
【分析】
根据与关于直线对称,画出图象,再结合导数及零点依次判断选项即可.
【详解】
由,得,,
因为与关于直线对称,
在同一坐标系下,画出,,,的图象,
如图所示:
则,,,关于对称.
所以,,故B错误.
因为,,,所以,故A错误.
因为,,在上为增函数,
,,所以.
又因为点在直线上,且,所以.
,故C正确.
因为,所以,
设,,在为增函数.
所以,
即,,故D错误.
故选:C
9.(2022·湖北·模拟预测)若过点可作曲线三条切线,则( )
A. B. C. D.
【答案】A
【解析】
【分析】
设切点为,根据导数的几何意义写出切线的方程,代入点,转化为方程有3个根,构造函数,利用导数可知函数的极值,根据题意列出不等式组求解即可.
【详解】
设切点为,
由,故切线方程为,
因为在切线上,所以代入切线方程得,
则关于t的方程有三个不同的实数根,
令,则或,
所以当,时,,为增函数,
当时,,为减函数,
且时,,时,,
所以只需,解得
故选:A
10.(2022·贵州·贵阳一中模拟预测(文))已知奇函数的导函数为,且在上恒有成立,则下列不等式成立的( )
A. B.
C. D.
【答案】B
【解析】
【分析】
构造函数,由得,即,即可得到单调性,再结合的奇偶性,即可对选项进行判断
【详解】
构造函数,由在上恒有成立,即在上为增函数,又由为偶函数,,故A错误.
偶函数在上为增函数,在上为减函数,
,故B正确;
,,故C错误;
,,故D错误.
故选:B
11.(2022·河南安阳·模拟预测(理))已知函数,若时,在处取得最大值,则实数a的取值范围是( )
A. B. C. D.
【答案】B
【解析】
【分析】
根据题意当时恒成立,整理得,当时,在图像的下方,结合图像分析处理.
【详解】
根据题意得当时恒成立
则,即
∴当时,在图像的下方
,则,则
故选:B.
12.(2022·山东·德州市教育科学研究院三模)已知对数函数的图像经过点与点,,,,则( )
A. B. C. D.
【答案】C
【解析】
【分析】
根据对数函数可以解得,,再结合中间值法比较大小.
【详解】
设,由题意可得:,则

,,

故选:C.
二、多选题
13.(2022·江苏盐城·三模)已知函数为上的奇函数,为偶函数,下列说法正确的有( )
A.图象关于直线对称 B.
C.的最小正周期为4 D.对任意都有
【答案】ABD
【解析】
【分析】
由奇偶性知的对称中心为、对称轴为,进而推得,即可判断各选项的正误.
【详解】
由的对称中心为,对称轴为,
则也关于直线对称且,A、D正确,
由A分析知:,故,
所以,
所以的周期为4,则,B正确;
但不能说明最小正周期为4,C错误;
故选:ABD
14.(2022·广东·深圳市光明区高级中学模拟预测)若图像上存在两点,关于原点对称,则点对称为函数的“友情点对”(点对与视为同一个“友情点对”).若,且,,,则( )
A.有无数个“友情点对” B.恰有个“友情点对”
C. D.
【答案】AD
【解析】
【分析】
判断函数的奇偶性,结合新定义判断A,B,利用导数判断函数的单调性,并由条件结合指数函数性质和余弦函数性质确定,,的大小关系,由此比较,,的大小.
【详解】
因为, ,所以是奇函数,
所以图像上存在无数对,关于原点对称,即有无数个“友情点对”;
又因为,令,
则,令,则,
当时,,所以是增函数,,即,
所以当时是增函数,,所以,
在上是增函数,因为是奇函数,所以在上是增函数,
因为,指数函数为增函数,所以,
因为,指数函数为增函数,所以,
由可得,故
所以.故选:AD.
15.(2022·湖南·模拟预测)已知,,且,则下列结论一定正确的是( )
A. B.
C. D.
【答案】AC
【解析】
【分析】
构造函数,利用导数判断函数的单调性,得出,结合不等式以及指、对数函数的性质逐一判断即可.
【详解】
令,则,
所以当时,,所以在上单调递增;
由得,即,
∵,∴,
∴,即,
∴,即,∴,A正确;
由知,所以,所以选项B错误;
由知,所以选项C正确.
由,知,所以,
所以D错误,
故选:AC.
16.(2022·江苏·模拟预测)设函数的导函数存在两个零点、,当变化时,记点构成的曲线为,点构成的曲线为,则( )
A.曲线恒在轴上方
B.曲线与有唯一公共点
C.对于任意的实数,直线与曲线有且仅有一个公共点
D.存在实数,使得曲线、分布在直线两侧
【答案】AD
【解析】
【分析】
求出曲线、对于的方程,数形结合可判断ABC选项;求出函数在处的切线方程,数形结合可判断D选项.
【详解】
对于A选项,因为,则,
令可得或,
因为函数存在两个零点、,则,即.
当时,即当时,,则,
当时,即当时,,则,
则曲线为函数的图象以及射线,
且当时,,所以,曲线在轴上方,A对;
对于B选项,当时,即当时,,
则,
当时,即当时,,则
所以,曲线为函数的图象以及射线,
由图可知,曲线、无公共点,B错;
对于C选项,对于函数,,
此时函数在上单调递减,且,
结合图象可知,当时,直线与曲线没有公共点,C错;
对于D选项,对于函数,,则,
又因为,所以,曲线在处的切线方程为,即.
构造函数,则,

令,则,
当时,,此时函数单调递减,
当时,,此时函数单调递增,
所以,,所以,且不恒为零,
所以,函数在上为增函数,
当时,,即,
当时,,即,
所以,曲线、分布在直线的两侧,D对.
故选:AD.
三、填空题
17.(2022·江西·上高二中模拟预测(文))已知函数与的图像上存在关于轴对称的点,则实数的取值范围为_________
【答案】
【解析】
【分析】
先求出关于轴对称的函数,则将问题转化为在上有解,利用参数分离法进行转化,转化为直线与的图象有交点,然后利用导数求出的极值和单调区间可求得结果
【详解】
的定义域为,则关于轴对称的函数为

则条件等价为在上有解,
得,
令,则

当时,,
当时,,
当时,,
所以在上递减,在上递增,

因为当时,,
所以当时,直线与的图象有交点,即在上有解,
所以实数的取值范围为,
故答案为:
18.(2022·山东师范大学附中模拟预测)已知函数,若存在一条直线同时与两个函数图象相切,则实数a的取值范围__________.
【答案】
【解析】
【分析】
分与两种情况进行讨论,当时,转化为时,有解,构造函数,求出单调性及极值,最值情况,求出a的取值范围.
【详解】
数形结合可得:当,存在一条直线同时与两函数图象相切;
当,若存在一条直线同时与两函数图象相切,
则时,有解,
所以,
令,因为,
则当时,,为单调递增函数;
当时,,为单调递减函数;
所以在处取得极大值,也是最大值,
最大值为,且在上恒成立,
所以,即.
故答案为:
四、解答题
19.(2022·山东泰安·模拟预测)已知函数.
(1)若函数,讨论的单调性.
(2)若函数,证明:.
【答案】(1)当时,f(x)在上单调递增; 当时,f(x)在(0,1-a)上单调递减,在(1-a,+)上单调递增 ;
(2)证明见解析
【解析】
【分析】
(1)由题意可得,求导,分和讨论即可;
(2)令,利用导数确定的单调性并求出最小值,再令,利用导数确定的单调性并求出最小值即可得证.
(1)
解:因为,所以,
的定义域为,
.
当时,在上单调递增.
当时,若,则单调递减;
若,则单调递增.
综上所述:当时,f(x)在上单调递增; 当时,f(x)在(0,1-a)上单调递减,在(1-a,+)上单调递增 ;
(2)
证明:.
设,则.
当时,单调递减;当时,单调递增.
所以,
因此,当且仅当时,等号成立.
设,则.
当时,单调递减:当时,单调递增.
因此,
从而,则,
因为,所以中的等号不成立,
故.
20.(2022·山东聊城·三模)已知函数,.
(1)当b=1时,讨论函数的单调性;
(2)若函数在处的切线方程为,且不等式恒成立,求实数m的取值范围.
【答案】(1)答案见解析
(2)(-∞,1]
【解析】
【分析】
(1)先求定义域与导数,再分讨论与两种情况讨论即可求解;
(2)由题意先求出的值,f(x)≤g(x)即,
等价于对x>0恒成立,即对x>0恒成立.
令,所以,再用导数法求出的最小值即可
(1)
当b=1时,,定义域为(0,+∞),.
当时,,所以函数在(0,+∞)上单调递减.
当时,,
令,得;令,得,
所以函数在(0,a)上单调递增,在(a,+∞)上单调递减.
综上,当时,函数在(0,+∞)上单调递增,
当时,函数在(0,a)上单调递增,在(a,+∞)上单调递减.
(2)
因为函数在处的切线方程为y=(e-1)x-2,
所以,且,由于,
所以解得a=b=1,所以f(x)=lnx-x,
所以f(x)≤g(x)即,等价于对x>0恒成立,即对x>0恒成立.
令,所以,
.令,,
则恒成立,所以G(x)在(0,+∞)上单调递增.
由于G(1)=e>0,,所以使得,
即,(※)
所以当时,G(x)<0,当时,G(x)>0,
即F(x)在上单调递减,在上单调递增,
所以,
由(※)式可知,,,
令,,又x>0,所以,即s(x)在(0,+∞)上为增函数,所以,即,所以,
所以
所以,实数m的取值范围为(-∞,1].
21.(2022·湖北·模拟预测)已知
(1)若,讨论函数的单调性;
(2)有两个不同的零点,,若恒成立,求的范围.
【答案】(1)单调性见解析
(2)
【解析】
【分析】
(1)求导可得,再根据与的关系分类讨论即可;
(2)由题,,设根据零点关系可得,再代入化简可得恒成立,设,再求导分析单调性与最值即可
(1)
定义域为
ⅰ)即时,
,或
ⅱ)即时,,恒成立
ⅲ)即,
,或
综上:
时,,单调递减;、,单调递增
时,,单调递增
时,,单调递减;、,单调递增
(2)
,由题,
则,设


恒成立


∴恒成立
设,
∴恒成立
ⅰ)时,,
∴,
∴在上单调递增
∴恒成立,
∴合题
ⅱ),,
∴,
∴在上单调递增
时,,
∴在上单调递减
∴,,不满足恒成立
综上:
22.(2022·河南·平顶山市第一高级中学模拟预测(理))已知函数.
(1)若,讨论的单调性;
(2)若有两个零点,求实数a的取值范围.
【答案】(1)答案见解析;
(2).
【解析】
【分析】
(1)对函数进行求导,分为和两种情形,根据导数与0的关系可得单调性;
(2)函数有两个零点即有两个零点,根据(1)中的单调性结合零点存在定理即可得结果.
(1)
由题意知,,
的定义域为,.
若,则,所以在上单调递减;
若,令,解得.
当时,;当时,,
所以在上单调递减,在上单调递增.
(2)
因为,所以有两个零点,即有两个零点.
若,由(1)知,至多有一个零点.
若,由(1)知,当时,取得最小值,最小值为.
①当时,由于,故只有一个零点:
②当时,由于,即,故没有零点;
③当时,,即.
又,故在上有一个零点.
存在,则.
又,因此在上有一个零点.
综上,实数a的取值范围为.
23.(2022·辽宁·沈阳二中模拟预测)已知函数.
(1)讨论的单调性;
(2)当时,,求的取值范围;
(3)判断与的大小,并证明.
【答案】(1)答案见解析
(2)
(3),证明见解析
【解析】
【分析】
(1)求出函数的定义域,求得,对实数的取值进行分类讨论,分析导数的符号变化,由此可得出函数的增区间和减区间;
(2)当时,由可得或,利用参变量分离法可得出或对任意的恒成立,利用导数求出相应函数的最值,即可求得实数的取值范围;
(3)由(1)可知当时,,则,然后利用不等式的可加性可得出与的大小关系.
(1)
解:函数的定义域为,.
当时,对任意的,,此时函数的减区间为;
当时,方程在时的解为,
由可得,由可得,
此时,函数的减区间为,增区间为.
综上所述,当时,函数的减区间为;
当时,函数的减区间为,增区间为.
(2)
解:当时,由可得或.
若对任意的恒成立,则,
令,其中,则,
令,其中,则,
所以,函数在上为减函数,
因为,,
所以,存在,使得,
当时,,即,此时函数单调递增,
当时,,即,此时函数单调递减,
且当时,,因为,故当时,,
,解得;
若对任意的恒成立,则,
令,其中,则,
所以,函数在上单调递减,当时,,,解得.
综上所述,实数的取值范围是.
(3)
解:,理由如下:
由(1)知,当时,在上为增函数,
当时,,即,则,
因此,.
24.(2022·四川省泸县第二中学模拟预测(理))已知函数(e为自然对数的底数)有两个零点.
(1)若,求在处的切线方程;
(2)若的两个零点分别为,证明:.
【答案】(1)
(2)证明见解析
【解析】
【分析】
(1)根据导数的几何意义切线的斜率为,利用点斜式求切线方程;(2)分析可得对的零点即的零点,对分析可得,利用零点整理可得,构建函数利用导数证明.
(1)
当时,,,
又,所以切点坐标为,切线的斜率为.
所以切线方程为,即
(2)
由已知得有两个不等的正实跟.
所以方程有两个不等的正实根,即有两个不等的正实根,①
要证,只需证,即证,
令,,所以只需证,
由①得,,
所以,,消去a得,只需证,
设,令,则,
则,即证
构建则,
所以在上单调递增,则,
即当时,成立,
所以,即,即,
所以,证毕.
25.(2022·山东潍坊·模拟预测)已知函数.
(1)若,证明:当时,;当时,;
(2)若是的极大值点,求实数a.
【答案】(1)证明见解析
(2)
【解析】
【分析】
(1)代入,求导可得在上单调递增,再根据即可证明;
(2)求导后可得,再分析的两根满足的条件,结合极值点的性质分析求解即可
(1)
当时,,则,故在上单调递增,又,故当时,;当时,,即得证
(2)
若,由(1)知,当时,.
这与是的极大值点矛盾.
若,,
令,,对称轴,则的两根分别,
,可得或,显然
①若,则在上,单调递增,故不为极大值点;
②若,则在上,单调递减,故不为极大值点;
③若,则在上,单调递增,在上,单调递减,故为极大值点,此时,即,解得
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)
同课章节目录