北京课改版数学七年级下册同步课时练习:6.5.3 多项式除以单项式(word版含答案)

文档属性

名称 北京课改版数学七年级下册同步课时练习:6.5.3 多项式除以单项式(word版含答案)
格式 docx
文件大小 48.6KB
资源类型 教案
版本资源 北京课改版
科目 数学
更新时间 2022-06-18 08:06:57

图片预览

文档简介

6.5 3.多项式除以单项式
多项式除以单项式的运算法则:多项式除以单项式,就是用这个单项式去除多项式的每一项,再把所得的商相加.
符号语言:(a+b+c)÷m=a÷m+b÷m+c÷m.
(其中a,b,c,m可以代表一个数,也可以代表一个单项式)
1.计算(-8x4y+12x3y2-4x2y3)÷4x2y的结果是 (  )
A.-2x2y+3xy-y2 B.-2x2+3xy-y2
C.-2x2+3xy-y D.-2x2+3xy2-y2
2.若单项式5xy与一个多项式的积为25x2y-5xy2,则这个多项式是 (  )
A.-5x+y B.5x-y
C.-5x+1 D.-5x-1
3.当a=时,代数式(16a3-16a2+4a)÷4a的值为 (  )
A. B.-4
C.- D.
4.(2019昌平区期末)计算:(6x3-3x2)÷3x=    .
5.计算:
(1)(6xy+5x)÷x;
(2)(5a2b-4ab)÷ab;
(3)(2020顺义区期末)(12x3-18x2+6x)÷(-6x);
(4)(4a3b-6a2b2+2ab)÷ab;
(5)(0.12a3b4x-0.4a2b3x+0.6ab3y)÷(-0.2ab3).
6.(2020门头沟区期末)先化简,再求值:
[(2x-y)2+x(y-4x)+8y2]÷3y,其中x=3,y=-1.
7.化简:
(1)[(2x+y)2-y(y+4x)-8x]÷2x;
(2)[(3x+2y)(3x-2y)-(x+2y)(3x-2y)]÷3x;
(3)(-3xy)2·x3-2x2·(3xy2)3·y÷(-3x2y)2.
8.化简:
(1)[2(x+y)3-4(x+y)2-x-y]÷(x+y);
(2)(-27xn+3+15xn-3)÷(-3xn-1).
9.小白在进行两个多项式的乘法运算时,不小心把乘错抄成乘,结果得到3x2-5xy,则第一个多项式是多少 正确的结果应该是多少
10.已知2x+y=4,求代数式[(x-y)2-(x+y)2+y(2x-y)]÷(-2y)的值.
11.已知3x3-12x2-17x+10除以(ax2+ax-2)的商为x+5b,试求a,b的值.
答案
6.5 3.多项式除以单项式
1.B
2.B 解: 这个多项式是(25x2y-5xy2)÷5xy=25x2y÷5xy-5xy2÷5xy=5x-y.故选B.
3.D 解: (16a3-16a2+4a)÷4a
=16a3÷4a-16a2÷4a+4a÷4a
=4a2-4a+1.
当a=时,原式=4×-4×+1=.
故选D.
4.2x2-x
5.(1)6y+5 (2)5a-4 
(3)-2x2+3x-1 (4)8a2-12ab+4
(5)-0.6a2bx+2ax-3y
6.解:原式=3y-x.当x=3,y=-1时,
原式=-6.
7.解:(1)[(2x+y)2-y(y+4x)-8x]÷2x
=(4x2+4xy+y2-y2-4xy-8x)÷2x
=(4x2-8x)÷2x=2x-4.
(2)[(3x+2y)(3x-2y)-(x+2y)(3x-2y)]÷3x
=(9x2-4y2-3x2+4y2-4xy)÷3x
=(6x2-4xy)÷3x
=2x-y.
(3)÷
(-3x2y)2
=÷9x4y2
=÷9x4y2
=x-3xy5.
8.解:(1)÷(x+y)
=[2(x+y)3-4(x+y)2-(x+y)]÷(x+y)
=2(x+y)2-4(x+y)-1
=2x2+4xy+2y2-4x-4y-1.
(2)(-27xn+3+15xn-3xn+2)÷(-3xn-1)
=9x4-5x+x3.
9.解:根据题意,得(3x2-5xy)÷=6x-10y,即第一个多项式是6x-10y,
则正确的结果是(6x-10y)·=3x2+3xy-5xy-5y2=3x2-2xy-5y2.
10.解:原式=[(x2-2xy+y2)-(x2+2xy+y2)+2xy-y2]÷(-2y)=(-2xy-y2) ÷(-2y)=x+y.
因为2x+y=4,所以x+y=2,所以原式=2.
11.解:由题意可知3x3-12x2-17x+10
=(ax2+ax-2)(x+5b)
=ax3+(a+5ab)x2+(-2+5ab)x-10b,
∴解得