余弦定理

文档属性

名称 余弦定理
格式 zip
文件大小 1.1MB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2013-05-20 13:08:06

文档简介

§1.1.2余弦定理的教学设计
教学内容
余弦定理是继正弦定理教学之后又一关于三角形的边角关系准确量化的一个重要定理。在初中,学生已经学习了相关边角关系的定性的结果,就是“在任意三角形中大边对大角,小边对小角” ,“如果已知两个三角形的两条对应边及其所夹的角相等,则这两个三角形全等” 。同时学生在初中阶段能解决直角三角形中一些边角之间的定量关系。在高中阶段,学生在已有知识的基础上,通过对任意三角形边角关系的探究,发现并掌握任意三角形中边角之间的定量关系,从而进一步运用它们解决一些与测量和几何计算有关的实际问题,使学生能更深地体会数学来源于生活,数学服务于生活。
教学目标
1、使学生掌握余弦定理及推论,并会初步运用余弦定理及推论解三角形。
2、通过对三角形边角关系的探究,能证明余弦定理,了解从三角方法、解析方法、向量方法和正弦定理等途径证明余弦定理。
3、在发现和证明余弦定理中,通过联想、类比、转化等思想方法比较证明余弦定理的不同方法,从而培养学生的发散思维。
4、能用余弦定理解决生活中的实际问题,可以培养学生学习数学的兴趣,使学生进一步认识到数学是有用的。
教学问题分析
1、通过前一节正弦定理的学习,学生已能解决这样两类解三角形的问题:
①已知三角形的任意两个角与边,求其他两边和另一角;
②已知三角形的任意两个角与其中一边的对角,计算另一边的对角,进而计算出其他的边和角。
而在已知三角形两边和它们的夹角,计算出另一边和另两个角的问题上,学生产生了认知冲突,这就迫切需要他们掌握三角形边角关系的另一种定量关系。所以,教学的重点应放在余弦定理的发现和证明上。
2、在以往的教学中存在学生认知比较单一,对余弦定理的证明方法思考也比较单一,而本节的教学难点就在于余弦定理的证明。如何启发、引导学生经过联想、类比、转化多角度地对余弦定理进行证明,从而突破这一难点。
3、学习了正弦定理和余弦定理,学生在解三角形中,如何适当地选择定理以达到更有效地解题,也是本节内容应该关注的问题,特别是求某一个角有时既可以用余弦定理,也可以用正弦定理时,教学中应注意让学生能理解两种方法的利弊之处,从而更有效地解题。
教学过程设计
1、教学基本流程:
①从一道生活中的实际问题的解决引入问题,如何用已知的两条边及其所夹的角来表示第三条边。
②余弦定理的证明:启发学生从不同的角度得到余弦定理的证明,或引导学生自己探索获得定理的证明。
③应用余弦定理解斜三角形。
2、教学情景:
①创设情境,提出问题
问题1:现有卷尺和测角仪两种工具,请你设计合理的方案,来测量学校生物岛边界上两点的最大距离(如图1所示,图中AB的长度)。
【设计意图】:来源于生活中的问题能激发学生的学习兴趣,提高学习积极性。让学生进一步体会到数学来源于生活,数学服务于生活。
师生活动:教师可以采取小组合作的形式,让学生设计方案尝试解决。
学生1—方案1:如果卷尺足够长的话,可以在岛对岸小路上取一点C(如图2),用卷尺量出AC和BC的长,用测角仪测出∠ACB的大小,那么△ABC的大小就可以确定了。感觉似乎在△ABC中已知AC、BC的长及夹角C的大小,可以求AB的长了。
其他学生有异议,若卷尺没有足够长呢?
学生2—方案2:在岛对岸可以取C、D 两点(如图3),用卷尺量出CD的长,再用测角仪测出图中∠1、∠2、∠3、∠4的大小。在△ACD中,已知∠ACD、∠ADC及CD,可以用正弦定理求AC,同理在△BCD中,用正弦定理求出BC。那么在△ABC中,已知AC、BC及∠ACB,似乎可以求AB的长了。
教师:两种方案归根到底都是已知三角形两边及夹角,求第三边的问题。能否也象正弦定理那样,寻找它们之间的某种定量关系?
【设计意图】给学生足够的空间和展示的平台,充分发挥学生的主体地位。
②求异探新,证明定理
问题2:在△ABC中,∠C = 90°,则用勾股定理就可以得到c2=a2+b2。
【设计意图】:引导学生从最简单入手,从而通过添加辅助线构造直角三角形。
师生活动:引导学生从特殊入手,用已有的初中所学的平面几何的有关知识来研究这一问题,从而寻找出这些量之间存在的某种定量关系。
学生3:在△ABC中,如图4,过C作CD⊥AB,垂足为D。
在Rt△ACD中,AD=bsin∠1,CD= bcos∠1;
在Rt△BCD中,BD=asin∠2, CD=acos∠2;

学生4:如图5,过A作AD⊥BC,垂足为D。
学生5:如图5,AD = bsinC,CD = bcosC,
∴c2 =(bsinC)2+(a- bcosC)2 = a2 +b2-2abcosC
类似地可以证明b2 = a2 +c2-2accosB,c2 = a2 +b2-2abcosC。
教师总结:以上的证明都是把斜三角形转化为两个直角三角形,化一般为特殊,再利用勾股定理来证明。并且进一步指出以上的证明还不严密,还要分∠C为钝角或直角时,同样都可以得出以上结论,这也正是本节课的重点—余弦定理。
【设计意图】:首先肯定学生成果,进一步的追问以上思路是否完整,可以使学生的思维更加严密。
师生活动:得出了余弦定理,教师还应引导学生联想、类比、转化,思考是否还有其他方法证明余弦定理。
教师:在前面学习正弦定理的证明过程种,我们用向量法比较简便地证明了正弦定理,那么在余弦定理的证明中,你会有什么想法?
【设计意图】:通过类比、联想,让学生的思维水平得到进一步锻炼和提高,体验到成功的乐趣。
学生6:如图6,
教师:以上的证明避免了讨论∠C是锐角、钝角或直角,思路简洁明了,过程简单,体现了向量工具的作用。又向量可以用坐标表示,AB长度又可以联系到平面内两点间的距离公式,你会有什么启发?
【设计意图】:由向量又联想到坐标,引导学生从直角坐标中用解析法证明定理。
学生7:如图7,建立直角坐标系,在△ABC中,AC = b,BC = a .
且A(b,0),B(acosC,asinC),C(0,0),
【设计意图】:通过以上平面几何知识、向量法、解析法引导学生体会证明余弦定理,更好地让学生主动投入到整个数学学习的过程中,培养学生发散思维能力,拓展学生思维空间的深度和广度。
③运用定理,解决问题
让学生观察余弦定理及推论的构成形式,思考用余弦定理及推论可以解决那些类型的三角形问题。
例1:①在△ABC中,已知a = 2,b = 3,∠C = 60°,求边c。
②在△ABC中,已知a = 7,b = 3,c = 5,求A、B、C。
【设计意图】:让学生理解余弦定理及推论解决两类最基本问题,既①已知三角形两边及夹角,求第三边;②已知三角形三边,求三内角。
④小结
本节课的主要内容是余弦定理的证明,从平面几何、向量、坐标等各个不同的方面进行探究,得出的余弦定理无论在什么形状的三角形中都成立,勾股定理也只不过是它的特例。所以它很“完美”,从式子上又可以看出其具“简捷、和谐、对称”的美,其变式即推论也很协调。
【设计意图】:在学生探究数学美,欣赏美的过程中,体会数学造化之神奇,学生可以兴趣盎然地掌握公式特征、结构及其他变式。
⑤作业
第1题:用正弦定理证明余弦定理。
【设计意图】:继续要求学生扩宽思路,用正弦定理把余弦定理中的边都转化成角,然后利用三角公式进行推导证明。而这种把边转化为角、或把角转化为边的思想正是我们解决三角形问题中的一种非常重要的思想方法。
第2题:在△ABC中,已知,求角A和C和边c。
【设计意图】:本题可以通过正弦定理和余弦定理来求解,让学生体会两种定理在解三角形问题上的利弊。运用正弦定理求角可能会漏解,运用余弦定理求角不会漏解,但是计算可能较繁琐。
2007.5
课件30张PPT。1.1.2 余弦定理
学习导航
预习目标
 
重点难点
重点:应用余弦定理解三角形.
难点:正、余弦定理的综合应用.
余弦定理
b2+c2-2bccosAa2+c2-2accosBa2+b2-2abcosC平方的和想一想
余弦定理和勾股定理有何关系?
提示:勾股定理是余弦定理的特例,对于
a2=b2+c2-2bc·cosA,若A=90°,则
a2=b2+c2.
做一做
题型一 已知两边及一角解三角形

【名师点评】 三角形中,已知两边及一角解三角形有两种情况.
(1)三角形中已知两边和一边的对角,有两种解法.法一利用余弦定理列出关于第三边的等量关系建立方程,运用解方程的方法求出第三边的长,这样可免去判断取舍的麻烦.法二直接运用正弦定理,先求角再求边.
(2)已知两边和两边夹角,直接应用余弦定理求出第三边,然后应用正弦定理求出另两角.
互动探究
题型二  已知三边(三边关系)解三角形
在△ABC中,已知a=7,b=3,c=5,求最大角和sinC.
【名师点评】 (1)已知三角形三边求角,可先用余弦定理求解,求解时应明确“大边对大角,大角对大边”.
(2)若已知三边的比例关系,常根据比例的性质引入k,从而转化为已知三边求角.
题型三 正、余弦定理的综合应用
(本题满分12分)在四边形ABCD中,已知AD⊥CD,AD=10,AB=14,∠BDA=60°,∠BCD=135°,求BC的长.
【解】连接BD,在△ABD中,设BD=x,
则BA2=BD2+AD2-2BD·AD·cos∠BDA
名师微博 这是解本题切入点,把四边形分成两个三角形.
即142=x2+102-2·10x·cos60°. 4分
【名师点评】 (1)正弦定理和余弦定理揭示的都是三角形的边角关系,要解三角形,必须已知三角形的一边的长,对于两个定理,根据实际情况可以选择运用,也可以综合运
用.
(2)涉及到有关四边形的计算问题,常利用连接对角线的方式,把四边形问题转化成三角形问题,最后借助正、余弦定理求解边角关系.
互动探究
2.在题设不变的条件下,求DC的长.
1.在△ABC中,sinA∶sinB∶sinC=
3∶2∶4,求cosC的值.
3.在△ABC中,已知(a+b+c)(b+c-a)=3bc,且sinA=2sinBcosC,试确定△ABC的形状.
解:∵(a+b+c)(b+c-a)=3bc,
∴a2=b2+c2-bc.
又∵a2=b2+c2-2bccosA,则2cosA=1.
∴∠A=60°.
又∵sinA=sin(B+C)=sinBcosC+cosBsinC=2sinBcosC,∴B=C.
又∵B+C=120°,
∴△ABC是等边三角形.
方法技巧
1.利用余弦定理解三角形
余弦定理指出了三角形的三条边与其中的一个角之间的关系,每一个等式中都包含四个不同的量,它们分别是三角形的三边和一个角,知道其中的三个量,就可以求得第四个量:(1)已知两边与它们的夹角,可以求得第三边;
(2)已知两边与其中一边的对角,可以代入余弦定理,看成关于另一边的二次方程,从而解得另一边;(3)已知三角形的三边可以求得三角形的三个角.
2.余弦定理与勾股定理
余弦定理可以看作是勾股定理的推广,勾股定理可以看作是余弦定理的特例.
(1)如果一个三角形两边的平方和大于第三边的平方,那么第三边所对的角是锐角.
(2)如果一个三角形两边的平方和小于第三边的平方,那么第三边所对的角是钝角.
(3)如果一个三角形两边的平方和等于第三边的平方,那么第三边所对的角是直角.
失误防范
1.已知三角形三边长,或已知三角形三边长的比,利用余弦定理的推论求角时,应注意余弦函数在区间(0,π)内是单调的.
2.余弦定理中边长是平方的关系,因此,利用余弦定理求边长,实质是解一元二次方程.解题时,应根据已知条件对方程的根进行取舍.