【精品解析】高考生物历年全国卷真题汇编3——细胞的代谢

文档属性

名称 【精品解析】高考生物历年全国卷真题汇编3——细胞的代谢
格式 zip
文件大小 730.1KB
资源类型 试卷
版本资源
科目 生物学
更新时间 2022-06-20 17:47:16

文档简介

高考生物历年全国卷真题汇编3——细胞的代谢
一、单选题
1.(2022·全国乙卷)某同学将一株生长正常的小麦置于密闭容器中,在适宜且恒定的温度和光照条件下培养,发现容器内CO2含量初期逐渐降低,之后保持相对稳定。关于这一实验现象,下列解释合理的是(  )
A.初期光合速率逐渐升高,之后光合速率等于呼吸速率
B.初期光合速率和呼吸速率均降低,之后呼吸速率保持稳定
C.初期呼吸速率大于光合速率,之后呼吸速率等于光合速率
D.初期光合速率大于呼吸速率,之后光合速率等于呼吸速率
【答案】D
【知识点】影响光合作用的环境因素;影响细胞呼吸的因素
【解析】【解答】由题意可知,在适宜且恒定的温度和光照条件下培养,发现容器内CO2含量初期逐渐降低,之后保持相对稳定,由净光合速率=真正光合速率-呼吸作用速率,净光合作用用CO2的吸收量表示,初期CO2含量逐渐降低表明CO2大于0,光合速率大于呼吸速率,之后CO2保持相对稳定,则光合速率等于呼吸作用速率,故D正确,A、B、C错误。
故答案为:D。
【分析】1、影响光合作用的环境因素。(1)温度对光合作用的影响:在最适温度下酶的活性最强,光合作用强度最大,当温度低于最适温度,光合作用强度随温度的增加而加强,当温度高于最适温度,光合作用强度随温度的增加而减弱。(2)二氧化碳浓度对光合作用的影响:在一定范围内,光合作用强度随二氧化碳浓度的增加而增强。当二氧化碳浓度增加到一定的值,光合作用强度不再增强。(3)光照强度对光合作用的影响:在一定范围内,光合作用强度随光照强度的增加而增强。当光照强度增加到一定的值,光合作用强度不再增强。(4)光质:绿叶中的色素包括叶绿素a和叶绿素b,类胡萝卜素和叶黄素,其中叶绿素a能够吸收传递光能之外还能转化光能,叶绿素a主要吸收红光和蓝紫光,对绿光吸收最少。(5)水:水是光合作用产物和反应物,水的含量影响光合作用。(6)矿质元素:叶绿素的合成需要Mg2+,光合作用中其他参与物也需要矿质元素参与合成,所以矿质元素也会影响光合作用。
2、影响细胞呼吸的因素:(1)温度:温度主要影响酶的活性,在一定范围内,随着温度的升高,呼吸作用增强。(2)O2浓度:在O2浓度为零时,只进行无氧呼吸;O2浓度较低时,既进行有氧呼吸,有进行无氧呼吸;O2浓度将高时,只进行有氧呼吸。(3)CO2浓度:CO2是呼吸作用的产物,从化学平衡的角度分析,CO2浓度增加,呼吸速率下降,CO2浓度过大,会抑制呼吸作用的进行。(4)含水量在一定范围内,水的含量增加,呼吸作用增强。
3、净光合速率=真正光合速率-呼吸作用速率。真正光合作用的表示方法:CO2的固定量,O2的生成量,有机物的生成量;净光合作用的表示方法:CO2的吸收量、O2的量释放、有机物的积累量。
2.(2022·全国乙卷)某种酶P由RNA和蛋白质组成,可催化底物转化为相应的产物。为探究该酶不同组分催化反应所需的条件。某同学进行了下列5组实验(表中“+”表示有,“-”表示无)。
实验组 ① ② ③ ④ ⑤
底物 + + + + +
RNA组分 + + - + -
蛋白质组分 + - + - +
低浓度Mg2+ + + + - -
高浓度Mg2+ - - - + +
产物 + - - + -
根据实验结果可以得出的结论是(  )
A.酶P必须在高浓度Mg2+条件下才具有催化活性
B.蛋白质组分的催化活性随Mg2+浓度升高而升高
C.在高浓度Mg2+条件下RNA组分具有催化活性
D.在高浓度Mg2+条件下蛋白质组分具有催化活性
【答案】C
【知识点】探究影响酶活性的因素
【解析】【解答】A、由表可知,根据第①组实验结果可知,酶P必须在低浓度Mg2+条件下具有催化活性,A错误;
B、由表可知,根据第③组和第⑤组实验结果可知,蛋白质组分在高浓度和低浓度的Mg2+条件下都不具有活性,B错误;
C、由表可知,根据第②组和第④组实验结果可知,RNA组分在高浓度Mg2+条件下具有催化活性,C正确;
D、由表可知,根据第③组和第⑤组实验结果可知,蛋白质组分在高浓度和低浓度的Mg2+条件下都不具有活性,D错误。
故答案为:C。
【分析】酶
(1)酶是由活细胞产生的具有催化活性的有机物,其中大部分是蛋白质、少量是RNA。
(2)酶催化作用的实质:降低化学反应的活化能,在反应前后本身性质不会发生改变。
(3)酶的特性:①高效性:酶的催化效率大约是无机催化剂的107-1013倍。②专一性:每一种酶只能催化一种或者一类化学反应。③酶的作用条件较温和:在最适宜的温度和pH条件下,酶的活性最高;温度和pH偏高或偏低,酶的活性都会明显降低。
(4)酶的变性:过酸、过碱或温度过高,会使酶的空间结构遭到破坏,使酶永久失活;低温使酶活性明显下降,但在适宜温度下其活性可以恢复。
3.(2022·全国甲卷)线粒体是细胞进行有氧呼吸的主要场所。研究发现,经常运动的人肌细胞中线粒体数量通常比缺乏锻炼的人多。下列与线粒体有关的叙述,错误的是()
A.有氧呼吸时细胞质基质和线粒体中都能产生ATP
B.线粒体内膜上的酶可以参与[H]和氧反应形成水的过程
C.线粒体中的丙酮酸分解成CO2和[H]的过程需要O2的直接参与
D.线粒体中的DNA能够通过转录和翻译控制某些蛋白质的合成
【答案】C
【知识点】有氧呼吸的过程和意义;线粒体的结构和功能
【解析】【解答】A、有氧呼吸的三个阶段都会产生ATP,其中第一阶段发生在细胞质基质中,第二、三阶段发生在线粒体中,故有氧呼吸时细胞质基质和线粒体中都能产生ATP,A正确;
B、有氧呼吸第三阶段发生在线粒体的内膜上,在相应酶的参与下[H]和氧气结合,形成水同时释放大量能量,B正确;
C、有氧呼吸第二阶段发生在线粒体基质中,丙酮酸在相应酶的参与下分解为二氧化碳、大量的[H] (NADH),同时释放少量能量,该过程不需要O2的直接参与,C错误;
D、线粒体中含有DNA分子,属于半自主性的细胞器,能够通过转录和翻译控制某些蛋白质的合成,D正确。
故答案为:C。
【分析】1、线粒体形状是短棒状,圆球形,分布在动植物细胞中,内膜向内折叠形成嵴,嵴上有基粒,基质中含有与有氧呼吸有关的酶,是双层膜结构,含有少量的DNA和RNA,是半自主性细胞器。
2、有氧呼吸全过程:
第一阶段:在细胞质基质中,一分子葡萄糖形成两分子丙酮酸、少量的[H](NADH)和少量能量,这一阶段不需要氧的参与。
第二阶段:丙酮酸进入线粒体的基质中,分解为二氧化碳、大量的[H] (NADH)和少量能量。
第三阶段:在线粒体的内膜上,[H] (NADH)和氧气结合,形成水和大量能量,这一阶段需要氧的参与。
4.(2022·全国甲卷)钙在骨骼生长和肌肉收缩等过程中发挥重要作用。晒太阳有助于青少年骨骼生长,预防老年人骨质疏松。下列叙述错误的是()
A.细胞中有以无机离子形式存在的钙
B.人体内Ca2+可自由通过细胞膜的磷脂双分子层
C.适当补充维生素D可以促进肠道对钙的吸收
D.人体血液中钙离子浓度过低易出现抽搐现象
【答案】B
【知识点】无机盐的主要存在形式和作用;三种跨膜运输方式的比较;脂质的种类及其功能
【解析】【解答】A、钙在细胞中属于无机盐,细胞中大多数无机盐以离子的形式存在,A正确;
B、几乎所有离子通过细胞膜的方式都是主动运输,B错误;
C、维生素D能有效地促进人和动物肠道对钙和磷的吸收,C正确;
D、Ca2+可调节肌肉收缩和血液凝固,血钙过高会造成肌无力,血钙过低会引起抽搐,D正确。
故答案为:B。
【分析】1、细胞中的无机盐:(1)存在形式:细胞中大多数无机盐以离子的形式存在,叶绿素中的Mg2+、血红蛋白中的Fe2+等以化合物形式存在。(2)功能:a、细胞中某些复杂化合物的重要组成成分,如Fe2+是血红蛋白的主要成分;Mg2+是叶绿素的必要成分。b、维持细胞的生命活动,如Ca2+可调节肌肉收缩和血液凝固,血钙过高会造成肌无力,血钙过低会引起抽搐。c、维持酸碱平衡和渗透压平衡。
2、常见的脂质有脂肪、磷脂和固醇:(1)脂肪是最常见的脂质,是细胞内良好的储能物质,还是一种良好的绝热体,起保温作用,分布在内脏周围的脂肪还具有缓冲和减压的作用,可以保护内脏器官;(2)磷脂是构成细胞膜的重要成分,也是构成多种细胞器膜的重要成分;(3)固醇类物质包括胆固醇、性激素和维生素D,胆固醇是构成细胞膜的重要成分、在人体内还参与血液中脂质的运输,性激素能促进人和动物生殖器官的发育以及生殖细胞的形成,维生素D能有效地促进人和动物肠道对钙和磷的吸收。
3、物质跨膜运输的方式 (小分子物质)
运输方式 运输方向 是否需要载体 是否消耗能量 示例
自由扩散 高浓度到低浓度 否 否 小部分水、气体、脂类(因为细胞膜的主要成分是脂质,如甘油)
协助扩散 高浓度到低浓度 是 否 葡萄糖进入红细胞,大部分水分子
主动运输 低浓度到高浓度 是 是 几乎所有离子、氨基酸、葡萄糖等
大分子物质一般通过胞吞和胞吐的方式进行运输,它们均需要消耗能量,依赖于细胞膜的流动性。
5.(2022·全国甲卷)植物成熟叶肉细胞的细胞液浓度可以不同。现将a、b、c三种细胞液浓度不同的某种植物成熟叶肉细胞,分别放入三个装有相同浓度蔗糖溶液的试管中,当水分交换达到平衡时观察到:①细胞a未发生变化;②细胞b体积增大;③细胞c发生了质壁分离。若在水分交换期间细胞与蔗糖溶液没有溶质的交换,下列关于这一实验的叙述,不合理的是()
A.水分交换前,细胞b的细胞液浓度大于外界蔗糖溶液的浓度
B.水分交换前,细胞液浓度大小关系为细胞b>细胞a>细胞c
C.水分交换平衡时,细胞c的细胞液浓度大于细胞a的细胞液浓度
D.水分交换平衡时,细胞c的细胞液浓度等于外界蔗糖溶液的浓度
【答案】C
【知识点】质壁分离和复原
【解析】【解答】A、由题意可知,水分交换前三个试管中蔗糖浓度相同,水分交换达到平衡时细胞b体积增大,即平衡时细胞b发生了吸水过程,则水分交换前,细胞b的细胞液浓度大于外界蔗糖溶液的浓度,A合理;
B、由题意可知,水分交换前三个试管中蔗糖浓度相同,水分交换达到平衡时细胞a未发生变化,细胞b体积增大,细胞c发生了质壁分离,即水分交换过程中细胞a既未吸水也未失水,细胞b吸水,细胞c失水,则水分交换前,细胞a的细胞液浓度等于外界蔗糖溶液的浓度,细胞b的细胞液浓度大于外界蔗糖溶液的浓度,细胞c的细胞液浓度小于外界蔗糖溶液的浓度,故水分交换前,细胞液浓度大小关系为细胞b>细胞a>细胞c,B合理;
C、由题意可知,水分交换前三个试管中蔗糖浓度相同,水分交换达到平衡时细胞a未发生变化,细胞c发生了质壁分离,即水分交换过程中细胞a既未吸水也未失水,细胞c失水,即细胞a试管中蔗糖溶液浓度不变,细胞c试管中蔗糖溶液吸水浓度下降,水分交换达到平衡时细胞内外溶液浓度相同,即水分交换平衡时,细胞c的细胞液浓度小于细胞a的细胞液浓度,C不合理;
D、由题意可知,水分交换前三个试管中蔗糖浓度相同,水分交换达到平衡时细胞c发生了质壁分离,即水分交换过程中细胞c失水,则水分交换前细胞c的细胞液浓度小于外界蔗糖溶液的浓度,D合理。
故答案为:C。
【分析】水分子运输方式是自由扩散,其动力是浓度差,且总是由从低浓度溶液向高浓度溶液运输,渗透作用发生的原理是:(1)具有半透膜;(2)半透膜两侧的溶液具有浓度差。植物细胞有细胞壁,成熟的植物细胞有液泡,细胞膜和液泡膜以及之间的细胞质称作原生质层。有大液泡(成熟)的活的植物细胞,才能发生质壁分离;动物细胞、无大液泡的或死的植物细胞不能发生质壁分离。植物细胞的质壁分离:当细胞液的浓度小于外界溶液的浓度时,细胞就会通过渗透作用而失水,细胞液中的水分就透过原生质层进入到溶液中,使细胞壁和原生质层都出现一定程度的收缩。由于原生质层比细胞壁的收缩性大,当细胞不断失水时,原生质层就会与细胞壁分离。在质壁分离的过程中,表皮细胞液泡逐渐缩小,浓度升高,吸水能力增强。当细胞液的浓度大于外界溶液的浓度时,细胞就会通过渗透作用而吸水,发生质壁分离的细胞会发生质壁分离复原。
6.(2021·全国甲)某同学将酵母菌接种在马铃薯培养液中进行实验,不可能得到的结果是(  )
A.该菌在有氧条件下能够繁殖
B.该菌在无氧呼吸的过程中无丙酮酸产生
C.该菌在无氧条件下能够产生乙醇
D.该菌在有氧和无氧条件下都能产生CO2
【答案】B
【知识点】有氧呼吸的过程和意义;无氧呼吸的过程和意义;探究酵母菌的呼吸方式
【解析】【解答】 A、酵母菌可以进行两种呼吸方式,即有氧呼吸和无氧呼吸,有氧呼吸产生能量多,有氧条件下利于酵母菌的增殖,A不符合题意;
B、酵母菌无氧呼吸在细胞质基质中进行,无氧呼吸第一阶段产生丙酮酸、和[H],并释放少量的能量,B符合题意;
C、酵母菌的第二阶段丙酮酸被还原性氢还原成乙醇,同时生成二氧化碳,C不符合题意;
D、酵母菌有氧呼吸和无氧呼吸都会生成CO2,D不符合题意。
故答案选:B。
【分析】酵母菌是一种真核生物,优先进行有氧呼吸,可以产生大量能量供机体的生命活动。无氧时,酵母菌亦可以进行无氧呼吸。有氧呼吸的产物有大量二氧化碳和水,同时释放大量能量。无氧呼吸时,酵母菌可以产生酒精和较少的二氧化碳。
7.(2021·全国乙卷)选择合适的试剂有助于达到实验目的。下列关于生物学实验所用试剂的叙述,错误的是(  )
A.鉴别细胞的死活时,台盼蓝能将代谢旺盛的动物细胞染成蓝色
B.观察根尖细胞有丝分裂中期的染色体,可用龙胆紫溶液使其着色
C.观察RNA在细胞中分布的实验中,盐酸处理可改变细胞膜的通透性
D.观察植物细胞吸水和失水时,可用蔗糖溶液处理紫色洋葱鳞片叶外表皮
【答案】A
【知识点】DNA、RNA在细胞中的分布实验;细胞膜的功能;质壁分离和复原;观察细胞的有丝分裂
【解析】【解答】A、活细胞不会被台盼蓝染成蓝色,而死细胞会被染成淡蓝色,A项中代谢旺盛的动物细胞属于活细胞,台盼蓝不能进入活细胞内,因此不会被染成蓝色,A错误;
B、龙胆紫能够使染色体着色,B正确;
C、盐酸能够改变细胞膜的通透性,加速染色剂进入细胞,C正确;
D、用0.3g/mL的蔗糖溶液处理紫色洋葱情片叶外表皮细胞后,显微镜下可观察到该细胞发生质壁分离现象,D正确:
故答案为:A.
【分析】1、活细胞具有选择透过性,一般情况下,不让染色剂计入细胞;健那绿是活细胞染色剂。
2、染色体溶液被碱性染料染成深色,例如龙胆紫。
3、观察核酸分布,盐酸作用:①将DNA和蛋白质分离;②改变细胞膜通透性。
4、质壁分离和复原的原理:
(1)质壁分离的原理:当细胞液的浓度小于外界溶液的浓度时,细胞就会通过渗透作用而失水,细胞液中的水分就透过原生质层进入到溶液中,使细胞壁和原生质层都出现一定程度的收缩。由于原生质层比细胞壁的收缩性大,当细胞不断失水时,原生质层就会与细胞壁分离。
(2)质壁分离复原的原理:当细胞液的浓度大于外界溶液的浓度时,细胞就会通过渗透作用而吸水,外界溶液中的水分就通过原生质层进入到细胞液中,整个原生质层就会慢慢地恢复成原来的状态,紧贴细胞壁,使植物细胞逐渐发生质壁分离复原。
用适宜浓度的蔗糖处理洋葱表皮细胞,可以观察植物细胞的质壁分离和复原。
8.(2020·全国Ⅱ)取某植物的成熟叶片,用打孔器获取叶圆片,等分成两份,分别放入浓度(单位为g/mL)相同的甲糖溶液和乙糖溶液中,得到甲、乙两个实验组(甲糖的相对分子质量约为乙糖的2倍)。水分交换达到平衡时,检测甲、乙两组的溶液浓度,发现甲组中甲糖溶液浓度升高。在此期间叶细胞和溶液之间没有溶质交换。据此判断下列说法错误的是(  )
A.甲组叶细胞吸收了甲糖溶液中的水使甲糖溶液浓度升高
B.若测得乙糖溶液浓度不变,则乙组叶细胞的净吸水量为零
C.若测得乙糖溶液浓度降低,则乙组叶肉细胞可能发生了质壁分离
D.若测得乙糖溶液浓度升高,则叶细胞的净吸水量乙组大于甲组
【答案】D
【知识点】质壁分离和复原
【解析】【解答】A、由题干信息可知,叶细胞与溶液之间无溶质交换,而甲组的甲糖溶液浓度升高,则可能是由于叶细胞的细胞液浓度大于甲糖溶液物质的量浓度,引起了细胞吸水,A正确;
B、若乙糖溶液浓度不变,说明乙糖溶液物质的量浓度与叶细胞的细胞液浓度相等,叶细胞净吸水量为零,B正确;
C、若乙糖溶液浓度降低,说明细胞失水,叶肉细胞可能发生了质壁分离,C正确;
D、若乙糖溶液浓度升高,说明乙糖溶液物质的量浓度低于叶细胞的细胞液浓度,细胞吸水,而乙糖溶液的物质的量浓度约为甲糖溶液的2倍,因此叶细胞的净吸水量应是乙组小于甲组,D错误。
故答案为:D。
【分析】渗透作用需要满足的条件是:①半透膜;②膜两侧具有浓度差。浓度差是指单位体积溶质分子数量的差异,即物质的量浓度差异,由题干信息可知,甲糖和乙糖的质量分数相同,但甲糖的相对分子质量约为乙糖的2倍,因此乙糖溶液的物质的量浓度约为甲糖溶液的2倍。
9.(2020·全国Ⅰ)为达到实验目的,需要选用合适的实验材料进行实验。下列实验目的与实验材料的对应,不合理的是(  )
  实验材料 实验目的
A 大蒜根尖分生区细胞 观察细胞的质壁分离与复原
B 蝗虫的精巢细胞 观察细胞的减数分裂
C 哺乳动物的红细胞 观察细胞的吸水和失水
D 人口腔上皮细胞 观察DNA,RNA在细胞中的分布
A.A B.B C.C D.D
【答案】A
【知识点】DNA、RNA在细胞中的分布实验;质壁分离和复原;观察细胞的减数分裂实验;渗透作用
【解析】【解答】A、根尖分生区无成熟的大液泡,不能用于观察细胞的质壁分离与复原,A符合题意;
B、蝗虫的精巢细胞可以发生减数分裂,可以用于观察细胞的减数分裂,B不符合题意;
C、哺乳动物的红细胞吸水会膨胀,失水会皱缩,故可以用于观察细胞的吸水和失水,C不符合题意;
D、人的口腔上皮细胞无色,且含有DNA和RNA,可以用于观察DNA,RNA在细胞中的分布,D不符合题意。
故答案为:A。
【分析】(1)大蒜根尖分生区细胞是未成熟植物细胞,无中央大液泡,也无颜色,质壁分离不明显,故不合适作为观察质壁分离与复原的实验材料。
(2)渗透作用是指水分子(或其他溶剂分子)通过半透膜,从低浓度向高浓度扩散的过程。其条件有:①是具有半透膜;②是半透膜两侧具有浓度差。
10.(2020·全国Ⅰ)种子贮藏中需要控制呼吸作用以减少有机物的消耗。若作物种子呼吸作用所利用的物质是淀粉分解产生的葡萄糖,下列关于种子呼吸作用的叙述,错误的是(  )
A.若产生的CO2与乙醇的分子数相等,则细胞只进行无氧呼吸
B.若细胞只进行有氧呼吸,则吸收O2的分子数与释放CO2的相等
C.若细胞只进行无氧呼吸且产物是乳酸,则无O2吸收也无CO2释放
D.若细胞同时进行有氧和无氧呼吸,则吸收O2的分子数比释放CO2的多
【答案】D
【知识点】有氧呼吸的过程和意义;无氧呼吸的过程和意义
【解析】【解答】A、若二氧化碳的生成量=酒精的生成量,则说明不消耗氧气,故只有无氧呼吸,A正确;
B、若只进行有氧呼吸,则消耗的氧气量=生成的二氧化碳量,B正确;
C、若只进行无氧呼吸,说明不消耗氧气,产乳酸的无氧呼吸不会产生二氧化碳,C正确;
D、若同时进行有氧呼吸和无氧呼吸,若无氧呼吸产酒精,则消耗的氧气量小于二氧化碳的生成量,若无氧呼吸产乳酸,则消耗的氧气量=二氧化碳的生成量,D错误。
故答案为:D。
【分析】有氧呼吸总反应方程式:C6H12O6+6H2O+6O2 6CO2+12H2O+能量
无氧呼吸反应方程式:①C6H12O62 C2H5OH+2CO2+能量;②C6H12O62C3H6O3+能量
11.(2019·全国Ⅲ卷)下列关于人体组织液的叙述,错误的是(  )
A.血浆中的葡萄糖可以通过组织液进入骨骼肌细胞
B.肝细胞呼吸代谢产生的CO2可以进入组织液中
C.组织液中的O2可以通过自由扩散进入组织细胞中
D.运动时,丙酮酸转化成乳酸的过程发生在组织液中
【答案】D
【知识点】三种跨膜运输方式的比较;有氧呼吸的过程和意义;无氧呼吸的过程和意义;内环境的组成
【解析】【解答】A、血浆中的葡萄糖先进入组织液然后再进入骨骼肌细胞,不符合题意;
B、肝细胞呼吸代谢产生的CO2从细胞中出来然后进入组织液中,不符合题意;
C、O2可以通过自由扩散的方式进入组织细胞中参与有氧呼吸,不符合题意;
D、运动时,丙酮酸转化成乳酸的过程是无氧呼吸的第二阶段,发生在细胞质基质中,符合题意
故答案为:D
【分析】主要考查内环境成分的转换。血浆、组织液和淋巴都是细胞外液,共同构成机体内细胞生活的直接环境。血细胞所生活的液体环境是血浆,毛细血管壁的上皮细胞的内环境是指血浆和组织液。因细胞外液深居于身体内部,所以名为内环境,体的绝大部分细胞是不与血浆直接接触的,因此,这些细胞与毛细血管中的血浆不直接进行物质交换。但是,人体的绝大部分细胞浸浴在组织液中,细胞内液与组织液之间只隔着一层细胞膜,于是水分和一切可以通过细胞膜的物质,就在这两部分体液之间进行交换;细胞所需要的氧气等营养物质进入细胞;细胞产生的二氧化碳等废物进入组织液。由于组织液不断地形成,以及组织液不断地回流入血液,因此为细胞不断地提供所需要的营养物质并运走代谢废物。细胞与内环境之间就是这样进行物质交换的。血液在血管里不停地循环流动,一方面与人体各个部分的组织液交换;另一方面与肺、肾脏、和胃、肠等器官有着密切的关系。这样才能使人体细胞通过内环境不断地与外界进行物质交换。所以,内环境是细胞与外界环境进行物质交换的媒介。
12.(2019·全国Ⅲ卷)若将n粒玉米种子置于黑暗中使其萌发,得到n株黄化苗。那么,与萌发前的这n粒干种子相比,这些黄化苗的有机物总量和呼吸强度表现为(  )
A.有机物总量减少,呼吸强度增强
B.有机物总量增加,呼吸强度增强
C.有机物总量减少,呼吸强度减弱
D.有机物总量增加,呼吸强度减弱
【答案】A
【知识点】有氧呼吸的过程和意义
【解析】【解答】黑暗中的种子萌发后无法合成叶绿素,不能进行光合作用制造有机物,但是种子萌发需要细胞呼吸消耗有机物提供能量,因此有机物总量会减少。萌发前的干种子自由水少,代谢缓慢,萌发时吸收了水使自由水增多,代谢增强,尤其是需要细胞呼吸提供能量,因此呼吸强度增强。
故答案为:A
【分析】主要考查种子萌发时的细胞呼吸与光合作用。黑暗中萌发的种子因不能进行光合作用,而呼吸作用又消耗有机物而干重逐渐下降;种子在萌发过程中所进行的一系列复杂的生命活动,只有种子不断地进行呼吸,得到能量,才能保证生命活动的正常进行。休眠的种子含水量一般只占干重的10%左右。种子必须吸收足够的水分才能启动一系列酶的活动,开始萌发。
13.(2019·全国Ⅱ卷) 某种H﹢-ATPase是一种位于膜上的载体蛋白,具有ATP水解酶活性,能够利用水解ATP释放的能量逆浓度梯度跨膜转运H﹢。①将某植物气孔的保卫细胞悬浮在一定pH的溶液中(假设细胞内的pH高于细胞外),置于暗中一段时间后,溶液的pH不变。②再将含有保卫细胞的该溶液分成两组,一组照射蓝光后溶液的pH明显降低;另一组先在溶液中加入H﹢-ATPase的抑制剂(抑制ATP水解),再用蓝光照射,溶液的pH不变。根据上述实验结果,下列推测不合理的是(  )
A.H﹢-ATPase位于保卫细胞质膜上,蓝光能够引起细胞内的H﹢转运到细胞外
B.蓝光通过保卫细胞质膜上的H﹢-ATPase发挥作用导致H﹢逆浓度梯度跨膜运输
C.H﹢-ATPase逆浓度梯度跨膜转运H﹢所需的能量可由蓝光直接提供
D.溶液中的H﹢不能通过自由扩散的方式透过细胞质膜进入保卫细胞
【答案】C
【知识点】细胞膜的成分;三种跨膜运输方式的比较
【解析】【解答】A、根据题意可知H+-ATPase是一种位于膜上的载体蛋白,具有ATP水解酶活性,能够利用ATP释放的能量逆浓度梯度跨膜转运氢离子,又知将某植物气孔保卫细胞悬浮在一定pH的溶液中,细胞内的pH高于细胞外,即细胞内的H+浓度小于溶液,至于暗中一段时间后,溶液的pH不变,照射蓝光后,溶液的pH降低,即溶液的H+浓度增大,可见保卫细胞内的H+被转运到了溶液中,H+是从低浓度一侧转运到了高浓度一侧,可见保卫细胞膜上有H+-ATPase,A不符合题意;
B、蓝光照射保卫细胞后,保卫细胞进行光合作用产生了有机物,有机物通过细胞呼吸氧化分解产生ATP,保卫细胞质膜上的H+-ATPase催化ATP水解并利用ATP水解释放的能量,将细胞内的H+逆浓度梯度转运到溶液中,B不符合题意;
C、H+-ATPase逆浓度梯度跨膜转运H+所需的能量是由保卫细胞内有机物氧化分解产生的ATP直接提供,蓝光的作用是使保卫细胞进行光合作用,产生有机物,C符合题意;
D、通过题意可知H+的转运需要载体和能量,且从高浓度向低浓度运输,属于主动运输,所以溶液中的H+不能通过自由扩散的方式透过细胞质膜进入保卫细胞,D不符合题意。
故答案为:C
【分析】(1)pH与氢离子的浓度有关,氢离子浓度越大,pH越小。
(2)能量代谢过程和ATP的利用:
14.(2019·全国Ⅱ卷) 马铃薯块茎储藏不当会出现酸味,这种现象与马铃薯块茎细胞的无氧呼吸有关。下列叙述正确的是(  )
A.马铃薯块茎细胞无氧呼吸的产物是乳酸和葡萄糖
B.马铃薯块茎细胞无氧呼吸产生的乳酸是由丙酮酸转化而来
C.马铃薯块茎细胞无氧呼吸产生丙酮酸的过程不能生成ATP
D.马铃薯块茎储藏库中氧气浓度的升高会增加酸味的产生
【答案】B
【知识点】无氧呼吸的过程和意义
【解析】【解答】A、马铃薯块茎细胞无氧呼吸的产物是乳酸,没有葡萄糖,A不符合题意;
B、马铃薯块茎细胞无氧呼吸产生的乳酸是由丙酮酸转化而来,B符合题意;
C、马铃薯块茎细胞无氧呼吸产生丙酮酸的过程能产生少量ATP,C不符合题意;
D、马铃薯块茎储藏库中氧气浓度的升高会抑制无氧呼吸,减少酸味的产生,D不符合题意。
故答案为:B
【分析】(1)动物细胞、玉米胚、马铃薯块茎、甜菜块茎、乳酸菌等,进行有氧呼吸时,通过酶的催化作用,将葡萄糖等有机物氧化分解为乳酸,同时释放少量能量。
(2)马铃薯块茎细胞无氧呼吸的过程:
第一阶段:
第二阶段:
15.(2019·全国Ⅰ卷)将一株质量为20 g的黄瓜幼苗栽种在光照等适宜的环境中,一段时间后植株达到40 g,其增加的质量来自于(  )
A.水、矿质元素和空气 B.光、矿质元素和水
C.水、矿质元素和土壤 D.光、矿质元素和空气
【答案】A
【知识点】光合作用的过程和意义;组成细胞的元素和化合物
【解析】【解答】绿色植物生长的实质是光合作用大于呼吸作用,有机物积累的结果,根据光合作用与呼吸作用过程中的物质转变过程可知,植物增加的质量主要来自光合作用吸收的水分和空气中的二氧化碳。植物体内60%以上是水。水是构成植物体的最主要物质。矿质元素是植物生长的必需元素,很多化合物都含有一定量的矿质元素,缺少这类元素植物将不能健康生长。光作为能量来源通过光合作用转化为有机物中的化学能,而植物的生长是物质积累的结果。
故答案为:A
【分析】主要考查植物生长的原因。光合作用是指绿色植物通过叶绿体利用光能将二氧化碳和水转变为储存能量的有机物,同时释放氧气的过程,绿色植物生长的实质是光合作用大于呼吸作用,有机物积累的结果;细胞中含量最多的化合物是水,植物重量增加与吸收大量的水有关;矿质元素是指除碳、氢、氧以外,主要由根系从土壤中吸收的元素。矿质元素是植物生长的必需元素,缺少这类元素植物将不能健康生长,矿质元素可以促进营养吸收。
16.(2018·全国Ⅲ卷)下列关于生物体中细胞呼吸的叙述,错误的是(  )。
A.植物在黑暗中可进行有氧呼吸也可进行无氧呼吸
B.食物链上传递的能量有一部分通过细胞呼吸散失
C.有氧呼吸和无氧呼吸的产物分别是葡萄糖和乳酸
D.植物光合作用和呼吸作用过程中都可以合成ATP
【答案】C
【知识点】光合作用的过程和意义;有氧呼吸的过程和意义;无氧呼吸的过程和意义;生态系统的能量流动
【解析】【解答】A、植物细胞的呼吸方式与光照无关,取决于酶的种类,A不符合题意;
B、流经食物链上每一营养级的能量都有一部分通过呼吸作用以热能的方式散失,B不符合题意;
C、有氧呼吸的反应物是葡萄糖,不同生物无氧呼吸的产物是有区别的,比如人无氧呼吸的产物是乳酸,酵母菌无氧呼吸的产物是酒精和二氧化碳,C符合题意;
D、植物光合作用暗反应阶段三碳化合物的还原需要光反应阶段合成的ATP,有氧呼吸的每一个阶段以及无氧呼吸的第一个阶段都可以合成ATP,D不符合题意。
故答案为:C。
【分析】本题考查了细胞代谢的相关知识。
( 1 )某营养级同化的能量的来源去路:
( 2 )细胞内产生与消耗ATP的生理过程
转化场所 常见的生理过程
细胞膜 消耗ATP:主动运输、胞吞、胞吐
细胞质基质 产生ATP:细胞呼吸第一阶段
叶绿体 产生ATP:光反应 消耗ATP:暗反应和自身DNA复制、转录、翻译等
线粒体 产生ATP:有氧呼吸第二、三阶段 消耗ATP:自身DNA复制、转录、翻译等
核糖体 消耗ATP:蛋白质的合成
细胞核 消耗ATP:DNA复制、转录等
17.(2018·全国Ⅲ卷)下列研究工作中由我国科学家完成的是(  )。
A.以豌豆为材料发现性状遗传规律的实验
B.用小球藻发现光合作用暗反应途径的实验
C.证明DNA是遗传物质的肺炎双球菌转化实验
D.首例具有生物活性的结晶牛胰岛素的人工合成
【答案】D
【知识点】光合作用的发现史;肺炎链球菌转化实验;孟德尔遗传实验-分离定律
【解析】【解答】A、以豌豆为材料发现性状遗传规律的实验是奥地利科学家孟德尔,A不符合题意;
B、用小球藻发现光合作用暗反应途径的实验是美国科学家卡尔文,B不符合题意;
C、证明DNA是遗传物质的肺炎双球菌转化实验是美国的科学家艾弗里,C不符合题意;
D、首例具有生物活性的结晶牛胰岛素的人工合成是由中国的科学家完成的,D符合题意。
故答案为为:D。
【分析】本题考查对生物学做出过杰出贡献的科学家。
18.(2018·全国Ⅱ卷)下列关于物质跨膜运输的叙述,正确的是(  )
A.巨噬细胞摄入病原体的过程属于协助扩散
B.固醇类激素进入靶细胞的过程属于主动运输
C.神经细胞受到刺激时产生的Na+内流属于被动运输
D.护肤品中的甘油进入皮肤细胞的过程属于主动运输
【答案】C
【知识点】三种跨膜运输方式的比较
【解析】【解答】A、吞噬细胞摄入病原体的方式是胞吞,A不符合题意;
B、固醇类激素进入靶细胞的过程属于自由扩散(被动运输),B不符合题意;
C、神经细胞受到刺激时产生的Na+内流属于从浓度高到浓度低的协助扩散(被动运输),C符合题意;
D、护肤品中的甘油进入皮肤细胞的过程属于自由扩散(被动运输),D不符合题意。
故答案啊为:C
【分析】(1)被动运输:物质进出细胞,顺浓度梯度的扩散,称为被动运输。
①自由扩散:物质通过简单的扩散作用进出细胞
②协助扩散:进出细胞的物质借助载体蛋白的扩散
( 2 )主动运输:从低浓度一侧运输到高浓度一侧,需要载体蛋白的协助,同时还需要消耗细胞内化学反应所释放的能量,这种方式叫做主动运输。
自由扩散 协助扩散 主动运输
运输方向 顺相对含量梯度 顺相对含量梯度 能逆相对含量梯度
能量 不消耗 不消耗 消耗
载体 不需要 需要 需要
影响因素 浓度差 浓度差、载体 载体、能量
举例 水、O2等气体、甘油等脂溶性物质 血浆中葡萄糖进入红细胞 离子进入细胞 氨基酸、葡萄糖被上皮细胞吸收
19.(2018·全国Ⅰ卷)下列有关植物根系吸收利用营养元素的叙述,错误的是(  )
A.在酸性土壤中,小麦可吸收利用土壤中的N2和NO-3
B.农田适时松土有利于农作物根细胞对矿质元素的吸收
C.土壤微生物降解植物秸秆产生的无机离子可被根系吸收
D.给玉米施肥过多时,会因根系水分外流引起“烧苗”现象
【答案】A
【知识点】三种跨膜运输方式的比较
【解析】【解答】A、小麦的根可以从土壤中获得离子状态的NO3-,不能吸收利用N2,A符合题意;
B、根细胞吸收矿质元素的方式为主动运输,需要呼吸作用提供能量,松土有利于有氧呼吸的进行,B不符合题意;
C、根系只能吸收利用土壤微生物分解的无机盐离子,C不符合题意;
D、玉米施肥过多时,土壤溶液的浓度远远大于细胞内溶液的浓度,会导致细胞失水,引起“烧苗”现象,D不符合题意。
故答案为:A。
【分析】本题考查小麦的根系对无机盐的吸收形式,只能吸收离子,以及离子吸收时的跨膜运输方式为主动运输,需要细胞呼吸提供能量。
小分子物质跨膜运输的方式和特点
名称 运输方向 载体 能量 实  例
自由扩散 高浓度→低浓度 不需 不需 水,CO2,O2,甘油,苯、酒精等
协助扩散 高浓度→低浓度 需要 不需 红细胞吸收葡萄糖
主动运输 低浓度→高浓度 需要 需要 小肠绒毛上皮细胞吸收氨基酸,葡萄糖,K+,Na+等
大分子物质进出细胞的方式:胞吞、胞吐
二、综合题
20.(2022·全国乙卷)农业生产中,农作物生长所需的氮素可以 的形式由根系从土壤中吸收。一定时间内作物甲和作物乙的根细胞吸收 的速率与O2浓度的关系如图所示。回答下列问题。
(1)由图可判断 进入根细胞的运输方式是主动运输,判断的依据是   。
(2)O2浓度大于a时作物乙吸收 速率不再增加,推测其原因是   。
(3)作物甲和作物乙各自在 最大吸收速率时,作物甲跟细胞的呼吸速率大于作物乙,判断依据是   。
(4)据图可知,在农业生产中,为促进农作物对 的吸收利用,可以采取的措施是   。(答出1点即可)
【答案】(1)主动运输需要呼吸作用提供能量,O2浓度小于a点,根细胞对 的吸收速率与O2浓度呈正相关
(2)主动运输需要载体蛋白,此时载体蛋白数量达到饱和
(3)甲的 最大吸收速率大于乙,甲需要能量多,消耗O2多
(4)定期松土
【知识点】主动运输
【解析】【解答】(1)由图可知,无论是作物甲还是作物乙,在一定范围内,NO3-的吸收速率与氧浓度呈正相关,故NO3-的吸收需要有氧呼吸提供能量,属于主动运输。
故答案为:主动运输需要呼吸作用提供能量,O2浓度小于a点,根细胞对NO3-的吸收速率与O2浓度呈正相关。
(2)主动运输过程需要氧气和载体蛋白,即根细胞对NO3-的吸收速率除了与氧浓度有关之外,还受到载体蛋白数量的制约。O2浓度大于a时作物乙吸收NO3-速率不再增加可能是载体蛋白数量达到饱和。
故答案为:主动运输需要载体蛋白,此时载体蛋白数量达到饱和。
(3)由图可知,在作物甲和作物乙各自在NO3- 最大吸收速率时,作物甲消耗的O2多,则此时作物甲的呼吸速率大于作物乙。
故答案为:甲的NO3- 最大吸收速率大于乙,甲需要能量多,消耗O2多。
(4)根细胞通过主动运输的方式吸收NO3-,需要消耗能量和载体蛋白的协助,在农业生产中可以采取定期松土的方法增加土壤氧含量,从而促进农作物对NO3-的吸收利用。
故答案为:定期松土。
【分析】物质跨膜运输的方式 (小分子物质)
运输方式 运输方向 是否需要载体 是否消耗能量 示例
自由扩散 高浓度到低浓度 否 否 小部分水、气体、脂类(因为细胞膜的主要成分是脂质,如甘油)
协助扩散 高浓度到低浓度 是 否 葡萄糖进入红细胞,大部分水分子
主动运输 低浓度到高浓度 是 是 几乎所有离子、氨基酸、葡萄糖等
大分子物质一般通过胞吞和胞吐的方式进行运输,它们均需要消耗能量,依赖于细胞膜的流动性。
21.(2022·全国甲卷)根据光合作用中CO2的固定方式不同,可将植物分为C3植物和C4植物等类型。C4植物的CO2补偿点比C3植物的低。CO2补偿点通常是指环境CO2浓度降低导致光合速率与呼吸速率相等时的环境CO2浓度。回答下列问题。
(1)不同植物(如C3植物和C4植物)光合作用光反应阶段的产物是相同的,光反应阶段的产物是   (答出3点即可)。
(2)正常条件下,植物叶片的光合产物不会全部运输到其他部位,原因是   (答出1点即可)。
(3)干旱会导致气孔开度减小,研究发现在同等程度干旱条件下,C4植物比C3植物生长得好。从两种植物CO2补偿点的角度分析,可能的原因是   。
【答案】(1)O2、[H]和ATP
(2)自身呼吸消耗或建造植物体结构
(3)C4植物的CO2补偿点低于C3植物,C4植物能够利用较低浓度的CO2
【知识点】光合作用的过程和意义;影响光合作用的环境因素
【解析】【解答】(1)光合作用的光反应阶段发生在叶绿体的类囊体薄膜上,是水光解产生氧气和NADPH,同时将光能转变成化学能储存在ATP和NADPH([H])中,不同植物的光合作用中CO2的固定方式不同,但光反应阶段的产物都是O2、[H]和ATP。
故答案为: O2、[H]和ATP。
(2)由于植物叶片本身的光合作用以及自身植物结构的构造也需要消耗有机物,故植物叶片的光合产物不会全部运输到其他部位。
故答案为:自身呼吸消耗或建造植物体结构。
(3)由题意可知,CO2补偿点通常是指环境CO2浓度降低导致光合速率与呼吸速率相等时的环境CO2浓度,植物的CO2固定途径有C4和C3途径,其主要的CO2固定酶是PEPC、Rubisco;而C3植物只有C3途径,其主要的CO2固定酶是Rubisco。C4植物的CO2补偿点比C3植物的低,所以C4植物能够利用较低浓度的CO2,所以在干旱导致气孔开度减小的情况下,C4植物比C3植物生长得好。
故答案为:C4植物的CO2补偿点低于C3植物,C4植物能够利用较低浓度的CO2 。
【分析】光合作用的反应阶段:
①光反应阶段:场所是类囊体薄膜
a.水的光解:2H2O4[H]+O2
b.ATP的生成:ADP+PiATP
②暗反应阶段:场所是叶绿体基质
a.CO2的固定:CO2+C5 2C3
b.C3的还原:2C3 (CH2O)+C5+H2O
光反应与暗反应的联系:光反应为暗反应提供[H]和ATP,暗反应为光反应提供ADP、Pi和NADP+。
22.(2021·全国甲)植物的根细胞可以通过不同方式吸收外界溶液中的K+。回答下列问题:
(1)细胞外的K+可以跨膜进入植物的根细胞。细胞膜和核膜等共同构成了细胞的生物膜系统,生物膜的结构特点是   。
(2)细胞外的K+能够通过离子通道进入植物的根细胞。离子通道是由   复合物构成的,其运输的特点是   (答出1点即可)。
(3)细胞外的K+可以通过载体蛋白逆浓度梯度进入植物的根细胞。在有呼吸抑制剂的条件下,根细胞对K+的吸收速率降低,原因是   。
【答案】(1)具有一定的流动性
(2)蛋白质;顺浓度或选择性
(3)细胞逆浓度梯度吸收K+是主动运输过程,需要能量,呼吸抑制剂会影响细胞呼吸供能,故使细胞主动运输速率降低
【知识点】三种跨膜运输方式的比较
【解析】【解答】 (1)高中阶段常考的细胞膜的结构特点有:①细胞膜具有一定流动性;②细胞膜具有一定的选择透过性。 细胞外的K+可以跨膜进入植物的根细胞 , 体现出生物膜的结构特点是 细胞膜具有一定流动性。
(2)离子通道的本质是蛋白质,是由蛋白质等构成的复合物。细胞离子通道进行运输离子时,具有专一性,离子通道运输的特点是顺浓度梯度和选择透过性。
(3) 细胞外的K+可以通过载体蛋白逆浓度梯度进入植物的根细胞。 所以细胞吸收离子的方式为主动运输,消耗能量。呼吸抑制剂抑制呼吸作用,抑制能量的提供,导致根细胞对K+的吸收速率降低。
【分析】 题意中植物的根细胞可以通过不同方式吸收外界溶液中的K+。 所以可能存在两种物质跨膜运输离子的方式。植物根细胞的从外界吸收各种离子一般为主动运输,需要耗能、需要载体协助,进行逆浓度运输。
运输方式 方向 载体 能量 举例
被动运输 自由扩散 高→低 不需要 不需要 水、CO2、O2、N2、乙醇等
协助扩散 高→低 需要 不需要 葡萄糖进入红细胞
主动运输 低→高 需要 需要 葡萄糖进入小肠上皮细胞
23.(2021·全国乙卷)[生物-选修:生物技术实践]
工业上所说的发酵是指微生物在有氧或无氧条件下通过分解与合成代谢将某些原料物质转化为特定产品的过程,利用微生物发酵制作酱油在我国具有悠久的历史。某企业通过发酵制作酱油的流程示意图如下。
回答下列问题:
(1)米曲霉发酵过程中,加入大豆、小麦和麦麸可以为米曲霉的生长提供营养物质,大豆中的   可为米曲霉的生长提供氮源,小麦中的淀粉可为米曲霉的生长提供   。
(2)米曲霉发酵过程的主要目的是使米曲霉充分生长繁殖、大量分泌制作酱油过程所需的酶类,这些酶中的   、   能分别将发酵池中的蛋白质和脂肪分解成易于吸收、风味独特的成分,如将蛋白质分解为小分子的肽和   。米曲发酵过程需要提供营养物质、通入空气并搅拌,由此可以判断米曲霉属于   (填“自养厌氧”*异养厌氧”或“异养好氧")微生物。
(3)在发酵池发酵阶段添加的乳酸菌属于   (填“真核生物“或“原核生物”);添加的酵母菌在无氧条件下分解葡萄糖的产物是   。在该阶段抑制杂菌污染和繁殖是保证酱油质量的重要因素,据图分析该阶段中可以抑制杂菌生长的物质是   (答出1点即可)。
【答案】(1)蛋白质;碳源
(2)蛋白酶;脂肪酶;氨基酸;异养好氧
(3)原核生物;二氧化碳和酒精;乳酸 (酒精、食盐)
【知识点】无氧呼吸的过程和意义;微生物发酵及其应用;果酒果醋的制作
【解析】【解答】(1)大豆中富含蛋白质可为发酵提供氮源,小麦中的淀粉可为发酵提供碳源。
(2)蛋白酶能将蛋白质分解为小分子的肽和氨基酸,脂肪酶能将脂肪分解为甘油和脂肪酸。米曲霉发酵需要提供营养物质并通入空气,说明米曲霉属于异养好氧微生物。
(3)乳酸菌是原核生物;酵母菌进行无氧呼吸的产物是二氧化碳和酒精。在发酵池发酵阶段存在乳酸菌和酵母菌,它们产生的乳酸和酒精均可以抑制其它微生物的生长,加入的食盐也可抑制微生物生长。
【分析】 1、大豆富含蛋白质(组成元素C、H、O、N等),得知大豆中的哪种成分提供氮源。淀粉可以作为发酵底物,作为碳源。
2、结合酶具有专一性,例如蛋白酶将促进蛋白质水解,进行答题。
3、米曲霉发酵过程需要提供营养物质(说明米曲霉是异养型生物)、通入空气(目的之一提供氧气)并搅拌,由此可以判断米曲霉属于哪种新陈代谢类型。
4、结合题意进行答题:
① 乳酸菌全名是“乳酸杆菌”,带“杆菌”的一般都是原核生物。
②CHO→2CO2+2CH3CH2OH。
③细菌生存易受到环境的影响,酸、碱、重金属、高渗透压或者地渗透压等因素都会影响细菌的生存。
24.(2020·全国Ⅲ)照表中内容,围绕真核细胞中ATP的合成来完成下表。
反应部位 ( 1 )    叶绿体的类囊体膜 线粒体
反应物 葡萄糖   丙酮酸等
反应名称 ( 2 )    光合作用的光反应 有氧呼吸的部分过程
合成ATP的能量来源 化学能 ( 3 )    化学能
终产物(除ATP外) 乙醇、CO2 ( 4 )    ( 5 )   
【答案】细胞质基质;无氧呼吸;光能;O2、NADpH;H2O、CO2
【知识点】ATP的相关综合;光合作用的过程和意义;有氧呼吸的过程和意义;光合作用和呼吸作用的区别与联系
【解析】【解答】(1)由反应产物乙醇、CO2可知,该反应为无氧呼吸,反应场所为细胞质基质。(2)由反应产物乙醇、CO2可知,该反应为无氧呼吸。(3)由分析可知,光合作用的光反应中光能转化成活跃的化学能,储存在ATP中。(4)由分析可知,光合作用的光反应的产物为O2和NADpH。(5)由分析可知,线粒体内进行有氧呼吸的第二阶段产物为CO2,第三阶段产物为H2O。
【分析】1、无氧呼吸:场所:细胞质基质;反应式C6H12O6 2C2H5OH(酒精)+2CO2+能量2、有氧呼吸三个阶段的反应:
第一阶段:反应场所:细胞质基质;反应式C6H12O6 2C3H4O3(丙酮酸)+4[H]+少量能量
第二阶段:反应场所:线粒体基质;反应式:2C3H4O3(丙酮酸)+6H2O 20[H]+6CO2+少量能量
第三阶段:反应场所:线粒体内膜;反应式:24[H]+6O2 12H2O+大量能量(34ATP)3、光反应和暗反应比较:
比较项目 光反应 暗反应
场所 基粒类囊体膜上 叶绿体的基质
条件 色素、光、酶、水、ADP、Pi 多种酶、CO2、ATP、[H]
反应产物 [H]、O2、ATP 有机物、ADP、Pi、水
物质变化 水的光解:2H2O 4[H]+O2 ATP的生成:ADP+Pi ATP CO2的固定:CO2+C5 2C3 C3的还原:2C3 (CH2O)+C5+H2O
能量变化 光能→电能→ATP中活跃的化学能 ATP中活跃的化学能→糖类等有机物中稳定的化学能
实质 光能转变为化学能,水光解产生O2和[H] 同化CO2形成(CH2O)
联系 ①光反应为暗反应提供[H](以NADpH形式存在)和ATP; ②暗反应产生的ADP和Pi为光反应合成ATP提供原料; ③没有光反应,暗反应无法进行,没有暗反应,有机物无法合成
25.(2020·全国Ⅰ)农业生产中的一些栽培措施可以影响作物的生理活动,促进作物的生长发育,达到增加产量等目的。回答下列问题:
(1)中耕是指作物生长期中,在植株之间去除杂草并进行松土的一项栽培措施,该栽培措施对作物的作用有   (答出2点即可)。
(2)农田施肥的同时,往往需要适当浇水,此时浇水的原因是   (答出1点即可)。
(3)农业生产常采用间作(同一生长期内,在同一块农田上间隔种植两种作物)的方法提高农田的光能利用率。现有4种作物,在正常条件下生长能达到的株高和光饱和点(光合速率达到最大时所需的光照强度)见下表。从提高光能利用率的角度考虑,最适合进行间作的两种作物是   ,选择这两种作物的理由是   。
作物 A B C D
株高/cm 170 65 59 165
光饱和点/μmol·m-2·s-1 1 200 1 180 560 623
【答案】(1)减少杂草对水分、矿质元素和光的竞争;增加土壤氧气含量,促进根系的呼吸作用.
(2)肥料中的矿质元素只有溶解在水中才能被作物根系吸收
(3)A和C;作物A光饱和点高且长得高,可以利用上层光照进行光合作用;作物C光饱和点低且长得矮,与作物A间作后,能利用下层的弱光进行光合作用
【知识点】无机盐的主要存在形式和作用;影响光合作用的环境因素;细胞呼吸原理的应用;种间关系
【解析】【解答】(1)中耕松土过程中去除了杂草,减少了杂草和农作物之间的竞争;疏松土壤可以增加土壤的含氧量,有利于根细胞的有氧呼吸,促进矿质元素的吸收,从而达到增产的目的。
(2)农田施肥时,肥料中的矿质元素只有溶解在水中,以离子形式存在,才能被作物根系吸收。
(3)分析表中数据可知,作物A、D的株高较高,B、C的株高较低,作物A、B的光饱和点较高,适宜在较强光照下生长,C、D的光饱和点较低,适宜在弱光下生长,综合上述特点,应选取作物A和C进行间作,作物A可利用上层光照进行光合作用,作物C能利用下层的弱光进行光合作用,从而提高光能利用率。
【分析】光饱和点:当光合作用强度不再随光照强度增加时的最低光照强度被称为光饱和点。光饱和点较高的作物,光合作用能力强,适宜在较强光照下生长;光饱和点较低的作物,光合作用能力弱,适宜在弱光下生长。
26.(2019·全国Ⅲ卷)氮元素是植物生长的必需元素,合理施用氮肥可提高农作物的产量。回答下列问题。
(1)植物细胞内,在核糖体上合成的含氮有机物是   ,在细胞核中合成的含氮有机物是   ,叶绿体中含氮的光合色素是   。
(2)农作物吸收氮元素的主要形式有铵态氮(NH4﹢)和硝态氮(NO3﹣)。已知作物甲对同一种营养液(以硝酸铵为唯一氮源)中NH4﹢和NO3﹣的吸收具有偏好性(NH4﹢和NO3﹣同时存在时,对一种离子的吸收量大于另一种)。请设计实验对这种偏好性进行验证,要求简要写出实验思路、预期结果和结论。
【答案】(1)蛋白质;核酸;叶绿素
(2)答:实验思路:配制营养液(以硝酸铵为唯一氮源),用该营养液培养作物甲,一段时间后,检测营养液中NH4﹢和NO3﹣剩余量。
预期结果和结论:若营养液中NO3﹣剩余量小于NH4﹢剩余量,则说明作物甲偏好吸收NO3﹣;若营养液中NH4﹢剩余量小于NO3﹣剩余量,则说明作物甲偏好吸收NH4﹢。
【知识点】其它细胞器及分离方法;细胞核的功能;三种跨膜运输方式的比较;叶绿体结构及色素的分布和作用
【解析】【解答】(1)蛋白质 、 核酸 、 叶绿素都是含有氮元素的有机物,其中蛋白质在细胞质中的核糖体上合成,核酸中的DNA主要分布在细胞核中,叶绿体中的叶绿素也含有氮元素,叶黄素含C、H、O,胡萝卜素含C、H。
(2)据题可知,作物甲对同一种营养液(以硝酸铵为唯一氮源)中NH4﹢和NO3﹣的吸收具有偏好性(NH4﹢和NO3﹣同时存在时,对一种离子的吸收量大于另一种),植物对物质的吸收量越大,则营养液中的剩余量越小,以通过配制硝酸铵为唯一氮源的营养液培养作物甲,一段时间后测营养液中NH4﹢和NO3﹣剩余量为设计思路。理论上有两种结果,NO3﹣剩余量小于NH4﹢剩余量或者NH4﹢剩余量小于NO3﹣剩余量,从而总结出相应结论。
故答案为:(1)蛋白质 核酸 叶绿素
(2)实验思路:配制营养液(以硝酸铵为唯一氮源),用该营养液培养作物甲,一段时间后,检测营养液中NH4﹢和NO3﹣剩余量。
预期结果和结论:若营养液中NO3﹣剩余量小于NH4﹢剩余量,则说明作物甲偏好吸收NO3﹣;若营养液中NH4﹢剩余量小于NO3﹣剩余量,则说明作物甲偏好吸收NH4﹢。
【分析】主要考查植物生长的必需元素----氮元素。分子中含有氮元素的有机化合物通称为含氮有机物,常见的有蛋白质(多肽、氨基酸)、DNA(脱氧核苷酸)、RNA(核糖核苷酸)、NADH、NADPH、叶绿素、磷脂等。作物甲对同一种营养液(以硝酸铵为唯一氮源)中NH4﹢和NO3﹣的吸收量不同,植物对物质的吸收量越大,则营养液中的剩余量越小,因此以检测营养液中NH4﹢和NO3﹣剩余量为观察指标设计实验。若NO3﹣剩余量小于NH4﹢剩余量说明吸收NO3﹣多,若NH4﹢剩余量小于NO3﹣剩余量说明吸收NH4﹢多。据此答题。
27.(2019·全国Ⅱ卷) 回答下列与生态系统相关的问题。
(1)在森林生态系统中,生产者的能量来自于   ,生产者的能量可以直接流向   (答出2点即可)。
(2)通常,对于一个水生生态系统来说,可根据水体中含氧量的变化计算出生态系统中浮游植物的总初级生产量(生产者所制造的有机物总量)。若要测定某一水生生态系统中浮游植物的总初级生产量,可在该水生生态系统中的某一水深处取水样,将水样分成三等份,一份直接测定O2含量(A);另两份分别装入不透光(甲)和透光(乙)的两个玻璃瓶中,密闭后放回取样处,若干小时后测定甲瓶中的O2含量(B)和乙瓶中的O2含量(C)。据此回答下列问题。
在甲、乙瓶中生产者呼吸作用相同且瓶中只有生产者的条件下,本实验中C与A的差值表示这段时间内   ;C与B的差值表示这段时间内   ;A与B的差值表示这段时间内   。
【答案】(1)太阳能;初级消费者、分解者
(2)生产者净光合作用的放氧量;生产者光合作用的总放氧量;生产者呼吸作用的耗氧量
【知识点】生态系统的结构;光合作用和呼吸作用的区别与联系;生态系统的能量流动
【解析】【解答】(1)在森林生态系统中,生产者主要是绿色植物,绿色植物可以通过光合作用将太阳能转化为化学能,将能量引入生物群落。生产者固定的能量一部分可以通过初级消费者的摄食直接流入初级消费者,一部分储存在残枝败叶或遗体里的能量可以直接流向分解者,还有一部分能量可以通过生产者的细胞呼吸进入无机环境。
(2)甲水样不透光其中的浮游植物只能进行呼吸作用消耗氧气,所以A与B的差值表示这段时间内生产者呼吸作用的耗氧量;乙水样透光其中的浮游植物即可进行光合作用释放氧气又可进行呼吸作用消耗氧气,所以C与A的差值表示这段时间内生产者净光合作用的放氧量;则C与B的差值表示这段时间内生产者净光合作用的放氧量与呼吸作用的耗氧量之和,即生产者光合作用的总放氧量。
故答案为:(1)太阳能 初级消费者、分解者。(2)生产者净光合作用的放氧量;生产者光合作用的总放氧量;生产者呼吸作用的耗氧量。
【分析】1.生态系统中各成分之间的联系
2.净光合速率=总光合速率-呼吸速率
净光合速率:光照下测定的二氧化碳吸收或释放速率(或氧气释放或吸收速率)。
28.(2019·全国Ⅰ卷)将生长在水分正常土壤中的某植物通过减少浇水进行干旱处理,该植物根细胞中溶质浓度增大,叶片中的脱落酸(ABA)含量增高,叶片气孔开度减小,回答下列问题。
(1)经干旱处理后,该植物根细胞的吸水能力   。
(2)与干旱处理前相比,干旱处理后该植物的光合速率会   ,出现这种变化的主要原因是   。
(3)有研究表明:干旱条件下气孔开度减小不是由缺水直接引起的,而是由ABA引起的。请以该种植物的ABA缺失突变体(不能合成ABA)植株为材料,设计实验来验证这一结论。要求简要写出实验思路和预期结果。
【答案】(1)增强
(2)降低;气孔开度减小使供应给光合作用所需的CO2减少
(3)取ABA缺失突变体植株,在正常条件下测定气孔开度,经干旱处理后,再测定气孔开度,预期结果是干旱处理前后气孔开度不变。
将上述干旱处理的ABA缺失突变体植株分成两组,在干旱条件下,一组进行ABA处理,另一组作为对照组,一段时间后,分别测定两组的气孔开度,预期结果是ABA处理组气孔开度减小,对照组气孔开度不变。
【知识点】影响光合作用的环境因素;渗透作用
【解析】【解答】(1)由题意知经干旱处理后,植物根细胞中溶质浓度增大,所以该植物根细胞的吸水能力将增强。
(2)由题意知干旱处理后叶片气孔开度减小,所以CO2吸收量减少,光合作用速率会降低
(3)取ABA缺失突变体植株,在正常情况下测定气孔开度,经干旱处理后,再测定气孔开度。预期结果干旱处理前后气孔开度不变。
将上述干旱处理的ABA缺失突变体植株分成两组,在干旱情况下,一组进行ABA处理,另一组做对照组,一段时间后,分别测定两组的气孔开度。预期结果是ABA处理组气孔开度减小,对照组气孔开度不变.。
故答案为:(1)增强 (2)降低 叶片气孔导度减小,CO2吸收量减少,所以光合速率下降
(3)取ABA缺失突变体植株,在正常情况下测定气孔开度,经干旱处理后,再测定气孔开度。预期结果干旱处理前后气孔开度不变。
将上述干旱处理的ABA缺失突变体植株分成两组,在干旱情况下,一组进行ABA处理,另一组做对照组,一段时间后,分别测定两组的气孔开度。预期结果是ABA处理组气孔开度减小,对照组气孔开度不变.。
【分析】(1)植物根部吸水主要靠主动运输吸收大量无机盐,使得自身细胞的浓度大于土壤浓度,从而让水顺浓度梯度运输进入细胞,所以细胞浓度越大,吸收能力越强。
(2)叶片气孔导度直接决定了可以从空气中吸收的CO2的量。
29.(2018·全国Ⅲ卷)回答下列问题:
(1)高等植物光合作用中捕获光能的物质分布在叶绿体的   上,该物质主要捕获可见光中的   。
(2)植物的叶面积与产量关系密切,叶面积系数(单位土地面积上的叶面积总和)与植物群体光合速率、呼吸速率及干物质积累速率之间的关系如图所示,由图可知:当叶面积系数小于a时,随叶面积系数增加,群体光合速率和干物质积累速率均   。当叶面积系数超过b时,群体干物质积累速率降低,其原因是   。
(3)通常,与阳生植物相比,阴生植物光合作用吸收与呼吸作用放出的CO2量相等时所需要的光照强度   (填“高”或“低”)。
【答案】(1)类囊体膜;蓝紫光和红光
(2)增加;群体光合速率不变,但群体呼吸速率仍在增加,故群体干物质积累速率降低
(3)低
【知识点】影响光合作用的环境因素
【解析】【解答】(1)高等植物光合作用中捕获光能的色素分布在叶绿体的类囊体膜上,主要吸收可见光中的蓝紫光和红光。(2)植物群体光合速率=呼吸速率+干物质积累速率,在植物群体光合速率达到饱和前,随叶面积系数增加,群体光合速率和干物质积累速率均增加;由题图可看出当叶面积系数超过b时,植物群体光合速率达到饱和,但群体呼吸速率仍在增加,导致群体干物质积累速率降低。(3)与阳生植物相比,阴生植物达到光补偿点时所需要的光照强度要低。
【分析】本题考查了与光合作用有关的色素;实际光合速率与呼吸速率和净光合速率之间相互影响的关系;不同植物的光补偿点。叶绿体中的色素只吸收可见光,而对红外光和紫外光等不吸收。叶绿素对红光和蓝紫光的吸收量大,类胡萝卜素对蓝紫光的吸收量大,对其他波段的光并非不吸收,只是吸收量较少。
30.(2018·全国Ⅱ卷)为了研究某种树木树冠上下层叶片光合作用的特性,某同学选取来自树冠不同层的A、B两种叶片,分别测定其净光合速率,结果如图所示。据图回答问题:
(1)从图可知,A叶片的树冠   (填“上层”或“下层”)的叶片,判断依据是   .
(2)光照强度达到一定数值时,A叶片的净光合速率开始下降,但测得放氧速率不变,则净光合速率降低的主要原因是光合作用的   反应受到抑制。
(3)若要比较A、B两种新鲜叶片中叶绿素的含量,在提取叶绿素过程中,常用的有机溶剂是   .
【答案】(1)下层;A叶片的净光合速率到达最大时所需光照强度低于B叶片
(2)暗
(3)无水乙醇
【知识点】叶绿体色素的提取和分离实验;光合作用的过程和意义;影响光合作用的环境因素
【解析】【解答】(1)下层叶片获得的光照低于上层叶片,导致光合作用强度低于上层,即光合速率较低。(2)光合作用分光反应和暗反应,光反应阶段产生氧气,据题意净光合速率下降但放氧速率不变说明不是光反应阶段受抑制导致,应该是暗反应受抑制导致。(3)绿叶中的色素能够溶解在有机溶剂无水乙醇,所以可以用无水乙醇提取绿叶中的色素。
【分析】(1)树冠下层叶片获得的光照低于上层,导致光合作用强度低于上层,即净光合速率较低。(2)光合作用的过程:
( 3 )提取叶绿体色素实验过程:
31.(2018·全国Ⅰ卷)甲、乙两种植物净光合速率随光照强度的变化趋势如图所示。回答下列问题:
(1)当光照强度大于a时,甲、乙两种植物中,对光能的利用率较高的植物是   。
(2)甲、乙两种植物单独种植时,如果种植密度过大,那么净光合速率下降幅度较大的植物是   ,判断的依据是   。
(3)甲、乙两种植物中,更适合在林下种植的是   。
(4)某植物夏日晴天中午12:00时叶片的光合速率明显下降,其原因是进入叶肉细胞的   (填“O2”或“CO2”)不足
【答案】(1)甲
(2)甲;光照强度降低导致甲植物净光合速率降低的幅度比乙大,种植密度过大,植株接受的光照强度减弱,导致甲植物净光合速率下降幅度比乙大
(3)乙
(4)CO2
【知识点】影响光合作用的环境因素
【解析】【解答】(1)由图可知,当光照强度大于a时,甲的净光合速率大,光饱和点远大于乙,积累的有机物多,对光能的利用率较高。(2)甲、乙植物单独种植,且种植密度过大,会使每种植物的光照强度降低。从图中可以看出,光照强度的降低对甲植物的净光合速率影响大,导致甲植物净光合速率下降幅度比乙大。(3)从图中可以看出乙植物的光的饱和点和光补偿点都比甲低,因此更适合在林下种植。(4)夏日的晴天中午,为减少蒸腾作用水分散失,叶片上的气孔关闭,导致细胞间二氧化碳的含量下降,光合作用速率随之下降。
【分析】本题考查学生对光合作用图表的分析能力。图中甲、乙两种植物的净光合速率受不同光照强度的影响变化有区别,甲植物的变化幅度明显大于乙植物,甲植物对光能的利用率明显高于乙植物。当光照强度受到影响时甲植物受到的影响大于乙植物。乙植物由于光的饱和点和光补偿点都比较低,属于阴生植物。分析夏日的晴天中午,引起光合速率下降的原因,是由于气孔的关闭,二氧化碳的含量下降,影响了暗反应的进行。
三、实验探究题
32.(2021·全国甲)用一段由放射性同位素标记的DNA片段可以确定基因在染色体上的位置。某研究人员使用放射性同位素32P标记的脱氧腺苷三磷酸(dATP,dA-Pα~Pβ~Pγ,)等材料制备了DNA片段甲(单链),对W基因在染色体上的位置进行了研究,实验流程的示意图如下。
回答下列问题:
(1)该研究人员在制备32p标记的DNA片段甲时,所用dATP的α位磷酸基团中的磷必须是32p,原因是   。
(2)该研究人员以细胞为材料制备了染色体样品,在混合操作之前去除了样品中的RNA分子,去除RNA分子的目的是   。
(3)为了使片段甲能够通过碱基互补配对与染色体样品中的W基因结合,需要通过某种处理使样品中的染色体DNA   。
(4)该研究人员在完成上述实验的基础上,又对动物细胞内某基因的mRNA进行了检测,在实验过程中用某种酶去除了样品中的DNA,这种酶是   。
【答案】(1)dATP脱去β、γ位上的两个磷酸基团后,则为腺嘌呤脱氧核苷酸,是合成DNA的原料之一
(2)防止RNA分子与染色体DNA的W基因片段发生杂交
(3)解旋
(4)DNA酶
【知识点】酶的特性;基因工程的应用;DNA分子的复制
【解析】【解答】 (1)DNA的组成单体是腺嘌呤脱氧核苷酸等4种核苷酸。当dA-Pα~Pβ~Pγ脱去β、γ位上的两个磷酸基团后,则为腺嘌呤脱氧核苷酸,是制备32p标记的DNA片段的原料。
(2)DNA和RNA都含有碱基,且DNA含有A、T、C、G四种碱基,RNA含有A、U、C、G四种碱基。碱基互补配对原则是A-T、C-G或者A-U。当碱基暴露出来时容易发生碱基互补配对,形成杂交带。去除RNA分子的目的是防止RNA分子与染色体DNA的W基因片段发生杂交 。
(3)DNA分子解旋后,DNA双链的碱基之间氢键断裂,暴露出DNA分子结构内部的碱基,变成的单链片段有机会和32p标记的DNA片段甲发生碱基互补配对,于是需要使样品中的染色体DNA进行解旋处理,例如加入解旋酶。
(4)酶具有专一性,转移的催化某一种或者一类化学反应。 在实验过程中用某种酶去除了样品中的DNA,这种酶是DNA酶。
【分析】 1、根据题意,通过带32p标记的DNA分子与染色体样品的基因进行碱基互补配对,形成杂交带,进行放射性检测,从而对W基因在染色体上的位置进行推测和判断。
2、DNA的组成基本单体是脱氧核苷酸,有四种,分别是腺嘌呤脱氧核苷酸、鸟嘌呤脱氧核苷酸、胸腺嘧啶脱氧核苷酸和胞嘧啶脱氧核苷酸。
3、正常DNA 分子碱基在分子内部,不可以和其他碱基配对,若果连接碱基的氢键断裂,可能出现核酸分子杂交现象。
33.(2021·全国乙卷)生活在干旱地区的一些植物(如植物甲)具有特殊的CO2固定方式。这类植物晚上气孔打开吸收CO2,吸收的CO2通过生成苹果酸储存在液泡中;白天气孔关闭,液泡中储存的苹果酸脱羧释放的CO2可用于光合作用。回答下列问题:
(1)白天叶肉细胞产生ATP的场所有   。光合作用所需的CO2来源于苹果酸脱羧和   释放的CO2。
(2)气孔白天关闭、晚上打开是这类植物适应干旱环境的一种方式,这种方式既能防止   ,又能保证   正常进行。
(3)若以pH作为检测指标,请设计实验来验证植物甲在干旱环境中存在这种特殊的CO2固定方式。(简要写出实验思路和预期结果)
【答案】(1)细胞质基质、线粒体、(叶绿体)类囊体薄膜;细胞呼吸
(2)蒸腾作用水分丢失;光合作用(暗反应)
(3)实验思路:
①选取长势相同的若干株植物甲,均分为两组,编号分别为A、B;
②一次性浇足水后,A组正常浇水,B组停止浇水,放在其他条件相同且适宜的环境中培养;
③一段时间后,分别检测两组植物甲白天和夜晚叶肉细胞液泡中的pH值,并分别取平均值。
预期结果:A组液泡中pH值白天和夜晚无明显变化:B组液泡中pH值夜晚显著低于白天。
【知识点】光合作用的过程和意义;影响光合作用的环境因素;有氧呼吸的过程和意义
【解析】【解答】(1)白天叶肉细胞既能进行光合作用,又能进行呼吸作用,所以白天叶肉细胞产生ATP的场所有:细胞质基质、线粒体和类囊体薄膜。细胞呼吸产生的CO2可为光合作用暗反应提供原料。
(2)夜间气孔打开,PEP羧化酶活性高,固定CO2形成苹果酸,储存在液泡中:白天气孔关闭、减少蒸腾作用水分散失,但苹果酸分解提供暗(碳)反应所需的CO2,不影响光合作用进行。
(3)根据题干,本题为验证型实验,实验目的为“验证植物甲在干旱环境中存在这种特殊CO2固定方式"。根据实验目的找出自变量为植物甲的生存环境,因变量为植物甲液泡中的pH值。据此设计实验,
实验思路为:
①选取长势相同的若干株植物甲,均分为两组,编号分别为A、B;
②一次性浇足水后,A组正常浇水,B组停止浇水,放在其他条件相同且适宜的环境中培养;
③一段时间后,分别检测两组植物甲白天和夜晚叶肉细胞液泡中的pH值,并分别取平均值。
因为正常浇水时,植物甲无这种特殊的固定方式,所以A组液泡中无苹果酸储存过程,液泡中pH值白天和夜晚无明显变化:又因为在干旱环境中植物甲特殊的CO2固定方式会将胞间二氧化碳固定形成苹果酸,储存在液泡中,故B组液泡中夜晚苹果酸储存较多pH值明显降低,白天液泡中苹果酸脱羧释放CO2,pH值升高。
【分析】 1、白天植物细胞可以进行呼吸作用和光合作用,均可以产生ATP,场所是“细胞质基质、线粒体”和“叶绿体”。呼吸作用可以产生CO2。有氧呼吸的过程:
C6H12O6+6H2O+6O2 → 6CO2+12H2O+能量。
2、蒸腾作用主要过程为:土壤中的水分→根毛→根内导管→茎内导管→叶内导管→气孔→大气。
3、首先确定自变量、因变量和无关变量。验证“植物甲在干旱环境中存在这种特殊的CO2固定方式”。所以自变量是“是否干旱条件”,因变量是“是否存在这种特殊的CO2固定方式”,CO2是酸性气体,可以用“pH作为检测指标”。
4、实验设计常规思路:①取材、②分组、③根据自变量进行适宜的实验处理(加法原理或者减法原理)、④观察实验现象和记录实验数据、⑤分析实验结果和得出实验结论、⑥进行交流、分析和报告。
5、预期结果可以结合实验目的和实验处理进行预测。
34.(2020·全国Ⅱ)[生物——选修1:生物技术实践]
研究人员从海底微生物中分离到一种在低温下有催化活性的α-淀粉酶A3,并对其进行了研究。回答下列问题:
(1)在以淀粉为底物测定A3酶活性时,既可检测淀粉的减少,检测应采用的试剂是   ,也可采用斐林试剂检测   的增加。
(2)在A3的分离过程中可采用聚丙烯酰胺凝胶电泳检测其纯度,通常会在凝胶中添加SDS,SDS的作用是   和   。
(3)本实验中,研究人员在确定A3的最适pH时使用了三种组分不同的缓冲系统,结果如图所示。某同学据图判断,缓冲系统的组分对酶活性有影响,其判断依据是   。
(4)在制备A3的固定化酶时,一般不宜采用包埋法,原因是    (答出1 点即可)。
【答案】(1)碘液;还原糖(或答:葡萄糖)
(2)消除蛋白质所带净电荷对迁移率的影响;使蛋白质发生变性
(3)在pH相同时,不同缓冲系统条件下所测得的相对酶活性不同
(4)酶分子体积小,容易从包埋材料中漏出
【知识点】探究影响酶活性的因素;蛋白质的提取和分离;固定化酶及其应用
【解析】【解答】(1)测定酶活性时,可以通过检测反应物的减少或生成物的增加来反映酶活性,所以可以用碘液检测淀粉的减少,也可用斐林试剂检测还原糖(或葡萄糖)的增加。(2)鉴定蛋白质纯度常用SDS聚丙烯酰胺凝胶电泳法,凝胶中加入SDS可以消除蛋白质所带净电荷对迁移率的影响,并使蛋白质发生变性。(3)分析题中曲线可知,在pH相同时,不同缓冲系统条件下所测得的相对酶活性不同,可推测缓冲系统的组分对酶活性有影响。(4)由于酶分子体积小,容易从包埋材料中漏出,所以固定化酶时,一般不采用包埋法。
【分析】SDS聚丙烯酰胺凝胶电泳原理:在离子强度低时,主要以单体形式存在的SDS可以与蛋白质结合,生成蛋白质-SDS复合物。由于SDS带有大量负电荷,复合物所带的负电荷远远超过蛋白质原有的负电荷,这使得不同蛋白质间电荷的差异被掩盖。而SDS-蛋白质复合物形状都呈椭圆棒形,棒的长度与蛋白质亚基分子量有关,所以在SDS聚丙烯酰胺凝胶电泳中蛋白只存在分子大小的差别,利用这一点可将不同的蛋白质分开 (分子筛效应),因此SDS-PAGE常用于检测蛋白质亚基的分子量及鉴定纯度。
35.(2019·全国Ⅲ卷)培养胡萝卜根组织可获得试管苗,获得试管苗的过程如图所示。
回答下列问题。
(1)利用胡萝卜根段进行组织培养可以形成试管苗。用分化的植物细胞可以培养成完整的植株,这是因为植物细胞具有   。
(2)步骤③切取的组织块中要带有形成层,原因是   。
(3)从步骤⑤到步骤⑥需要更换新的培养基,其原因是   。在新的培养基上愈伤组织通过细胞的   过程,最终可形成试管苗。
(4)步骤⑥要进行照光培养,其作用是   。
(5)经组织培养得到的植株,一般可保持原品种的   ,这种繁殖方式属于   繁殖。
【答案】(1)全能性(或答:形成完整植株所需的全部基因)
(2)形成层容易诱导形成愈伤组织
(3)诱导愈伤组织形成和诱导愈伤组织分化形成试管苗所需的生长素和细胞分裂素的比例不同;分化(或答:再分化)
(4)诱导叶绿素的形成,使试管苗能够进行光合作用
(5)遗传特性;无性
【知识点】叶绿体结构及色素的分布和作用;植物组织培养的过程
【解析】【解答】(1)细胞全能性是指已经分化的细胞,仍然具有发育成完整生物体的潜能。在多细胞生物中,每个体细胞的细胞核都含有个体发育的全部基因,只要条件许可,都可发育成完整的个体。
(2)形成层细胞分裂能力强,细胞的全能性高,更容易诱导形成愈伤组织
(3)植物组织培养中,形成愈伤组织(脱分化)和诱导愈伤组织分化(再分化)时会用到生长素和细胞分裂素,只是两个时期所用激素的种类和浓度会有差别,脱分化过程中需要细胞增殖,所以生长素/细胞分裂素浓度比率会高一点,再分化时细胞分裂素/生长素浓度比率会高一点,因为细胞分裂素可以促进细胞分化,诱导组织生根发芽.
(4)再分化需要在光照环境下进行,以诱导叶绿素的形成,使试管苗能够进行光合作用。
(5)植物的组织培养是根据植物细胞具有全能性这个理论,近几十年来发展起来的一项无性繁殖的新技术,是细胞有丝分裂的结果,遗传物质没有发生改变。
故答案为:(1)全能性(或答:形成完整植株所需的全部基因);(2)形成层容易诱导形成愈伤组织;(3)诱导愈伤组织形成和诱导愈伤组织分化形成试管苗所需的生长素和细胞分裂素的比例不同 分化(或答:再分化);(4)诱导叶绿素的形成,使试管苗能够进行光合作用;(5)遗传特性 无性。
【分析】一个植物体的全部细胞,都是从受精卵经过有丝分裂产生的。受精卵是一个有着特异性的细胞,它具有本种植物所特有的全部遗传信息。因此,植物体内的每一个体细胞也都具有和受精卵完全有样的DNA序列和相同的细胞质环境。当这些细胞在植物体内时,全部遗传信息仍然被保存在DNA的序列链之中,一旦脱离了原来器官组织的束缚,成为游离状态,在一定的营养条件和植物激素的诱导下,细胞的全能性就能表现出来。于是就像一个受精卵那样,由单个细胞形成愈伤组织,然后成为胚状体,再进而长成一棵完整的植株。一般来说,细胞全能性高低与细胞分化程度有关,分化程度越高,细胞全能性越低,全能性表达越困难。植物细胞全能性高于动物细胞,而生殖细胞全能性高于体细胞。幼嫩的细胞全能性高于衰老的细胞。细胞分裂能力强的全能性高于细胞分裂能力弱的。
植物的组织培养是根据植物细胞具有全能性这个理论,近几十年来发展起来的一项无性繁殖的新技术。植物的组织培养指从植物体分离出符合需要的组织、器官或细胞,原生质体等,在无菌条件下接种在含有各种营养物质及植物激素的培养基上进行培养以获得再生的完整植株或生产具有经济价值的其他产品的技术。主要包括脱分化与再分化两个阶段:已分化的细胞经过诱导后失去其特有的结构和功能而转变成未分化细胞的过程叫脱分化,需要在无光环境下进行,这种未分化的细胞排列疏松而无规则,是一团无定形的薄壁细胞,称为愈伤组织。将处于脱分化状态的愈伤组织移植到合适的培养基(分化培养基)上继续培养,愈伤组织就会重新进行分化,并形成具有根、茎、叶的完整植株。这个过程就叫植物细胞的再分化,需要在光照环境下进行。
36.(2019·全国Ⅰ卷)已知一种有机物X(仅含有C、H两种元素)不易降解,会造成环境污染。某小组用三种培养基筛选土壤中能高效降解X的细菌(目标菌)。
Ⅰ号培养基:在牛肉膏蛋白胨培养基中加入X(5 g/L)。
Ⅱ号培养基:氯化钠(5 g/L),硝酸铵(3 g/L),其他无机盐(适量),X(15 g/L)。
Ⅲ号培养基:氯化钠(5 g/L),硝酸铵(3 g/L),其他无机盐(适量)。X(45 g/L)。
回答下列问题。
(1)在Ⅰ号培养基中,为微生物提供氮源的是   。Ⅱ、Ⅲ号培养基中为微生物提供碳源的有机物是   。
(2)若将土壤悬浮液接种在Ⅱ号液体培养基中,培养一段时间后,不能降解X的细菌比例会   ,其原因是   。
(3)Ⅱ号培养基加入琼脂后可以制成固体培养基,若要以该固体培养基培养目标菌并对菌落进行计数,接种时,应采用的方法是   。
(4)假设从Ⅲ号培养基中得到了能高效降解X的细菌,且该菌能将X代谢为丙酮酸,则在有氧条件下,丙酮酸可为该菌的生长提供   和   。
【答案】(1)牛肉膏、蛋白胨;X
(2)下降;不能降解X的细菌因缺乏碳源不能增殖,而能降解X的细菌能够增殖
(3)稀释涂布平板法
(4)能量;合成其他物质的原料
【知识点】有氧呼吸的过程和意义;测定某种微生物的数量;培养基对微生物的选择作用;培养基概述及其分类
【解析】【解答】(1)Ⅰ号培养基中含有N元素的物质只有牛肉膏蛋白胨,Ⅱ、Ⅲ号培养基中氯化钠,硝酸铵和其他无机盐都不含碳元素,所以惟一碳源只能是有机物X。
(2)Ⅱ号液体培养基中惟一碳源为有机物X,所以不能分解有机物X的细菌无法获得碳元素,故其无法合成细胞所需的有机物,细胞将会死亡。
(3)该问的关键点在于计数,但是由于平板划线法不能计数,而稀释涂布平板法能计数,所以该空填稀释涂布平板法。
(4)丙酮酸为呼吸作用的原料,且元素组成为C,H,O,所以能为细菌生长提供能量和碳源。
故答案为:(1)牛肉膏蛋白胨 有机物X (2)下降 不能降解有机物X的细菌无法繁殖
(3)稀释涂布平板法 (4)能量和碳源
【分析】1.培养基的概念、种类及营养构成
(1)概念:人们按照微生物对营养物质的不同需求,配制出的供其生长繁殖的营养基质。
(3)营养构成:各种培养基一般都含有水、碳源、氮源、无机盐,此外还要满足微生物生长对pH、特殊营养物质以及氧气的要求。
2、制备牛肉膏蛋白胨固体培养基的方法:计算、称量、溶化、灭菌、倒平板。
3、接种方法:平板划线法和稀释涂布法。
(1)平板划线操作:
①挑取他含菌样品:选用平整、圆滑的接种环,按无菌操作法挑取少量菌种。
②划A区:将平板倒置于煤气(酒精)灯旁,左手拿出皿底并尽量使平板垂直于桌面,有培养基一面向着煤气灯(这时皿盖朝上,仍留在煤气灯旁),右手拿接种环先在A区划3—4条连续的平行线(线条多少应依挑菌量的多少面定)。划完A区后应立即烧掉环上的残菌,以免因菌过多而影响后面各区的分离效果。在烧接种环时,左手持皿底并将其覆盖在皿盖上方(不要放入皿盖内),以防止杂菌的污染。
③划其他区:将烧去残菌后的接种环在平板培养基边缘冷却一下,并使B区转到上方,接种环通过A区(菌源区)将菌带到B区,随即划数条致密的平行线。再从B区作C区的划线。最后经C区作D区的划线,D区的线条应与A区平行,但划D区时切勿重新接触A、B区,以免极该两区中浓密的菌液带到D区,影响单菌落的形成。随即将皿底放入皿盖中。烧去接种环上的残菌。
④等平板凝固后,将平板倒置。
(2)稀释涂布法:是将菌液进行一系列的梯度稀释,然后将不同稀释度的菌液分别涂布到琼脂固体培养基的表面,在适宜条件下培养。在稀释度足够高的菌液里,聚集在一起的微生物将被分散成单个细胞,从而能在培养基表面形成单个的菌落。能够测定样品中活菌数的方法是:稀释涂布平板法。
1 / 1高考生物历年全国卷真题汇编3——细胞的代谢
一、单选题
1.(2022·全国乙卷)某同学将一株生长正常的小麦置于密闭容器中,在适宜且恒定的温度和光照条件下培养,发现容器内CO2含量初期逐渐降低,之后保持相对稳定。关于这一实验现象,下列解释合理的是(  )
A.初期光合速率逐渐升高,之后光合速率等于呼吸速率
B.初期光合速率和呼吸速率均降低,之后呼吸速率保持稳定
C.初期呼吸速率大于光合速率,之后呼吸速率等于光合速率
D.初期光合速率大于呼吸速率,之后光合速率等于呼吸速率
2.(2022·全国乙卷)某种酶P由RNA和蛋白质组成,可催化底物转化为相应的产物。为探究该酶不同组分催化反应所需的条件。某同学进行了下列5组实验(表中“+”表示有,“-”表示无)。
实验组 ① ② ③ ④ ⑤
底物 + + + + +
RNA组分 + + - + -
蛋白质组分 + - + - +
低浓度Mg2+ + + + - -
高浓度Mg2+ - - - + +
产物 + - - + -
根据实验结果可以得出的结论是(  )
A.酶P必须在高浓度Mg2+条件下才具有催化活性
B.蛋白质组分的催化活性随Mg2+浓度升高而升高
C.在高浓度Mg2+条件下RNA组分具有催化活性
D.在高浓度Mg2+条件下蛋白质组分具有催化活性
3.(2022·全国甲卷)线粒体是细胞进行有氧呼吸的主要场所。研究发现,经常运动的人肌细胞中线粒体数量通常比缺乏锻炼的人多。下列与线粒体有关的叙述,错误的是()
A.有氧呼吸时细胞质基质和线粒体中都能产生ATP
B.线粒体内膜上的酶可以参与[H]和氧反应形成水的过程
C.线粒体中的丙酮酸分解成CO2和[H]的过程需要O2的直接参与
D.线粒体中的DNA能够通过转录和翻译控制某些蛋白质的合成
4.(2022·全国甲卷)钙在骨骼生长和肌肉收缩等过程中发挥重要作用。晒太阳有助于青少年骨骼生长,预防老年人骨质疏松。下列叙述错误的是()
A.细胞中有以无机离子形式存在的钙
B.人体内Ca2+可自由通过细胞膜的磷脂双分子层
C.适当补充维生素D可以促进肠道对钙的吸收
D.人体血液中钙离子浓度过低易出现抽搐现象
5.(2022·全国甲卷)植物成熟叶肉细胞的细胞液浓度可以不同。现将a、b、c三种细胞液浓度不同的某种植物成熟叶肉细胞,分别放入三个装有相同浓度蔗糖溶液的试管中,当水分交换达到平衡时观察到:①细胞a未发生变化;②细胞b体积增大;③细胞c发生了质壁分离。若在水分交换期间细胞与蔗糖溶液没有溶质的交换,下列关于这一实验的叙述,不合理的是()
A.水分交换前,细胞b的细胞液浓度大于外界蔗糖溶液的浓度
B.水分交换前,细胞液浓度大小关系为细胞b>细胞a>细胞c
C.水分交换平衡时,细胞c的细胞液浓度大于细胞a的细胞液浓度
D.水分交换平衡时,细胞c的细胞液浓度等于外界蔗糖溶液的浓度
6.(2021·全国甲)某同学将酵母菌接种在马铃薯培养液中进行实验,不可能得到的结果是(  )
A.该菌在有氧条件下能够繁殖
B.该菌在无氧呼吸的过程中无丙酮酸产生
C.该菌在无氧条件下能够产生乙醇
D.该菌在有氧和无氧条件下都能产生CO2
7.(2021·全国乙卷)选择合适的试剂有助于达到实验目的。下列关于生物学实验所用试剂的叙述,错误的是(  )
A.鉴别细胞的死活时,台盼蓝能将代谢旺盛的动物细胞染成蓝色
B.观察根尖细胞有丝分裂中期的染色体,可用龙胆紫溶液使其着色
C.观察RNA在细胞中分布的实验中,盐酸处理可改变细胞膜的通透性
D.观察植物细胞吸水和失水时,可用蔗糖溶液处理紫色洋葱鳞片叶外表皮
8.(2020·全国Ⅱ)取某植物的成熟叶片,用打孔器获取叶圆片,等分成两份,分别放入浓度(单位为g/mL)相同的甲糖溶液和乙糖溶液中,得到甲、乙两个实验组(甲糖的相对分子质量约为乙糖的2倍)。水分交换达到平衡时,检测甲、乙两组的溶液浓度,发现甲组中甲糖溶液浓度升高。在此期间叶细胞和溶液之间没有溶质交换。据此判断下列说法错误的是(  )
A.甲组叶细胞吸收了甲糖溶液中的水使甲糖溶液浓度升高
B.若测得乙糖溶液浓度不变,则乙组叶细胞的净吸水量为零
C.若测得乙糖溶液浓度降低,则乙组叶肉细胞可能发生了质壁分离
D.若测得乙糖溶液浓度升高,则叶细胞的净吸水量乙组大于甲组
9.(2020·全国Ⅰ)为达到实验目的,需要选用合适的实验材料进行实验。下列实验目的与实验材料的对应,不合理的是(  )
  实验材料 实验目的
A 大蒜根尖分生区细胞 观察细胞的质壁分离与复原
B 蝗虫的精巢细胞 观察细胞的减数分裂
C 哺乳动物的红细胞 观察细胞的吸水和失水
D 人口腔上皮细胞 观察DNA,RNA在细胞中的分布
A.A B.B C.C D.D
10.(2020·全国Ⅰ)种子贮藏中需要控制呼吸作用以减少有机物的消耗。若作物种子呼吸作用所利用的物质是淀粉分解产生的葡萄糖,下列关于种子呼吸作用的叙述,错误的是(  )
A.若产生的CO2与乙醇的分子数相等,则细胞只进行无氧呼吸
B.若细胞只进行有氧呼吸,则吸收O2的分子数与释放CO2的相等
C.若细胞只进行无氧呼吸且产物是乳酸,则无O2吸收也无CO2释放
D.若细胞同时进行有氧和无氧呼吸,则吸收O2的分子数比释放CO2的多
11.(2019·全国Ⅲ卷)下列关于人体组织液的叙述,错误的是(  )
A.血浆中的葡萄糖可以通过组织液进入骨骼肌细胞
B.肝细胞呼吸代谢产生的CO2可以进入组织液中
C.组织液中的O2可以通过自由扩散进入组织细胞中
D.运动时,丙酮酸转化成乳酸的过程发生在组织液中
12.(2019·全国Ⅲ卷)若将n粒玉米种子置于黑暗中使其萌发,得到n株黄化苗。那么,与萌发前的这n粒干种子相比,这些黄化苗的有机物总量和呼吸强度表现为(  )
A.有机物总量减少,呼吸强度增强
B.有机物总量增加,呼吸强度增强
C.有机物总量减少,呼吸强度减弱
D.有机物总量增加,呼吸强度减弱
13.(2019·全国Ⅱ卷) 某种H﹢-ATPase是一种位于膜上的载体蛋白,具有ATP水解酶活性,能够利用水解ATP释放的能量逆浓度梯度跨膜转运H﹢。①将某植物气孔的保卫细胞悬浮在一定pH的溶液中(假设细胞内的pH高于细胞外),置于暗中一段时间后,溶液的pH不变。②再将含有保卫细胞的该溶液分成两组,一组照射蓝光后溶液的pH明显降低;另一组先在溶液中加入H﹢-ATPase的抑制剂(抑制ATP水解),再用蓝光照射,溶液的pH不变。根据上述实验结果,下列推测不合理的是(  )
A.H﹢-ATPase位于保卫细胞质膜上,蓝光能够引起细胞内的H﹢转运到细胞外
B.蓝光通过保卫细胞质膜上的H﹢-ATPase发挥作用导致H﹢逆浓度梯度跨膜运输
C.H﹢-ATPase逆浓度梯度跨膜转运H﹢所需的能量可由蓝光直接提供
D.溶液中的H﹢不能通过自由扩散的方式透过细胞质膜进入保卫细胞
14.(2019·全国Ⅱ卷) 马铃薯块茎储藏不当会出现酸味,这种现象与马铃薯块茎细胞的无氧呼吸有关。下列叙述正确的是(  )
A.马铃薯块茎细胞无氧呼吸的产物是乳酸和葡萄糖
B.马铃薯块茎细胞无氧呼吸产生的乳酸是由丙酮酸转化而来
C.马铃薯块茎细胞无氧呼吸产生丙酮酸的过程不能生成ATP
D.马铃薯块茎储藏库中氧气浓度的升高会增加酸味的产生
15.(2019·全国Ⅰ卷)将一株质量为20 g的黄瓜幼苗栽种在光照等适宜的环境中,一段时间后植株达到40 g,其增加的质量来自于(  )
A.水、矿质元素和空气 B.光、矿质元素和水
C.水、矿质元素和土壤 D.光、矿质元素和空气
16.(2018·全国Ⅲ卷)下列关于生物体中细胞呼吸的叙述,错误的是(  )。
A.植物在黑暗中可进行有氧呼吸也可进行无氧呼吸
B.食物链上传递的能量有一部分通过细胞呼吸散失
C.有氧呼吸和无氧呼吸的产物分别是葡萄糖和乳酸
D.植物光合作用和呼吸作用过程中都可以合成ATP
17.(2018·全国Ⅲ卷)下列研究工作中由我国科学家完成的是(  )。
A.以豌豆为材料发现性状遗传规律的实验
B.用小球藻发现光合作用暗反应途径的实验
C.证明DNA是遗传物质的肺炎双球菌转化实验
D.首例具有生物活性的结晶牛胰岛素的人工合成
18.(2018·全国Ⅱ卷)下列关于物质跨膜运输的叙述,正确的是(  )
A.巨噬细胞摄入病原体的过程属于协助扩散
B.固醇类激素进入靶细胞的过程属于主动运输
C.神经细胞受到刺激时产生的Na+内流属于被动运输
D.护肤品中的甘油进入皮肤细胞的过程属于主动运输
19.(2018·全国Ⅰ卷)下列有关植物根系吸收利用营养元素的叙述,错误的是(  )
A.在酸性土壤中,小麦可吸收利用土壤中的N2和NO-3
B.农田适时松土有利于农作物根细胞对矿质元素的吸收
C.土壤微生物降解植物秸秆产生的无机离子可被根系吸收
D.给玉米施肥过多时,会因根系水分外流引起“烧苗”现象
二、综合题
20.(2022·全国乙卷)农业生产中,农作物生长所需的氮素可以 的形式由根系从土壤中吸收。一定时间内作物甲和作物乙的根细胞吸收 的速率与O2浓度的关系如图所示。回答下列问题。
(1)由图可判断 进入根细胞的运输方式是主动运输,判断的依据是   。
(2)O2浓度大于a时作物乙吸收 速率不再增加,推测其原因是   。
(3)作物甲和作物乙各自在 最大吸收速率时,作物甲跟细胞的呼吸速率大于作物乙,判断依据是   。
(4)据图可知,在农业生产中,为促进农作物对 的吸收利用,可以采取的措施是   。(答出1点即可)
21.(2022·全国甲卷)根据光合作用中CO2的固定方式不同,可将植物分为C3植物和C4植物等类型。C4植物的CO2补偿点比C3植物的低。CO2补偿点通常是指环境CO2浓度降低导致光合速率与呼吸速率相等时的环境CO2浓度。回答下列问题。
(1)不同植物(如C3植物和C4植物)光合作用光反应阶段的产物是相同的,光反应阶段的产物是   (答出3点即可)。
(2)正常条件下,植物叶片的光合产物不会全部运输到其他部位,原因是   (答出1点即可)。
(3)干旱会导致气孔开度减小,研究发现在同等程度干旱条件下,C4植物比C3植物生长得好。从两种植物CO2补偿点的角度分析,可能的原因是   。
22.(2021·全国甲)植物的根细胞可以通过不同方式吸收外界溶液中的K+。回答下列问题:
(1)细胞外的K+可以跨膜进入植物的根细胞。细胞膜和核膜等共同构成了细胞的生物膜系统,生物膜的结构特点是   。
(2)细胞外的K+能够通过离子通道进入植物的根细胞。离子通道是由   复合物构成的,其运输的特点是   (答出1点即可)。
(3)细胞外的K+可以通过载体蛋白逆浓度梯度进入植物的根细胞。在有呼吸抑制剂的条件下,根细胞对K+的吸收速率降低,原因是   。
23.(2021·全国乙卷)[生物-选修:生物技术实践]
工业上所说的发酵是指微生物在有氧或无氧条件下通过分解与合成代谢将某些原料物质转化为特定产品的过程,利用微生物发酵制作酱油在我国具有悠久的历史。某企业通过发酵制作酱油的流程示意图如下。
回答下列问题:
(1)米曲霉发酵过程中,加入大豆、小麦和麦麸可以为米曲霉的生长提供营养物质,大豆中的   可为米曲霉的生长提供氮源,小麦中的淀粉可为米曲霉的生长提供   。
(2)米曲霉发酵过程的主要目的是使米曲霉充分生长繁殖、大量分泌制作酱油过程所需的酶类,这些酶中的   、   能分别将发酵池中的蛋白质和脂肪分解成易于吸收、风味独特的成分,如将蛋白质分解为小分子的肽和   。米曲发酵过程需要提供营养物质、通入空气并搅拌,由此可以判断米曲霉属于   (填“自养厌氧”*异养厌氧”或“异养好氧")微生物。
(3)在发酵池发酵阶段添加的乳酸菌属于   (填“真核生物“或“原核生物”);添加的酵母菌在无氧条件下分解葡萄糖的产物是   。在该阶段抑制杂菌污染和繁殖是保证酱油质量的重要因素,据图分析该阶段中可以抑制杂菌生长的物质是   (答出1点即可)。
24.(2020·全国Ⅲ)照表中内容,围绕真核细胞中ATP的合成来完成下表。
反应部位 ( 1 )    叶绿体的类囊体膜 线粒体
反应物 葡萄糖   丙酮酸等
反应名称 ( 2 )    光合作用的光反应 有氧呼吸的部分过程
合成ATP的能量来源 化学能 ( 3 )    化学能
终产物(除ATP外) 乙醇、CO2 ( 4 )    ( 5 )   
25.(2020·全国Ⅰ)农业生产中的一些栽培措施可以影响作物的生理活动,促进作物的生长发育,达到增加产量等目的。回答下列问题:
(1)中耕是指作物生长期中,在植株之间去除杂草并进行松土的一项栽培措施,该栽培措施对作物的作用有   (答出2点即可)。
(2)农田施肥的同时,往往需要适当浇水,此时浇水的原因是   (答出1点即可)。
(3)农业生产常采用间作(同一生长期内,在同一块农田上间隔种植两种作物)的方法提高农田的光能利用率。现有4种作物,在正常条件下生长能达到的株高和光饱和点(光合速率达到最大时所需的光照强度)见下表。从提高光能利用率的角度考虑,最适合进行间作的两种作物是   ,选择这两种作物的理由是   。
作物 A B C D
株高/cm 170 65 59 165
光饱和点/μmol·m-2·s-1 1 200 1 180 560 623
26.(2019·全国Ⅲ卷)氮元素是植物生长的必需元素,合理施用氮肥可提高农作物的产量。回答下列问题。
(1)植物细胞内,在核糖体上合成的含氮有机物是   ,在细胞核中合成的含氮有机物是   ,叶绿体中含氮的光合色素是   。
(2)农作物吸收氮元素的主要形式有铵态氮(NH4﹢)和硝态氮(NO3﹣)。已知作物甲对同一种营养液(以硝酸铵为唯一氮源)中NH4﹢和NO3﹣的吸收具有偏好性(NH4﹢和NO3﹣同时存在时,对一种离子的吸收量大于另一种)。请设计实验对这种偏好性进行验证,要求简要写出实验思路、预期结果和结论。
27.(2019·全国Ⅱ卷) 回答下列与生态系统相关的问题。
(1)在森林生态系统中,生产者的能量来自于   ,生产者的能量可以直接流向   (答出2点即可)。
(2)通常,对于一个水生生态系统来说,可根据水体中含氧量的变化计算出生态系统中浮游植物的总初级生产量(生产者所制造的有机物总量)。若要测定某一水生生态系统中浮游植物的总初级生产量,可在该水生生态系统中的某一水深处取水样,将水样分成三等份,一份直接测定O2含量(A);另两份分别装入不透光(甲)和透光(乙)的两个玻璃瓶中,密闭后放回取样处,若干小时后测定甲瓶中的O2含量(B)和乙瓶中的O2含量(C)。据此回答下列问题。
在甲、乙瓶中生产者呼吸作用相同且瓶中只有生产者的条件下,本实验中C与A的差值表示这段时间内   ;C与B的差值表示这段时间内   ;A与B的差值表示这段时间内   。
28.(2019·全国Ⅰ卷)将生长在水分正常土壤中的某植物通过减少浇水进行干旱处理,该植物根细胞中溶质浓度增大,叶片中的脱落酸(ABA)含量增高,叶片气孔开度减小,回答下列问题。
(1)经干旱处理后,该植物根细胞的吸水能力   。
(2)与干旱处理前相比,干旱处理后该植物的光合速率会   ,出现这种变化的主要原因是   。
(3)有研究表明:干旱条件下气孔开度减小不是由缺水直接引起的,而是由ABA引起的。请以该种植物的ABA缺失突变体(不能合成ABA)植株为材料,设计实验来验证这一结论。要求简要写出实验思路和预期结果。
29.(2018·全国Ⅲ卷)回答下列问题:
(1)高等植物光合作用中捕获光能的物质分布在叶绿体的   上,该物质主要捕获可见光中的   。
(2)植物的叶面积与产量关系密切,叶面积系数(单位土地面积上的叶面积总和)与植物群体光合速率、呼吸速率及干物质积累速率之间的关系如图所示,由图可知:当叶面积系数小于a时,随叶面积系数增加,群体光合速率和干物质积累速率均   。当叶面积系数超过b时,群体干物质积累速率降低,其原因是   。
(3)通常,与阳生植物相比,阴生植物光合作用吸收与呼吸作用放出的CO2量相等时所需要的光照强度   (填“高”或“低”)。
30.(2018·全国Ⅱ卷)为了研究某种树木树冠上下层叶片光合作用的特性,某同学选取来自树冠不同层的A、B两种叶片,分别测定其净光合速率,结果如图所示。据图回答问题:
(1)从图可知,A叶片的树冠   (填“上层”或“下层”)的叶片,判断依据是   .
(2)光照强度达到一定数值时,A叶片的净光合速率开始下降,但测得放氧速率不变,则净光合速率降低的主要原因是光合作用的   反应受到抑制。
(3)若要比较A、B两种新鲜叶片中叶绿素的含量,在提取叶绿素过程中,常用的有机溶剂是   .
31.(2018·全国Ⅰ卷)甲、乙两种植物净光合速率随光照强度的变化趋势如图所示。回答下列问题:
(1)当光照强度大于a时,甲、乙两种植物中,对光能的利用率较高的植物是   。
(2)甲、乙两种植物单独种植时,如果种植密度过大,那么净光合速率下降幅度较大的植物是   ,判断的依据是   。
(3)甲、乙两种植物中,更适合在林下种植的是   。
(4)某植物夏日晴天中午12:00时叶片的光合速率明显下降,其原因是进入叶肉细胞的   (填“O2”或“CO2”)不足
三、实验探究题
32.(2021·全国甲)用一段由放射性同位素标记的DNA片段可以确定基因在染色体上的位置。某研究人员使用放射性同位素32P标记的脱氧腺苷三磷酸(dATP,dA-Pα~Pβ~Pγ,)等材料制备了DNA片段甲(单链),对W基因在染色体上的位置进行了研究,实验流程的示意图如下。
回答下列问题:
(1)该研究人员在制备32p标记的DNA片段甲时,所用dATP的α位磷酸基团中的磷必须是32p,原因是   。
(2)该研究人员以细胞为材料制备了染色体样品,在混合操作之前去除了样品中的RNA分子,去除RNA分子的目的是   。
(3)为了使片段甲能够通过碱基互补配对与染色体样品中的W基因结合,需要通过某种处理使样品中的染色体DNA   。
(4)该研究人员在完成上述实验的基础上,又对动物细胞内某基因的mRNA进行了检测,在实验过程中用某种酶去除了样品中的DNA,这种酶是   。
33.(2021·全国乙卷)生活在干旱地区的一些植物(如植物甲)具有特殊的CO2固定方式。这类植物晚上气孔打开吸收CO2,吸收的CO2通过生成苹果酸储存在液泡中;白天气孔关闭,液泡中储存的苹果酸脱羧释放的CO2可用于光合作用。回答下列问题:
(1)白天叶肉细胞产生ATP的场所有   。光合作用所需的CO2来源于苹果酸脱羧和   释放的CO2。
(2)气孔白天关闭、晚上打开是这类植物适应干旱环境的一种方式,这种方式既能防止   ,又能保证   正常进行。
(3)若以pH作为检测指标,请设计实验来验证植物甲在干旱环境中存在这种特殊的CO2固定方式。(简要写出实验思路和预期结果)
34.(2020·全国Ⅱ)[生物——选修1:生物技术实践]
研究人员从海底微生物中分离到一种在低温下有催化活性的α-淀粉酶A3,并对其进行了研究。回答下列问题:
(1)在以淀粉为底物测定A3酶活性时,既可检测淀粉的减少,检测应采用的试剂是   ,也可采用斐林试剂检测   的增加。
(2)在A3的分离过程中可采用聚丙烯酰胺凝胶电泳检测其纯度,通常会在凝胶中添加SDS,SDS的作用是   和   。
(3)本实验中,研究人员在确定A3的最适pH时使用了三种组分不同的缓冲系统,结果如图所示。某同学据图判断,缓冲系统的组分对酶活性有影响,其判断依据是   。
(4)在制备A3的固定化酶时,一般不宜采用包埋法,原因是    (答出1 点即可)。
35.(2019·全国Ⅲ卷)培养胡萝卜根组织可获得试管苗,获得试管苗的过程如图所示。
回答下列问题。
(1)利用胡萝卜根段进行组织培养可以形成试管苗。用分化的植物细胞可以培养成完整的植株,这是因为植物细胞具有   。
(2)步骤③切取的组织块中要带有形成层,原因是   。
(3)从步骤⑤到步骤⑥需要更换新的培养基,其原因是   。在新的培养基上愈伤组织通过细胞的   过程,最终可形成试管苗。
(4)步骤⑥要进行照光培养,其作用是   。
(5)经组织培养得到的植株,一般可保持原品种的   ,这种繁殖方式属于   繁殖。
36.(2019·全国Ⅰ卷)已知一种有机物X(仅含有C、H两种元素)不易降解,会造成环境污染。某小组用三种培养基筛选土壤中能高效降解X的细菌(目标菌)。
Ⅰ号培养基:在牛肉膏蛋白胨培养基中加入X(5 g/L)。
Ⅱ号培养基:氯化钠(5 g/L),硝酸铵(3 g/L),其他无机盐(适量),X(15 g/L)。
Ⅲ号培养基:氯化钠(5 g/L),硝酸铵(3 g/L),其他无机盐(适量)。X(45 g/L)。
回答下列问题。
(1)在Ⅰ号培养基中,为微生物提供氮源的是   。Ⅱ、Ⅲ号培养基中为微生物提供碳源的有机物是   。
(2)若将土壤悬浮液接种在Ⅱ号液体培养基中,培养一段时间后,不能降解X的细菌比例会   ,其原因是   。
(3)Ⅱ号培养基加入琼脂后可以制成固体培养基,若要以该固体培养基培养目标菌并对菌落进行计数,接种时,应采用的方法是   。
(4)假设从Ⅲ号培养基中得到了能高效降解X的细菌,且该菌能将X代谢为丙酮酸,则在有氧条件下,丙酮酸可为该菌的生长提供   和   。
答案解析部分
1.【答案】D
【知识点】影响光合作用的环境因素;影响细胞呼吸的因素
【解析】【解答】由题意可知,在适宜且恒定的温度和光照条件下培养,发现容器内CO2含量初期逐渐降低,之后保持相对稳定,由净光合速率=真正光合速率-呼吸作用速率,净光合作用用CO2的吸收量表示,初期CO2含量逐渐降低表明CO2大于0,光合速率大于呼吸速率,之后CO2保持相对稳定,则光合速率等于呼吸作用速率,故D正确,A、B、C错误。
故答案为:D。
【分析】1、影响光合作用的环境因素。(1)温度对光合作用的影响:在最适温度下酶的活性最强,光合作用强度最大,当温度低于最适温度,光合作用强度随温度的增加而加强,当温度高于最适温度,光合作用强度随温度的增加而减弱。(2)二氧化碳浓度对光合作用的影响:在一定范围内,光合作用强度随二氧化碳浓度的增加而增强。当二氧化碳浓度增加到一定的值,光合作用强度不再增强。(3)光照强度对光合作用的影响:在一定范围内,光合作用强度随光照强度的增加而增强。当光照强度增加到一定的值,光合作用强度不再增强。(4)光质:绿叶中的色素包括叶绿素a和叶绿素b,类胡萝卜素和叶黄素,其中叶绿素a能够吸收传递光能之外还能转化光能,叶绿素a主要吸收红光和蓝紫光,对绿光吸收最少。(5)水:水是光合作用产物和反应物,水的含量影响光合作用。(6)矿质元素:叶绿素的合成需要Mg2+,光合作用中其他参与物也需要矿质元素参与合成,所以矿质元素也会影响光合作用。
2、影响细胞呼吸的因素:(1)温度:温度主要影响酶的活性,在一定范围内,随着温度的升高,呼吸作用增强。(2)O2浓度:在O2浓度为零时,只进行无氧呼吸;O2浓度较低时,既进行有氧呼吸,有进行无氧呼吸;O2浓度将高时,只进行有氧呼吸。(3)CO2浓度:CO2是呼吸作用的产物,从化学平衡的角度分析,CO2浓度增加,呼吸速率下降,CO2浓度过大,会抑制呼吸作用的进行。(4)含水量在一定范围内,水的含量增加,呼吸作用增强。
3、净光合速率=真正光合速率-呼吸作用速率。真正光合作用的表示方法:CO2的固定量,O2的生成量,有机物的生成量;净光合作用的表示方法:CO2的吸收量、O2的量释放、有机物的积累量。
2.【答案】C
【知识点】探究影响酶活性的因素
【解析】【解答】A、由表可知,根据第①组实验结果可知,酶P必须在低浓度Mg2+条件下具有催化活性,A错误;
B、由表可知,根据第③组和第⑤组实验结果可知,蛋白质组分在高浓度和低浓度的Mg2+条件下都不具有活性,B错误;
C、由表可知,根据第②组和第④组实验结果可知,RNA组分在高浓度Mg2+条件下具有催化活性,C正确;
D、由表可知,根据第③组和第⑤组实验结果可知,蛋白质组分在高浓度和低浓度的Mg2+条件下都不具有活性,D错误。
故答案为:C。
【分析】酶
(1)酶是由活细胞产生的具有催化活性的有机物,其中大部分是蛋白质、少量是RNA。
(2)酶催化作用的实质:降低化学反应的活化能,在反应前后本身性质不会发生改变。
(3)酶的特性:①高效性:酶的催化效率大约是无机催化剂的107-1013倍。②专一性:每一种酶只能催化一种或者一类化学反应。③酶的作用条件较温和:在最适宜的温度和pH条件下,酶的活性最高;温度和pH偏高或偏低,酶的活性都会明显降低。
(4)酶的变性:过酸、过碱或温度过高,会使酶的空间结构遭到破坏,使酶永久失活;低温使酶活性明显下降,但在适宜温度下其活性可以恢复。
3.【答案】C
【知识点】有氧呼吸的过程和意义;线粒体的结构和功能
【解析】【解答】A、有氧呼吸的三个阶段都会产生ATP,其中第一阶段发生在细胞质基质中,第二、三阶段发生在线粒体中,故有氧呼吸时细胞质基质和线粒体中都能产生ATP,A正确;
B、有氧呼吸第三阶段发生在线粒体的内膜上,在相应酶的参与下[H]和氧气结合,形成水同时释放大量能量,B正确;
C、有氧呼吸第二阶段发生在线粒体基质中,丙酮酸在相应酶的参与下分解为二氧化碳、大量的[H] (NADH),同时释放少量能量,该过程不需要O2的直接参与,C错误;
D、线粒体中含有DNA分子,属于半自主性的细胞器,能够通过转录和翻译控制某些蛋白质的合成,D正确。
故答案为:C。
【分析】1、线粒体形状是短棒状,圆球形,分布在动植物细胞中,内膜向内折叠形成嵴,嵴上有基粒,基质中含有与有氧呼吸有关的酶,是双层膜结构,含有少量的DNA和RNA,是半自主性细胞器。
2、有氧呼吸全过程:
第一阶段:在细胞质基质中,一分子葡萄糖形成两分子丙酮酸、少量的[H](NADH)和少量能量,这一阶段不需要氧的参与。
第二阶段:丙酮酸进入线粒体的基质中,分解为二氧化碳、大量的[H] (NADH)和少量能量。
第三阶段:在线粒体的内膜上,[H] (NADH)和氧气结合,形成水和大量能量,这一阶段需要氧的参与。
4.【答案】B
【知识点】无机盐的主要存在形式和作用;三种跨膜运输方式的比较;脂质的种类及其功能
【解析】【解答】A、钙在细胞中属于无机盐,细胞中大多数无机盐以离子的形式存在,A正确;
B、几乎所有离子通过细胞膜的方式都是主动运输,B错误;
C、维生素D能有效地促进人和动物肠道对钙和磷的吸收,C正确;
D、Ca2+可调节肌肉收缩和血液凝固,血钙过高会造成肌无力,血钙过低会引起抽搐,D正确。
故答案为:B。
【分析】1、细胞中的无机盐:(1)存在形式:细胞中大多数无机盐以离子的形式存在,叶绿素中的Mg2+、血红蛋白中的Fe2+等以化合物形式存在。(2)功能:a、细胞中某些复杂化合物的重要组成成分,如Fe2+是血红蛋白的主要成分;Mg2+是叶绿素的必要成分。b、维持细胞的生命活动,如Ca2+可调节肌肉收缩和血液凝固,血钙过高会造成肌无力,血钙过低会引起抽搐。c、维持酸碱平衡和渗透压平衡。
2、常见的脂质有脂肪、磷脂和固醇:(1)脂肪是最常见的脂质,是细胞内良好的储能物质,还是一种良好的绝热体,起保温作用,分布在内脏周围的脂肪还具有缓冲和减压的作用,可以保护内脏器官;(2)磷脂是构成细胞膜的重要成分,也是构成多种细胞器膜的重要成分;(3)固醇类物质包括胆固醇、性激素和维生素D,胆固醇是构成细胞膜的重要成分、在人体内还参与血液中脂质的运输,性激素能促进人和动物生殖器官的发育以及生殖细胞的形成,维生素D能有效地促进人和动物肠道对钙和磷的吸收。
3、物质跨膜运输的方式 (小分子物质)
运输方式 运输方向 是否需要载体 是否消耗能量 示例
自由扩散 高浓度到低浓度 否 否 小部分水、气体、脂类(因为细胞膜的主要成分是脂质,如甘油)
协助扩散 高浓度到低浓度 是 否 葡萄糖进入红细胞,大部分水分子
主动运输 低浓度到高浓度 是 是 几乎所有离子、氨基酸、葡萄糖等
大分子物质一般通过胞吞和胞吐的方式进行运输,它们均需要消耗能量,依赖于细胞膜的流动性。
5.【答案】C
【知识点】质壁分离和复原
【解析】【解答】A、由题意可知,水分交换前三个试管中蔗糖浓度相同,水分交换达到平衡时细胞b体积增大,即平衡时细胞b发生了吸水过程,则水分交换前,细胞b的细胞液浓度大于外界蔗糖溶液的浓度,A合理;
B、由题意可知,水分交换前三个试管中蔗糖浓度相同,水分交换达到平衡时细胞a未发生变化,细胞b体积增大,细胞c发生了质壁分离,即水分交换过程中细胞a既未吸水也未失水,细胞b吸水,细胞c失水,则水分交换前,细胞a的细胞液浓度等于外界蔗糖溶液的浓度,细胞b的细胞液浓度大于外界蔗糖溶液的浓度,细胞c的细胞液浓度小于外界蔗糖溶液的浓度,故水分交换前,细胞液浓度大小关系为细胞b>细胞a>细胞c,B合理;
C、由题意可知,水分交换前三个试管中蔗糖浓度相同,水分交换达到平衡时细胞a未发生变化,细胞c发生了质壁分离,即水分交换过程中细胞a既未吸水也未失水,细胞c失水,即细胞a试管中蔗糖溶液浓度不变,细胞c试管中蔗糖溶液吸水浓度下降,水分交换达到平衡时细胞内外溶液浓度相同,即水分交换平衡时,细胞c的细胞液浓度小于细胞a的细胞液浓度,C不合理;
D、由题意可知,水分交换前三个试管中蔗糖浓度相同,水分交换达到平衡时细胞c发生了质壁分离,即水分交换过程中细胞c失水,则水分交换前细胞c的细胞液浓度小于外界蔗糖溶液的浓度,D合理。
故答案为:C。
【分析】水分子运输方式是自由扩散,其动力是浓度差,且总是由从低浓度溶液向高浓度溶液运输,渗透作用发生的原理是:(1)具有半透膜;(2)半透膜两侧的溶液具有浓度差。植物细胞有细胞壁,成熟的植物细胞有液泡,细胞膜和液泡膜以及之间的细胞质称作原生质层。有大液泡(成熟)的活的植物细胞,才能发生质壁分离;动物细胞、无大液泡的或死的植物细胞不能发生质壁分离。植物细胞的质壁分离:当细胞液的浓度小于外界溶液的浓度时,细胞就会通过渗透作用而失水,细胞液中的水分就透过原生质层进入到溶液中,使细胞壁和原生质层都出现一定程度的收缩。由于原生质层比细胞壁的收缩性大,当细胞不断失水时,原生质层就会与细胞壁分离。在质壁分离的过程中,表皮细胞液泡逐渐缩小,浓度升高,吸水能力增强。当细胞液的浓度大于外界溶液的浓度时,细胞就会通过渗透作用而吸水,发生质壁分离的细胞会发生质壁分离复原。
6.【答案】B
【知识点】有氧呼吸的过程和意义;无氧呼吸的过程和意义;探究酵母菌的呼吸方式
【解析】【解答】 A、酵母菌可以进行两种呼吸方式,即有氧呼吸和无氧呼吸,有氧呼吸产生能量多,有氧条件下利于酵母菌的增殖,A不符合题意;
B、酵母菌无氧呼吸在细胞质基质中进行,无氧呼吸第一阶段产生丙酮酸、和[H],并释放少量的能量,B符合题意;
C、酵母菌的第二阶段丙酮酸被还原性氢还原成乙醇,同时生成二氧化碳,C不符合题意;
D、酵母菌有氧呼吸和无氧呼吸都会生成CO2,D不符合题意。
故答案选:B。
【分析】酵母菌是一种真核生物,优先进行有氧呼吸,可以产生大量能量供机体的生命活动。无氧时,酵母菌亦可以进行无氧呼吸。有氧呼吸的产物有大量二氧化碳和水,同时释放大量能量。无氧呼吸时,酵母菌可以产生酒精和较少的二氧化碳。
7.【答案】A
【知识点】DNA、RNA在细胞中的分布实验;细胞膜的功能;质壁分离和复原;观察细胞的有丝分裂
【解析】【解答】A、活细胞不会被台盼蓝染成蓝色,而死细胞会被染成淡蓝色,A项中代谢旺盛的动物细胞属于活细胞,台盼蓝不能进入活细胞内,因此不会被染成蓝色,A错误;
B、龙胆紫能够使染色体着色,B正确;
C、盐酸能够改变细胞膜的通透性,加速染色剂进入细胞,C正确;
D、用0.3g/mL的蔗糖溶液处理紫色洋葱情片叶外表皮细胞后,显微镜下可观察到该细胞发生质壁分离现象,D正确:
故答案为:A.
【分析】1、活细胞具有选择透过性,一般情况下,不让染色剂计入细胞;健那绿是活细胞染色剂。
2、染色体溶液被碱性染料染成深色,例如龙胆紫。
3、观察核酸分布,盐酸作用:①将DNA和蛋白质分离;②改变细胞膜通透性。
4、质壁分离和复原的原理:
(1)质壁分离的原理:当细胞液的浓度小于外界溶液的浓度时,细胞就会通过渗透作用而失水,细胞液中的水分就透过原生质层进入到溶液中,使细胞壁和原生质层都出现一定程度的收缩。由于原生质层比细胞壁的收缩性大,当细胞不断失水时,原生质层就会与细胞壁分离。
(2)质壁分离复原的原理:当细胞液的浓度大于外界溶液的浓度时,细胞就会通过渗透作用而吸水,外界溶液中的水分就通过原生质层进入到细胞液中,整个原生质层就会慢慢地恢复成原来的状态,紧贴细胞壁,使植物细胞逐渐发生质壁分离复原。
用适宜浓度的蔗糖处理洋葱表皮细胞,可以观察植物细胞的质壁分离和复原。
8.【答案】D
【知识点】质壁分离和复原
【解析】【解答】A、由题干信息可知,叶细胞与溶液之间无溶质交换,而甲组的甲糖溶液浓度升高,则可能是由于叶细胞的细胞液浓度大于甲糖溶液物质的量浓度,引起了细胞吸水,A正确;
B、若乙糖溶液浓度不变,说明乙糖溶液物质的量浓度与叶细胞的细胞液浓度相等,叶细胞净吸水量为零,B正确;
C、若乙糖溶液浓度降低,说明细胞失水,叶肉细胞可能发生了质壁分离,C正确;
D、若乙糖溶液浓度升高,说明乙糖溶液物质的量浓度低于叶细胞的细胞液浓度,细胞吸水,而乙糖溶液的物质的量浓度约为甲糖溶液的2倍,因此叶细胞的净吸水量应是乙组小于甲组,D错误。
故答案为:D。
【分析】渗透作用需要满足的条件是:①半透膜;②膜两侧具有浓度差。浓度差是指单位体积溶质分子数量的差异,即物质的量浓度差异,由题干信息可知,甲糖和乙糖的质量分数相同,但甲糖的相对分子质量约为乙糖的2倍,因此乙糖溶液的物质的量浓度约为甲糖溶液的2倍。
9.【答案】A
【知识点】DNA、RNA在细胞中的分布实验;质壁分离和复原;观察细胞的减数分裂实验;渗透作用
【解析】【解答】A、根尖分生区无成熟的大液泡,不能用于观察细胞的质壁分离与复原,A符合题意;
B、蝗虫的精巢细胞可以发生减数分裂,可以用于观察细胞的减数分裂,B不符合题意;
C、哺乳动物的红细胞吸水会膨胀,失水会皱缩,故可以用于观察细胞的吸水和失水,C不符合题意;
D、人的口腔上皮细胞无色,且含有DNA和RNA,可以用于观察DNA,RNA在细胞中的分布,D不符合题意。
故答案为:A。
【分析】(1)大蒜根尖分生区细胞是未成熟植物细胞,无中央大液泡,也无颜色,质壁分离不明显,故不合适作为观察质壁分离与复原的实验材料。
(2)渗透作用是指水分子(或其他溶剂分子)通过半透膜,从低浓度向高浓度扩散的过程。其条件有:①是具有半透膜;②是半透膜两侧具有浓度差。
10.【答案】D
【知识点】有氧呼吸的过程和意义;无氧呼吸的过程和意义
【解析】【解答】A、若二氧化碳的生成量=酒精的生成量,则说明不消耗氧气,故只有无氧呼吸,A正确;
B、若只进行有氧呼吸,则消耗的氧气量=生成的二氧化碳量,B正确;
C、若只进行无氧呼吸,说明不消耗氧气,产乳酸的无氧呼吸不会产生二氧化碳,C正确;
D、若同时进行有氧呼吸和无氧呼吸,若无氧呼吸产酒精,则消耗的氧气量小于二氧化碳的生成量,若无氧呼吸产乳酸,则消耗的氧气量=二氧化碳的生成量,D错误。
故答案为:D。
【分析】有氧呼吸总反应方程式:C6H12O6+6H2O+6O2 6CO2+12H2O+能量
无氧呼吸反应方程式:①C6H12O62 C2H5OH+2CO2+能量;②C6H12O62C3H6O3+能量
11.【答案】D
【知识点】三种跨膜运输方式的比较;有氧呼吸的过程和意义;无氧呼吸的过程和意义;内环境的组成
【解析】【解答】A、血浆中的葡萄糖先进入组织液然后再进入骨骼肌细胞,不符合题意;
B、肝细胞呼吸代谢产生的CO2从细胞中出来然后进入组织液中,不符合题意;
C、O2可以通过自由扩散的方式进入组织细胞中参与有氧呼吸,不符合题意;
D、运动时,丙酮酸转化成乳酸的过程是无氧呼吸的第二阶段,发生在细胞质基质中,符合题意
故答案为:D
【分析】主要考查内环境成分的转换。血浆、组织液和淋巴都是细胞外液,共同构成机体内细胞生活的直接环境。血细胞所生活的液体环境是血浆,毛细血管壁的上皮细胞的内环境是指血浆和组织液。因细胞外液深居于身体内部,所以名为内环境,体的绝大部分细胞是不与血浆直接接触的,因此,这些细胞与毛细血管中的血浆不直接进行物质交换。但是,人体的绝大部分细胞浸浴在组织液中,细胞内液与组织液之间只隔着一层细胞膜,于是水分和一切可以通过细胞膜的物质,就在这两部分体液之间进行交换;细胞所需要的氧气等营养物质进入细胞;细胞产生的二氧化碳等废物进入组织液。由于组织液不断地形成,以及组织液不断地回流入血液,因此为细胞不断地提供所需要的营养物质并运走代谢废物。细胞与内环境之间就是这样进行物质交换的。血液在血管里不停地循环流动,一方面与人体各个部分的组织液交换;另一方面与肺、肾脏、和胃、肠等器官有着密切的关系。这样才能使人体细胞通过内环境不断地与外界进行物质交换。所以,内环境是细胞与外界环境进行物质交换的媒介。
12.【答案】A
【知识点】有氧呼吸的过程和意义
【解析】【解答】黑暗中的种子萌发后无法合成叶绿素,不能进行光合作用制造有机物,但是种子萌发需要细胞呼吸消耗有机物提供能量,因此有机物总量会减少。萌发前的干种子自由水少,代谢缓慢,萌发时吸收了水使自由水增多,代谢增强,尤其是需要细胞呼吸提供能量,因此呼吸强度增强。
故答案为:A
【分析】主要考查种子萌发时的细胞呼吸与光合作用。黑暗中萌发的种子因不能进行光合作用,而呼吸作用又消耗有机物而干重逐渐下降;种子在萌发过程中所进行的一系列复杂的生命活动,只有种子不断地进行呼吸,得到能量,才能保证生命活动的正常进行。休眠的种子含水量一般只占干重的10%左右。种子必须吸收足够的水分才能启动一系列酶的活动,开始萌发。
13.【答案】C
【知识点】细胞膜的成分;三种跨膜运输方式的比较
【解析】【解答】A、根据题意可知H+-ATPase是一种位于膜上的载体蛋白,具有ATP水解酶活性,能够利用ATP释放的能量逆浓度梯度跨膜转运氢离子,又知将某植物气孔保卫细胞悬浮在一定pH的溶液中,细胞内的pH高于细胞外,即细胞内的H+浓度小于溶液,至于暗中一段时间后,溶液的pH不变,照射蓝光后,溶液的pH降低,即溶液的H+浓度增大,可见保卫细胞内的H+被转运到了溶液中,H+是从低浓度一侧转运到了高浓度一侧,可见保卫细胞膜上有H+-ATPase,A不符合题意;
B、蓝光照射保卫细胞后,保卫细胞进行光合作用产生了有机物,有机物通过细胞呼吸氧化分解产生ATP,保卫细胞质膜上的H+-ATPase催化ATP水解并利用ATP水解释放的能量,将细胞内的H+逆浓度梯度转运到溶液中,B不符合题意;
C、H+-ATPase逆浓度梯度跨膜转运H+所需的能量是由保卫细胞内有机物氧化分解产生的ATP直接提供,蓝光的作用是使保卫细胞进行光合作用,产生有机物,C符合题意;
D、通过题意可知H+的转运需要载体和能量,且从高浓度向低浓度运输,属于主动运输,所以溶液中的H+不能通过自由扩散的方式透过细胞质膜进入保卫细胞,D不符合题意。
故答案为:C
【分析】(1)pH与氢离子的浓度有关,氢离子浓度越大,pH越小。
(2)能量代谢过程和ATP的利用:
14.【答案】B
【知识点】无氧呼吸的过程和意义
【解析】【解答】A、马铃薯块茎细胞无氧呼吸的产物是乳酸,没有葡萄糖,A不符合题意;
B、马铃薯块茎细胞无氧呼吸产生的乳酸是由丙酮酸转化而来,B符合题意;
C、马铃薯块茎细胞无氧呼吸产生丙酮酸的过程能产生少量ATP,C不符合题意;
D、马铃薯块茎储藏库中氧气浓度的升高会抑制无氧呼吸,减少酸味的产生,D不符合题意。
故答案为:B
【分析】(1)动物细胞、玉米胚、马铃薯块茎、甜菜块茎、乳酸菌等,进行有氧呼吸时,通过酶的催化作用,将葡萄糖等有机物氧化分解为乳酸,同时释放少量能量。
(2)马铃薯块茎细胞无氧呼吸的过程:
第一阶段:
第二阶段:
15.【答案】A
【知识点】光合作用的过程和意义;组成细胞的元素和化合物
【解析】【解答】绿色植物生长的实质是光合作用大于呼吸作用,有机物积累的结果,根据光合作用与呼吸作用过程中的物质转变过程可知,植物增加的质量主要来自光合作用吸收的水分和空气中的二氧化碳。植物体内60%以上是水。水是构成植物体的最主要物质。矿质元素是植物生长的必需元素,很多化合物都含有一定量的矿质元素,缺少这类元素植物将不能健康生长。光作为能量来源通过光合作用转化为有机物中的化学能,而植物的生长是物质积累的结果。
故答案为:A
【分析】主要考查植物生长的原因。光合作用是指绿色植物通过叶绿体利用光能将二氧化碳和水转变为储存能量的有机物,同时释放氧气的过程,绿色植物生长的实质是光合作用大于呼吸作用,有机物积累的结果;细胞中含量最多的化合物是水,植物重量增加与吸收大量的水有关;矿质元素是指除碳、氢、氧以外,主要由根系从土壤中吸收的元素。矿质元素是植物生长的必需元素,缺少这类元素植物将不能健康生长,矿质元素可以促进营养吸收。
16.【答案】C
【知识点】光合作用的过程和意义;有氧呼吸的过程和意义;无氧呼吸的过程和意义;生态系统的能量流动
【解析】【解答】A、植物细胞的呼吸方式与光照无关,取决于酶的种类,A不符合题意;
B、流经食物链上每一营养级的能量都有一部分通过呼吸作用以热能的方式散失,B不符合题意;
C、有氧呼吸的反应物是葡萄糖,不同生物无氧呼吸的产物是有区别的,比如人无氧呼吸的产物是乳酸,酵母菌无氧呼吸的产物是酒精和二氧化碳,C符合题意;
D、植物光合作用暗反应阶段三碳化合物的还原需要光反应阶段合成的ATP,有氧呼吸的每一个阶段以及无氧呼吸的第一个阶段都可以合成ATP,D不符合题意。
故答案为:C。
【分析】本题考查了细胞代谢的相关知识。
( 1 )某营养级同化的能量的来源去路:
( 2 )细胞内产生与消耗ATP的生理过程
转化场所 常见的生理过程
细胞膜 消耗ATP:主动运输、胞吞、胞吐
细胞质基质 产生ATP:细胞呼吸第一阶段
叶绿体 产生ATP:光反应 消耗ATP:暗反应和自身DNA复制、转录、翻译等
线粒体 产生ATP:有氧呼吸第二、三阶段 消耗ATP:自身DNA复制、转录、翻译等
核糖体 消耗ATP:蛋白质的合成
细胞核 消耗ATP:DNA复制、转录等
17.【答案】D
【知识点】光合作用的发现史;肺炎链球菌转化实验;孟德尔遗传实验-分离定律
【解析】【解答】A、以豌豆为材料发现性状遗传规律的实验是奥地利科学家孟德尔,A不符合题意;
B、用小球藻发现光合作用暗反应途径的实验是美国科学家卡尔文,B不符合题意;
C、证明DNA是遗传物质的肺炎双球菌转化实验是美国的科学家艾弗里,C不符合题意;
D、首例具有生物活性的结晶牛胰岛素的人工合成是由中国的科学家完成的,D符合题意。
故答案为为:D。
【分析】本题考查对生物学做出过杰出贡献的科学家。
18.【答案】C
【知识点】三种跨膜运输方式的比较
【解析】【解答】A、吞噬细胞摄入病原体的方式是胞吞,A不符合题意;
B、固醇类激素进入靶细胞的过程属于自由扩散(被动运输),B不符合题意;
C、神经细胞受到刺激时产生的Na+内流属于从浓度高到浓度低的协助扩散(被动运输),C符合题意;
D、护肤品中的甘油进入皮肤细胞的过程属于自由扩散(被动运输),D不符合题意。
故答案啊为:C
【分析】(1)被动运输:物质进出细胞,顺浓度梯度的扩散,称为被动运输。
①自由扩散:物质通过简单的扩散作用进出细胞
②协助扩散:进出细胞的物质借助载体蛋白的扩散
( 2 )主动运输:从低浓度一侧运输到高浓度一侧,需要载体蛋白的协助,同时还需要消耗细胞内化学反应所释放的能量,这种方式叫做主动运输。
自由扩散 协助扩散 主动运输
运输方向 顺相对含量梯度 顺相对含量梯度 能逆相对含量梯度
能量 不消耗 不消耗 消耗
载体 不需要 需要 需要
影响因素 浓度差 浓度差、载体 载体、能量
举例 水、O2等气体、甘油等脂溶性物质 血浆中葡萄糖进入红细胞 离子进入细胞 氨基酸、葡萄糖被上皮细胞吸收
19.【答案】A
【知识点】三种跨膜运输方式的比较
【解析】【解答】A、小麦的根可以从土壤中获得离子状态的NO3-,不能吸收利用N2,A符合题意;
B、根细胞吸收矿质元素的方式为主动运输,需要呼吸作用提供能量,松土有利于有氧呼吸的进行,B不符合题意;
C、根系只能吸收利用土壤微生物分解的无机盐离子,C不符合题意;
D、玉米施肥过多时,土壤溶液的浓度远远大于细胞内溶液的浓度,会导致细胞失水,引起“烧苗”现象,D不符合题意。
故答案为:A。
【分析】本题考查小麦的根系对无机盐的吸收形式,只能吸收离子,以及离子吸收时的跨膜运输方式为主动运输,需要细胞呼吸提供能量。
小分子物质跨膜运输的方式和特点
名称 运输方向 载体 能量 实  例
自由扩散 高浓度→低浓度 不需 不需 水,CO2,O2,甘油,苯、酒精等
协助扩散 高浓度→低浓度 需要 不需 红细胞吸收葡萄糖
主动运输 低浓度→高浓度 需要 需要 小肠绒毛上皮细胞吸收氨基酸,葡萄糖,K+,Na+等
大分子物质进出细胞的方式:胞吞、胞吐
20.【答案】(1)主动运输需要呼吸作用提供能量,O2浓度小于a点,根细胞对 的吸收速率与O2浓度呈正相关
(2)主动运输需要载体蛋白,此时载体蛋白数量达到饱和
(3)甲的 最大吸收速率大于乙,甲需要能量多,消耗O2多
(4)定期松土
【知识点】主动运输
【解析】【解答】(1)由图可知,无论是作物甲还是作物乙,在一定范围内,NO3-的吸收速率与氧浓度呈正相关,故NO3-的吸收需要有氧呼吸提供能量,属于主动运输。
故答案为:主动运输需要呼吸作用提供能量,O2浓度小于a点,根细胞对NO3-的吸收速率与O2浓度呈正相关。
(2)主动运输过程需要氧气和载体蛋白,即根细胞对NO3-的吸收速率除了与氧浓度有关之外,还受到载体蛋白数量的制约。O2浓度大于a时作物乙吸收NO3-速率不再增加可能是载体蛋白数量达到饱和。
故答案为:主动运输需要载体蛋白,此时载体蛋白数量达到饱和。
(3)由图可知,在作物甲和作物乙各自在NO3- 最大吸收速率时,作物甲消耗的O2多,则此时作物甲的呼吸速率大于作物乙。
故答案为:甲的NO3- 最大吸收速率大于乙,甲需要能量多,消耗O2多。
(4)根细胞通过主动运输的方式吸收NO3-,需要消耗能量和载体蛋白的协助,在农业生产中可以采取定期松土的方法增加土壤氧含量,从而促进农作物对NO3-的吸收利用。
故答案为:定期松土。
【分析】物质跨膜运输的方式 (小分子物质)
运输方式 运输方向 是否需要载体 是否消耗能量 示例
自由扩散 高浓度到低浓度 否 否 小部分水、气体、脂类(因为细胞膜的主要成分是脂质,如甘油)
协助扩散 高浓度到低浓度 是 否 葡萄糖进入红细胞,大部分水分子
主动运输 低浓度到高浓度 是 是 几乎所有离子、氨基酸、葡萄糖等
大分子物质一般通过胞吞和胞吐的方式进行运输,它们均需要消耗能量,依赖于细胞膜的流动性。
21.【答案】(1)O2、[H]和ATP
(2)自身呼吸消耗或建造植物体结构
(3)C4植物的CO2补偿点低于C3植物,C4植物能够利用较低浓度的CO2
【知识点】光合作用的过程和意义;影响光合作用的环境因素
【解析】【解答】(1)光合作用的光反应阶段发生在叶绿体的类囊体薄膜上,是水光解产生氧气和NADPH,同时将光能转变成化学能储存在ATP和NADPH([H])中,不同植物的光合作用中CO2的固定方式不同,但光反应阶段的产物都是O2、[H]和ATP。
故答案为: O2、[H]和ATP。
(2)由于植物叶片本身的光合作用以及自身植物结构的构造也需要消耗有机物,故植物叶片的光合产物不会全部运输到其他部位。
故答案为:自身呼吸消耗或建造植物体结构。
(3)由题意可知,CO2补偿点通常是指环境CO2浓度降低导致光合速率与呼吸速率相等时的环境CO2浓度,植物的CO2固定途径有C4和C3途径,其主要的CO2固定酶是PEPC、Rubisco;而C3植物只有C3途径,其主要的CO2固定酶是Rubisco。C4植物的CO2补偿点比C3植物的低,所以C4植物能够利用较低浓度的CO2,所以在干旱导致气孔开度减小的情况下,C4植物比C3植物生长得好。
故答案为:C4植物的CO2补偿点低于C3植物,C4植物能够利用较低浓度的CO2 。
【分析】光合作用的反应阶段:
①光反应阶段:场所是类囊体薄膜
a.水的光解:2H2O4[H]+O2
b.ATP的生成:ADP+PiATP
②暗反应阶段:场所是叶绿体基质
a.CO2的固定:CO2+C5 2C3
b.C3的还原:2C3 (CH2O)+C5+H2O
光反应与暗反应的联系:光反应为暗反应提供[H]和ATP,暗反应为光反应提供ADP、Pi和NADP+。
22.【答案】(1)具有一定的流动性
(2)蛋白质;顺浓度或选择性
(3)细胞逆浓度梯度吸收K+是主动运输过程,需要能量,呼吸抑制剂会影响细胞呼吸供能,故使细胞主动运输速率降低
【知识点】三种跨膜运输方式的比较
【解析】【解答】 (1)高中阶段常考的细胞膜的结构特点有:①细胞膜具有一定流动性;②细胞膜具有一定的选择透过性。 细胞外的K+可以跨膜进入植物的根细胞 , 体现出生物膜的结构特点是 细胞膜具有一定流动性。
(2)离子通道的本质是蛋白质,是由蛋白质等构成的复合物。细胞离子通道进行运输离子时,具有专一性,离子通道运输的特点是顺浓度梯度和选择透过性。
(3) 细胞外的K+可以通过载体蛋白逆浓度梯度进入植物的根细胞。 所以细胞吸收离子的方式为主动运输,消耗能量。呼吸抑制剂抑制呼吸作用,抑制能量的提供,导致根细胞对K+的吸收速率降低。
【分析】 题意中植物的根细胞可以通过不同方式吸收外界溶液中的K+。 所以可能存在两种物质跨膜运输离子的方式。植物根细胞的从外界吸收各种离子一般为主动运输,需要耗能、需要载体协助,进行逆浓度运输。
运输方式 方向 载体 能量 举例
被动运输 自由扩散 高→低 不需要 不需要 水、CO2、O2、N2、乙醇等
协助扩散 高→低 需要 不需要 葡萄糖进入红细胞
主动运输 低→高 需要 需要 葡萄糖进入小肠上皮细胞
23.【答案】(1)蛋白质;碳源
(2)蛋白酶;脂肪酶;氨基酸;异养好氧
(3)原核生物;二氧化碳和酒精;乳酸 (酒精、食盐)
【知识点】无氧呼吸的过程和意义;微生物发酵及其应用;果酒果醋的制作
【解析】【解答】(1)大豆中富含蛋白质可为发酵提供氮源,小麦中的淀粉可为发酵提供碳源。
(2)蛋白酶能将蛋白质分解为小分子的肽和氨基酸,脂肪酶能将脂肪分解为甘油和脂肪酸。米曲霉发酵需要提供营养物质并通入空气,说明米曲霉属于异养好氧微生物。
(3)乳酸菌是原核生物;酵母菌进行无氧呼吸的产物是二氧化碳和酒精。在发酵池发酵阶段存在乳酸菌和酵母菌,它们产生的乳酸和酒精均可以抑制其它微生物的生长,加入的食盐也可抑制微生物生长。
【分析】 1、大豆富含蛋白质(组成元素C、H、O、N等),得知大豆中的哪种成分提供氮源。淀粉可以作为发酵底物,作为碳源。
2、结合酶具有专一性,例如蛋白酶将促进蛋白质水解,进行答题。
3、米曲霉发酵过程需要提供营养物质(说明米曲霉是异养型生物)、通入空气(目的之一提供氧气)并搅拌,由此可以判断米曲霉属于哪种新陈代谢类型。
4、结合题意进行答题:
① 乳酸菌全名是“乳酸杆菌”,带“杆菌”的一般都是原核生物。
②CHO→2CO2+2CH3CH2OH。
③细菌生存易受到环境的影响,酸、碱、重金属、高渗透压或者地渗透压等因素都会影响细菌的生存。
24.【答案】细胞质基质;无氧呼吸;光能;O2、NADpH;H2O、CO2
【知识点】ATP的相关综合;光合作用的过程和意义;有氧呼吸的过程和意义;光合作用和呼吸作用的区别与联系
【解析】【解答】(1)由反应产物乙醇、CO2可知,该反应为无氧呼吸,反应场所为细胞质基质。(2)由反应产物乙醇、CO2可知,该反应为无氧呼吸。(3)由分析可知,光合作用的光反应中光能转化成活跃的化学能,储存在ATP中。(4)由分析可知,光合作用的光反应的产物为O2和NADpH。(5)由分析可知,线粒体内进行有氧呼吸的第二阶段产物为CO2,第三阶段产物为H2O。
【分析】1、无氧呼吸:场所:细胞质基质;反应式C6H12O6 2C2H5OH(酒精)+2CO2+能量2、有氧呼吸三个阶段的反应:
第一阶段:反应场所:细胞质基质;反应式C6H12O6 2C3H4O3(丙酮酸)+4[H]+少量能量
第二阶段:反应场所:线粒体基质;反应式:2C3H4O3(丙酮酸)+6H2O 20[H]+6CO2+少量能量
第三阶段:反应场所:线粒体内膜;反应式:24[H]+6O2 12H2O+大量能量(34ATP)3、光反应和暗反应比较:
比较项目 光反应 暗反应
场所 基粒类囊体膜上 叶绿体的基质
条件 色素、光、酶、水、ADP、Pi 多种酶、CO2、ATP、[H]
反应产物 [H]、O2、ATP 有机物、ADP、Pi、水
物质变化 水的光解:2H2O 4[H]+O2 ATP的生成:ADP+Pi ATP CO2的固定:CO2+C5 2C3 C3的还原:2C3 (CH2O)+C5+H2O
能量变化 光能→电能→ATP中活跃的化学能 ATP中活跃的化学能→糖类等有机物中稳定的化学能
实质 光能转变为化学能,水光解产生O2和[H] 同化CO2形成(CH2O)
联系 ①光反应为暗反应提供[H](以NADpH形式存在)和ATP; ②暗反应产生的ADP和Pi为光反应合成ATP提供原料; ③没有光反应,暗反应无法进行,没有暗反应,有机物无法合成
25.【答案】(1)减少杂草对水分、矿质元素和光的竞争;增加土壤氧气含量,促进根系的呼吸作用.
(2)肥料中的矿质元素只有溶解在水中才能被作物根系吸收
(3)A和C;作物A光饱和点高且长得高,可以利用上层光照进行光合作用;作物C光饱和点低且长得矮,与作物A间作后,能利用下层的弱光进行光合作用
【知识点】无机盐的主要存在形式和作用;影响光合作用的环境因素;细胞呼吸原理的应用;种间关系
【解析】【解答】(1)中耕松土过程中去除了杂草,减少了杂草和农作物之间的竞争;疏松土壤可以增加土壤的含氧量,有利于根细胞的有氧呼吸,促进矿质元素的吸收,从而达到增产的目的。
(2)农田施肥时,肥料中的矿质元素只有溶解在水中,以离子形式存在,才能被作物根系吸收。
(3)分析表中数据可知,作物A、D的株高较高,B、C的株高较低,作物A、B的光饱和点较高,适宜在较强光照下生长,C、D的光饱和点较低,适宜在弱光下生长,综合上述特点,应选取作物A和C进行间作,作物A可利用上层光照进行光合作用,作物C能利用下层的弱光进行光合作用,从而提高光能利用率。
【分析】光饱和点:当光合作用强度不再随光照强度增加时的最低光照强度被称为光饱和点。光饱和点较高的作物,光合作用能力强,适宜在较强光照下生长;光饱和点较低的作物,光合作用能力弱,适宜在弱光下生长。
26.【答案】(1)蛋白质;核酸;叶绿素
(2)答:实验思路:配制营养液(以硝酸铵为唯一氮源),用该营养液培养作物甲,一段时间后,检测营养液中NH4﹢和NO3﹣剩余量。
预期结果和结论:若营养液中NO3﹣剩余量小于NH4﹢剩余量,则说明作物甲偏好吸收NO3﹣;若营养液中NH4﹢剩余量小于NO3﹣剩余量,则说明作物甲偏好吸收NH4﹢。
【知识点】其它细胞器及分离方法;细胞核的功能;三种跨膜运输方式的比较;叶绿体结构及色素的分布和作用
【解析】【解答】(1)蛋白质 、 核酸 、 叶绿素都是含有氮元素的有机物,其中蛋白质在细胞质中的核糖体上合成,核酸中的DNA主要分布在细胞核中,叶绿体中的叶绿素也含有氮元素,叶黄素含C、H、O,胡萝卜素含C、H。
(2)据题可知,作物甲对同一种营养液(以硝酸铵为唯一氮源)中NH4﹢和NO3﹣的吸收具有偏好性(NH4﹢和NO3﹣同时存在时,对一种离子的吸收量大于另一种),植物对物质的吸收量越大,则营养液中的剩余量越小,以通过配制硝酸铵为唯一氮源的营养液培养作物甲,一段时间后测营养液中NH4﹢和NO3﹣剩余量为设计思路。理论上有两种结果,NO3﹣剩余量小于NH4﹢剩余量或者NH4﹢剩余量小于NO3﹣剩余量,从而总结出相应结论。
故答案为:(1)蛋白质 核酸 叶绿素
(2)实验思路:配制营养液(以硝酸铵为唯一氮源),用该营养液培养作物甲,一段时间后,检测营养液中NH4﹢和NO3﹣剩余量。
预期结果和结论:若营养液中NO3﹣剩余量小于NH4﹢剩余量,则说明作物甲偏好吸收NO3﹣;若营养液中NH4﹢剩余量小于NO3﹣剩余量,则说明作物甲偏好吸收NH4﹢。
【分析】主要考查植物生长的必需元素----氮元素。分子中含有氮元素的有机化合物通称为含氮有机物,常见的有蛋白质(多肽、氨基酸)、DNA(脱氧核苷酸)、RNA(核糖核苷酸)、NADH、NADPH、叶绿素、磷脂等。作物甲对同一种营养液(以硝酸铵为唯一氮源)中NH4﹢和NO3﹣的吸收量不同,植物对物质的吸收量越大,则营养液中的剩余量越小,因此以检测营养液中NH4﹢和NO3﹣剩余量为观察指标设计实验。若NO3﹣剩余量小于NH4﹢剩余量说明吸收NO3﹣多,若NH4﹢剩余量小于NO3﹣剩余量说明吸收NH4﹢多。据此答题。
27.【答案】(1)太阳能;初级消费者、分解者
(2)生产者净光合作用的放氧量;生产者光合作用的总放氧量;生产者呼吸作用的耗氧量
【知识点】生态系统的结构;光合作用和呼吸作用的区别与联系;生态系统的能量流动
【解析】【解答】(1)在森林生态系统中,生产者主要是绿色植物,绿色植物可以通过光合作用将太阳能转化为化学能,将能量引入生物群落。生产者固定的能量一部分可以通过初级消费者的摄食直接流入初级消费者,一部分储存在残枝败叶或遗体里的能量可以直接流向分解者,还有一部分能量可以通过生产者的细胞呼吸进入无机环境。
(2)甲水样不透光其中的浮游植物只能进行呼吸作用消耗氧气,所以A与B的差值表示这段时间内生产者呼吸作用的耗氧量;乙水样透光其中的浮游植物即可进行光合作用释放氧气又可进行呼吸作用消耗氧气,所以C与A的差值表示这段时间内生产者净光合作用的放氧量;则C与B的差值表示这段时间内生产者净光合作用的放氧量与呼吸作用的耗氧量之和,即生产者光合作用的总放氧量。
故答案为:(1)太阳能 初级消费者、分解者。(2)生产者净光合作用的放氧量;生产者光合作用的总放氧量;生产者呼吸作用的耗氧量。
【分析】1.生态系统中各成分之间的联系
2.净光合速率=总光合速率-呼吸速率
净光合速率:光照下测定的二氧化碳吸收或释放速率(或氧气释放或吸收速率)。
28.【答案】(1)增强
(2)降低;气孔开度减小使供应给光合作用所需的CO2减少
(3)取ABA缺失突变体植株,在正常条件下测定气孔开度,经干旱处理后,再测定气孔开度,预期结果是干旱处理前后气孔开度不变。
将上述干旱处理的ABA缺失突变体植株分成两组,在干旱条件下,一组进行ABA处理,另一组作为对照组,一段时间后,分别测定两组的气孔开度,预期结果是ABA处理组气孔开度减小,对照组气孔开度不变。
【知识点】影响光合作用的环境因素;渗透作用
【解析】【解答】(1)由题意知经干旱处理后,植物根细胞中溶质浓度增大,所以该植物根细胞的吸水能力将增强。
(2)由题意知干旱处理后叶片气孔开度减小,所以CO2吸收量减少,光合作用速率会降低
(3)取ABA缺失突变体植株,在正常情况下测定气孔开度,经干旱处理后,再测定气孔开度。预期结果干旱处理前后气孔开度不变。
将上述干旱处理的ABA缺失突变体植株分成两组,在干旱情况下,一组进行ABA处理,另一组做对照组,一段时间后,分别测定两组的气孔开度。预期结果是ABA处理组气孔开度减小,对照组气孔开度不变.。
故答案为:(1)增强 (2)降低 叶片气孔导度减小,CO2吸收量减少,所以光合速率下降
(3)取ABA缺失突变体植株,在正常情况下测定气孔开度,经干旱处理后,再测定气孔开度。预期结果干旱处理前后气孔开度不变。
将上述干旱处理的ABA缺失突变体植株分成两组,在干旱情况下,一组进行ABA处理,另一组做对照组,一段时间后,分别测定两组的气孔开度。预期结果是ABA处理组气孔开度减小,对照组气孔开度不变.。
【分析】(1)植物根部吸水主要靠主动运输吸收大量无机盐,使得自身细胞的浓度大于土壤浓度,从而让水顺浓度梯度运输进入细胞,所以细胞浓度越大,吸收能力越强。
(2)叶片气孔导度直接决定了可以从空气中吸收的CO2的量。
29.【答案】(1)类囊体膜;蓝紫光和红光
(2)增加;群体光合速率不变,但群体呼吸速率仍在增加,故群体干物质积累速率降低
(3)低
【知识点】影响光合作用的环境因素
【解析】【解答】(1)高等植物光合作用中捕获光能的色素分布在叶绿体的类囊体膜上,主要吸收可见光中的蓝紫光和红光。(2)植物群体光合速率=呼吸速率+干物质积累速率,在植物群体光合速率达到饱和前,随叶面积系数增加,群体光合速率和干物质积累速率均增加;由题图可看出当叶面积系数超过b时,植物群体光合速率达到饱和,但群体呼吸速率仍在增加,导致群体干物质积累速率降低。(3)与阳生植物相比,阴生植物达到光补偿点时所需要的光照强度要低。
【分析】本题考查了与光合作用有关的色素;实际光合速率与呼吸速率和净光合速率之间相互影响的关系;不同植物的光补偿点。叶绿体中的色素只吸收可见光,而对红外光和紫外光等不吸收。叶绿素对红光和蓝紫光的吸收量大,类胡萝卜素对蓝紫光的吸收量大,对其他波段的光并非不吸收,只是吸收量较少。
30.【答案】(1)下层;A叶片的净光合速率到达最大时所需光照强度低于B叶片
(2)暗
(3)无水乙醇
【知识点】叶绿体色素的提取和分离实验;光合作用的过程和意义;影响光合作用的环境因素
【解析】【解答】(1)下层叶片获得的光照低于上层叶片,导致光合作用强度低于上层,即光合速率较低。(2)光合作用分光反应和暗反应,光反应阶段产生氧气,据题意净光合速率下降但放氧速率不变说明不是光反应阶段受抑制导致,应该是暗反应受抑制导致。(3)绿叶中的色素能够溶解在有机溶剂无水乙醇,所以可以用无水乙醇提取绿叶中的色素。
【分析】(1)树冠下层叶片获得的光照低于上层,导致光合作用强度低于上层,即净光合速率较低。(2)光合作用的过程:
( 3 )提取叶绿体色素实验过程:
31.【答案】(1)甲
(2)甲;光照强度降低导致甲植物净光合速率降低的幅度比乙大,种植密度过大,植株接受的光照强度减弱,导致甲植物净光合速率下降幅度比乙大
(3)乙
(4)CO2
【知识点】影响光合作用的环境因素
【解析】【解答】(1)由图可知,当光照强度大于a时,甲的净光合速率大,光饱和点远大于乙,积累的有机物多,对光能的利用率较高。(2)甲、乙植物单独种植,且种植密度过大,会使每种植物的光照强度降低。从图中可以看出,光照强度的降低对甲植物的净光合速率影响大,导致甲植物净光合速率下降幅度比乙大。(3)从图中可以看出乙植物的光的饱和点和光补偿点都比甲低,因此更适合在林下种植。(4)夏日的晴天中午,为减少蒸腾作用水分散失,叶片上的气孔关闭,导致细胞间二氧化碳的含量下降,光合作用速率随之下降。
【分析】本题考查学生对光合作用图表的分析能力。图中甲、乙两种植物的净光合速率受不同光照强度的影响变化有区别,甲植物的变化幅度明显大于乙植物,甲植物对光能的利用率明显高于乙植物。当光照强度受到影响时甲植物受到的影响大于乙植物。乙植物由于光的饱和点和光补偿点都比较低,属于阴生植物。分析夏日的晴天中午,引起光合速率下降的原因,是由于气孔的关闭,二氧化碳的含量下降,影响了暗反应的进行。
32.【答案】(1)dATP脱去β、γ位上的两个磷酸基团后,则为腺嘌呤脱氧核苷酸,是合成DNA的原料之一
(2)防止RNA分子与染色体DNA的W基因片段发生杂交
(3)解旋
(4)DNA酶
【知识点】酶的特性;基因工程的应用;DNA分子的复制
【解析】【解答】 (1)DNA的组成单体是腺嘌呤脱氧核苷酸等4种核苷酸。当dA-Pα~Pβ~Pγ脱去β、γ位上的两个磷酸基团后,则为腺嘌呤脱氧核苷酸,是制备32p标记的DNA片段的原料。
(2)DNA和RNA都含有碱基,且DNA含有A、T、C、G四种碱基,RNA含有A、U、C、G四种碱基。碱基互补配对原则是A-T、C-G或者A-U。当碱基暴露出来时容易发生碱基互补配对,形成杂交带。去除RNA分子的目的是防止RNA分子与染色体DNA的W基因片段发生杂交 。
(3)DNA分子解旋后,DNA双链的碱基之间氢键断裂,暴露出DNA分子结构内部的碱基,变成的单链片段有机会和32p标记的DNA片段甲发生碱基互补配对,于是需要使样品中的染色体DNA进行解旋处理,例如加入解旋酶。
(4)酶具有专一性,转移的催化某一种或者一类化学反应。 在实验过程中用某种酶去除了样品中的DNA,这种酶是DNA酶。
【分析】 1、根据题意,通过带32p标记的DNA分子与染色体样品的基因进行碱基互补配对,形成杂交带,进行放射性检测,从而对W基因在染色体上的位置进行推测和判断。
2、DNA的组成基本单体是脱氧核苷酸,有四种,分别是腺嘌呤脱氧核苷酸、鸟嘌呤脱氧核苷酸、胸腺嘧啶脱氧核苷酸和胞嘧啶脱氧核苷酸。
3、正常DNA 分子碱基在分子内部,不可以和其他碱基配对,若果连接碱基的氢键断裂,可能出现核酸分子杂交现象。
33.【答案】(1)细胞质基质、线粒体、(叶绿体)类囊体薄膜;细胞呼吸
(2)蒸腾作用水分丢失;光合作用(暗反应)
(3)实验思路:
①选取长势相同的若干株植物甲,均分为两组,编号分别为A、B;
②一次性浇足水后,A组正常浇水,B组停止浇水,放在其他条件相同且适宜的环境中培养;
③一段时间后,分别检测两组植物甲白天和夜晚叶肉细胞液泡中的pH值,并分别取平均值。
预期结果:A组液泡中pH值白天和夜晚无明显变化:B组液泡中pH值夜晚显著低于白天。
【知识点】光合作用的过程和意义;影响光合作用的环境因素;有氧呼吸的过程和意义
【解析】【解答】(1)白天叶肉细胞既能进行光合作用,又能进行呼吸作用,所以白天叶肉细胞产生ATP的场所有:细胞质基质、线粒体和类囊体薄膜。细胞呼吸产生的CO2可为光合作用暗反应提供原料。
(2)夜间气孔打开,PEP羧化酶活性高,固定CO2形成苹果酸,储存在液泡中:白天气孔关闭、减少蒸腾作用水分散失,但苹果酸分解提供暗(碳)反应所需的CO2,不影响光合作用进行。
(3)根据题干,本题为验证型实验,实验目的为“验证植物甲在干旱环境中存在这种特殊CO2固定方式"。根据实验目的找出自变量为植物甲的生存环境,因变量为植物甲液泡中的pH值。据此设计实验,
实验思路为:
①选取长势相同的若干株植物甲,均分为两组,编号分别为A、B;
②一次性浇足水后,A组正常浇水,B组停止浇水,放在其他条件相同且适宜的环境中培养;
③一段时间后,分别检测两组植物甲白天和夜晚叶肉细胞液泡中的pH值,并分别取平均值。
因为正常浇水时,植物甲无这种特殊的固定方式,所以A组液泡中无苹果酸储存过程,液泡中pH值白天和夜晚无明显变化:又因为在干旱环境中植物甲特殊的CO2固定方式会将胞间二氧化碳固定形成苹果酸,储存在液泡中,故B组液泡中夜晚苹果酸储存较多pH值明显降低,白天液泡中苹果酸脱羧释放CO2,pH值升高。
【分析】 1、白天植物细胞可以进行呼吸作用和光合作用,均可以产生ATP,场所是“细胞质基质、线粒体”和“叶绿体”。呼吸作用可以产生CO2。有氧呼吸的过程:
C6H12O6+6H2O+6O2 → 6CO2+12H2O+能量。
2、蒸腾作用主要过程为:土壤中的水分→根毛→根内导管→茎内导管→叶内导管→气孔→大气。
3、首先确定自变量、因变量和无关变量。验证“植物甲在干旱环境中存在这种特殊的CO2固定方式”。所以自变量是“是否干旱条件”,因变量是“是否存在这种特殊的CO2固定方式”,CO2是酸性气体,可以用“pH作为检测指标”。
4、实验设计常规思路:①取材、②分组、③根据自变量进行适宜的实验处理(加法原理或者减法原理)、④观察实验现象和记录实验数据、⑤分析实验结果和得出实验结论、⑥进行交流、分析和报告。
5、预期结果可以结合实验目的和实验处理进行预测。
34.【答案】(1)碘液;还原糖(或答:葡萄糖)
(2)消除蛋白质所带净电荷对迁移率的影响;使蛋白质发生变性
(3)在pH相同时,不同缓冲系统条件下所测得的相对酶活性不同
(4)酶分子体积小,容易从包埋材料中漏出
【知识点】探究影响酶活性的因素;蛋白质的提取和分离;固定化酶及其应用
【解析】【解答】(1)测定酶活性时,可以通过检测反应物的减少或生成物的增加来反映酶活性,所以可以用碘液检测淀粉的减少,也可用斐林试剂检测还原糖(或葡萄糖)的增加。(2)鉴定蛋白质纯度常用SDS聚丙烯酰胺凝胶电泳法,凝胶中加入SDS可以消除蛋白质所带净电荷对迁移率的影响,并使蛋白质发生变性。(3)分析题中曲线可知,在pH相同时,不同缓冲系统条件下所测得的相对酶活性不同,可推测缓冲系统的组分对酶活性有影响。(4)由于酶分子体积小,容易从包埋材料中漏出,所以固定化酶时,一般不采用包埋法。
【分析】SDS聚丙烯酰胺凝胶电泳原理:在离子强度低时,主要以单体形式存在的SDS可以与蛋白质结合,生成蛋白质-SDS复合物。由于SDS带有大量负电荷,复合物所带的负电荷远远超过蛋白质原有的负电荷,这使得不同蛋白质间电荷的差异被掩盖。而SDS-蛋白质复合物形状都呈椭圆棒形,棒的长度与蛋白质亚基分子量有关,所以在SDS聚丙烯酰胺凝胶电泳中蛋白只存在分子大小的差别,利用这一点可将不同的蛋白质分开 (分子筛效应),因此SDS-PAGE常用于检测蛋白质亚基的分子量及鉴定纯度。
35.【答案】(1)全能性(或答:形成完整植株所需的全部基因)
(2)形成层容易诱导形成愈伤组织
(3)诱导愈伤组织形成和诱导愈伤组织分化形成试管苗所需的生长素和细胞分裂素的比例不同;分化(或答:再分化)
(4)诱导叶绿素的形成,使试管苗能够进行光合作用
(5)遗传特性;无性
【知识点】叶绿体结构及色素的分布和作用;植物组织培养的过程
【解析】【解答】(1)细胞全能性是指已经分化的细胞,仍然具有发育成完整生物体的潜能。在多细胞生物中,每个体细胞的细胞核都含有个体发育的全部基因,只要条件许可,都可发育成完整的个体。
(2)形成层细胞分裂能力强,细胞的全能性高,更容易诱导形成愈伤组织
(3)植物组织培养中,形成愈伤组织(脱分化)和诱导愈伤组织分化(再分化)时会用到生长素和细胞分裂素,只是两个时期所用激素的种类和浓度会有差别,脱分化过程中需要细胞增殖,所以生长素/细胞分裂素浓度比率会高一点,再分化时细胞分裂素/生长素浓度比率会高一点,因为细胞分裂素可以促进细胞分化,诱导组织生根发芽.
(4)再分化需要在光照环境下进行,以诱导叶绿素的形成,使试管苗能够进行光合作用。
(5)植物的组织培养是根据植物细胞具有全能性这个理论,近几十年来发展起来的一项无性繁殖的新技术,是细胞有丝分裂的结果,遗传物质没有发生改变。
故答案为:(1)全能性(或答:形成完整植株所需的全部基因);(2)形成层容易诱导形成愈伤组织;(3)诱导愈伤组织形成和诱导愈伤组织分化形成试管苗所需的生长素和细胞分裂素的比例不同 分化(或答:再分化);(4)诱导叶绿素的形成,使试管苗能够进行光合作用;(5)遗传特性 无性。
【分析】一个植物体的全部细胞,都是从受精卵经过有丝分裂产生的。受精卵是一个有着特异性的细胞,它具有本种植物所特有的全部遗传信息。因此,植物体内的每一个体细胞也都具有和受精卵完全有样的DNA序列和相同的细胞质环境。当这些细胞在植物体内时,全部遗传信息仍然被保存在DNA的序列链之中,一旦脱离了原来器官组织的束缚,成为游离状态,在一定的营养条件和植物激素的诱导下,细胞的全能性就能表现出来。于是就像一个受精卵那样,由单个细胞形成愈伤组织,然后成为胚状体,再进而长成一棵完整的植株。一般来说,细胞全能性高低与细胞分化程度有关,分化程度越高,细胞全能性越低,全能性表达越困难。植物细胞全能性高于动物细胞,而生殖细胞全能性高于体细胞。幼嫩的细胞全能性高于衰老的细胞。细胞分裂能力强的全能性高于细胞分裂能力弱的。
植物的组织培养是根据植物细胞具有全能性这个理论,近几十年来发展起来的一项无性繁殖的新技术。植物的组织培养指从植物体分离出符合需要的组织、器官或细胞,原生质体等,在无菌条件下接种在含有各种营养物质及植物激素的培养基上进行培养以获得再生的完整植株或生产具有经济价值的其他产品的技术。主要包括脱分化与再分化两个阶段:已分化的细胞经过诱导后失去其特有的结构和功能而转变成未分化细胞的过程叫脱分化,需要在无光环境下进行,这种未分化的细胞排列疏松而无规则,是一团无定形的薄壁细胞,称为愈伤组织。将处于脱分化状态的愈伤组织移植到合适的培养基(分化培养基)上继续培养,愈伤组织就会重新进行分化,并形成具有根、茎、叶的完整植株。这个过程就叫植物细胞的再分化,需要在光照环境下进行。
36.【答案】(1)牛肉膏、蛋白胨;X
(2)下降;不能降解X的细菌因缺乏碳源不能增殖,而能降解X的细菌能够增殖
(3)稀释涂布平板法
(4)能量;合成其他物质的原料
【知识点】有氧呼吸的过程和意义;测定某种微生物的数量;培养基对微生物的选择作用;培养基概述及其分类
【解析】【解答】(1)Ⅰ号培养基中含有N元素的物质只有牛肉膏蛋白胨,Ⅱ、Ⅲ号培养基中氯化钠,硝酸铵和其他无机盐都不含碳元素,所以惟一碳源只能是有机物X。
(2)Ⅱ号液体培养基中惟一碳源为有机物X,所以不能分解有机物X的细菌无法获得碳元素,故其无法合成细胞所需的有机物,细胞将会死亡。
(3)该问的关键点在于计数,但是由于平板划线法不能计数,而稀释涂布平板法能计数,所以该空填稀释涂布平板法。
(4)丙酮酸为呼吸作用的原料,且元素组成为C,H,O,所以能为细菌生长提供能量和碳源。
故答案为:(1)牛肉膏蛋白胨 有机物X (2)下降 不能降解有机物X的细菌无法繁殖
(3)稀释涂布平板法 (4)能量和碳源
【分析】1.培养基的概念、种类及营养构成
(1)概念:人们按照微生物对营养物质的不同需求,配制出的供其生长繁殖的营养基质。
(3)营养构成:各种培养基一般都含有水、碳源、氮源、无机盐,此外还要满足微生物生长对pH、特殊营养物质以及氧气的要求。
2、制备牛肉膏蛋白胨固体培养基的方法:计算、称量、溶化、灭菌、倒平板。
3、接种方法:平板划线法和稀释涂布法。
(1)平板划线操作:
①挑取他含菌样品:选用平整、圆滑的接种环,按无菌操作法挑取少量菌种。
②划A区:将平板倒置于煤气(酒精)灯旁,左手拿出皿底并尽量使平板垂直于桌面,有培养基一面向着煤气灯(这时皿盖朝上,仍留在煤气灯旁),右手拿接种环先在A区划3—4条连续的平行线(线条多少应依挑菌量的多少面定)。划完A区后应立即烧掉环上的残菌,以免因菌过多而影响后面各区的分离效果。在烧接种环时,左手持皿底并将其覆盖在皿盖上方(不要放入皿盖内),以防止杂菌的污染。
③划其他区:将烧去残菌后的接种环在平板培养基边缘冷却一下,并使B区转到上方,接种环通过A区(菌源区)将菌带到B区,随即划数条致密的平行线。再从B区作C区的划线。最后经C区作D区的划线,D区的线条应与A区平行,但划D区时切勿重新接触A、B区,以免极该两区中浓密的菌液带到D区,影响单菌落的形成。随即将皿底放入皿盖中。烧去接种环上的残菌。
④等平板凝固后,将平板倒置。
(2)稀释涂布法:是将菌液进行一系列的梯度稀释,然后将不同稀释度的菌液分别涂布到琼脂固体培养基的表面,在适宜条件下培养。在稀释度足够高的菌液里,聚集在一起的微生物将被分散成单个细胞,从而能在培养基表面形成单个的菌落。能够测定样品中活菌数的方法是:稀释涂布平板法。
1 / 1
同课章节目录