中小学教育资源及组卷应用平台
菱形的性质与判定第3课时参考答案
一.基础性作业(必做题)
1.C; 2.B;3. 24;4. 4;5. 30°;
6.证明:(1)∵AD∥BC,CD∥AB,
∴四边形ABCD是平行四边形,
∴AB=DC,
∵DC=CE,
∴AB=CE,
∵AB∥CD,
∴AB∥CE,
∴四边形ACEB是平行四边形,
∵AB=AC,
∴平行四边形ACEB是菱形;
(2)如图,连接AE,交BC于点O,
∵四边形ACEB是菱形,
∴AE⊥BC,
∵AB=4,BC=6,
∴OB=BC=3,
∴OA=,
∴AE=2OA=,
∴
二、拓展性作业(选做题)
1.(1)(2)(3)(4);
2.(1)证明:∵AF平分∠BAD,
∴∠BAF=∠DAF,
∵四边形ABCD是平行四边形,
∴AD∥BC,AB∥CD,
∴∠DAF=∠CEF,∠BAF=∠CFE,
∴∠CEF=∠CFE,
∴CE=CF,
又∵四边形ECFG是平行四边形,
∴四边形ECFG为菱形.
(2)解:如图2,连接BM,MC,
∵∠ABC=90°,四边形ABCD是平行四边形,
∴四边形ABCD是矩形,
∴∠BCD=90°,
∴∠ECF=90°,
由(1)可知,四边形ECFG为菱形,
∴四边形ECFG为正方形.
∵∠BAF=∠DAF,
∴BE=AB=DC,
∵M为EF中点,
∴∠CEM=∠ECM=45°,
∴∠BEM=∠DCM=135°,
在△BME和△DMC中,
BE=CD
∠BEM=∠DCM
EM=CM
∴△BME≌△DMC(SAS),
∴MB=MD,
∠DMC=∠BME.
∴∠BMD=∠BME+∠EMD=∠DMC+∠EMD=90°,
∴△BMD是等腰直角三角形,
∴∠BDM=45°.
3.(1)证明:能.
理由如下:在△DFC中,∠DFC=90°,∠C=30°,DC=4t,
∴DF=2t,
又∵AE=2t,
∴AE=DF,
∵AB⊥BC,DF⊥BC,
∴AE∥DF,
又∵AE=DF,
∴四边形AEFD为平行四边形,
当AE=AD时,四边形AEFD为菱形,
即60﹣4t=2t,解得t=10.
∴当t=10秒时,四边形AEFD为菱形.
(2)①当∠DEF=90°时,由(1)知四边形AEFD为平行四边形,
∴EF∥AD,
∴∠ADE=∠DEF=90°,
∵∠A=60°,
∴∠AED=30°,
∴AD=AE=t,
又AD=60﹣4t,即60﹣4t=t,解得t=12;
②当∠EDF=90°时,四边形EBFD为矩形,在Rt△AED中∠A=60°,则∠ADE=30°,
∴AD=2AE,即60﹣4t=4t,解得t=.
③若∠EFD=90°,则E与B重合,D与A重合,此种情况不存在.
综上所述,当t=或12秒时,△DEF为直角三角形.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
菱形的性质与判定第3课时课后作业
一.基础性作业(必做题)
1.下列说法中不正确的是( )
A.对角线垂直的平行四边形是菱形
B.四边相等的四边形是菱形
C.菱形的对角线互相垂直且相等
D.菱形的邻边相等
2.如图1,剪两张对边平行的纸片随意交叉叠放在一起,转动其中一张,
重合部分构成一个四边形,则下列结论中不一定成立的是( )
A.∠DAB+∠ABC=180° B.AB=BC
C.AB=CD,AD=BC D.∠ABC=∠ADC,∠BAD=∠BCD
3.如图2,△ABC中,AD平分∠BAC,DE∥AC交AB于E,DF∥AB交AC于F,若AF=6,则四边形AEDF的周长是 .
4.如图3,两条笔直的公 ( http: / / www.21cnjy.com )路l1、l2相交于点O,村庄C的村民在公路的旁边建三个加工厂A、B、D,已知AB=BC=CD=DA=5公里,村庄C到公路l1的距离为4公里,则村庄C到公路l2的距离是 .
5.如图4,①以点A为圆心2cm长为半 ( http: / / www.21cnjy.com )径画弧分别交∠MAN的两边AM、AN于点B、D;②以点B为圆心,AD长为半径画弧,再以点D为圆心,AB长为半径画弧,两弧交于点C; ③分别连接BC、CD、AC.若∠MAN=60°,则∠ACB的大小为 .
6.如图5,在△ABC中,AB=AC,过A、C两点分别作AD∥BC,CD∥AB交于点D,延长DC至点E,使DC=CE,连接BE.
(1)求证:四边形ACEB是菱形;
(2)若AB=4,BC=6,求四边形ACEB的面积.
二、拓展性作业(选做题)
1.如图6,在菱形ABCD中,对 ( http: / / www.21cnjy.com )角线AC与BD相交于点O,∠ABC=60°,点E,F分别是BC,CD的中点,BD分别与AE,AF相交于点M,N,连接OE,OF,下列结论:(1)△AEF是等边三角形;(2)四边形CEOF是菱形;(3)OF⊥AE;(4)BM=MN=ND.其中正确的结论有 .
2.在平行四边形ABCD中,∠BAD的平分线交线段BC于点E,交线段DC的延长线于点F,以EC,CF为邻边作平行四边形ECFG.
(1)如图7-1,求证:平行四边形ECFG为菱形;
(2)如图7-2,若∠ABC=90°,M是EF的中点,求∠BDM的度数.
3.如图8,在Rt△ABC中,∠ ( http: / / www.21cnjy.com )B=90°,AC=60cm,∠A=60°,点D从点C出发沿CA方向以4cm/秒的速度向点A匀速运动,同时点E从点A出发沿AB方向以2cm/秒的速度向点B匀速运动,当其中一个点到达终点时,另一个点也随之停止运动.设点D,E运动的时间是t秒(0<t≤15).过点D作DF⊥BC于点F,连接DE,EF.
(1)四边形AEFD能够成为菱形吗?如果能,求出相应的t值;如果不能,请说明理由;
(2)当t为何值时,△DEF为直角三角形?请说明理由.
图1
图4
图3
图2
图5
图6
图7-1
图7-2
图8
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)