中小学教育资源及组卷应用平台
十:统计概率
一:选择题
1.(2022·全国甲(文T2)(理T2))某社区通过公益讲座以普及社区居民的垃圾分类知识.为了解讲座效果,随机抽取10位社区居民,让他们在讲座前和讲座后各回答一份垃圾分类知识问卷,这10位社区居民在讲座前和讲座后问卷答题的正确率如下图:
则( )
A. 讲座前问卷答题的正确率的中位数小于
B. 讲座后问卷答题的正确率的平均数大于
C. 讲座前问卷答题的正确率的标准差小于讲座后正确率的标准差
D. 讲座后问卷答题的正确率的极差大于讲座前正确率的极差
2.(2022·全国甲(文)T6)从分别写有1,2,3,4,5,6的6张卡片中无放回随机抽取2张,则抽到的2张卡片上的数字之积是4的倍数的概率为( )
A. B. C. D.
3.(2022·全国乙(文)T)4. 分别统计了甲、乙两位同学16周的各周课外体育运动时长(单位:h),得如下茎叶图:
则下列结论中错误的是( )
A. 甲同学周课外体育运动时长的样本中位数为7.4
B. 乙同学周课外体育运动时长的样本平均数大于8
C. 甲同学周课外体育运动时长大于8的概率的估计值大于0.4
D. 乙同学周课外体育运动时长大于8的概率的估计值大于0.6
4.(2022·全国乙(理)T10)某棋手与甲、乙、丙三位棋手各比赛一盘,各盘比赛结果相互独立.已知该棋手与甲、乙、丙比赛获胜概率分别为,且.记该棋手连胜两盘的概率为p,则( )
A. p与该棋手和甲、乙、丙的比赛次序无关 B. 该棋手在第二盘与甲比赛,p最大
C. 该棋手在第二盘与乙比赛,p最大 D. 该棋手在第二盘与丙比赛,p最大
5.(2022·新高考Ⅰ卷T5) 从2至8的7个整数中随机取2个不同的数,则这2个数互质的概率为( )
A. B. C. D.
6.(2022·新高考Ⅱ卷T5) 有甲乙丙丁戊5名同学站成一排参加文艺汇演,若甲不站在两端,丙和丁相邻的不同排列方式有多少种( )
A. 12种 B. 24种 C. 36种 D. 48种
7.(2021·全国(文))为了解某地农村经济情况,对该地农户家庭年收入进行抽样调查,将农户家庭年收入的调查数据整理得到如下频率分布直方图:
根据此频率分布直方图,下面结论中不正确的是( )
A.该地农户家庭年收入低于4.5万元的农户比率估计为6%
B.该地农户家庭年收入不低于10.5万元的农户比率估计为10%
C.估计该地农户家庭年收入的平均值不超过6.5万元
D.估计该地有一半以上的农户,其家庭年收入介于4.5万元至8.5万元之间
8.(2021·全国(理))将4个1和2个0随机排成一行,则2个0不相邻的概率为( )
A. B. C. D.
9.(2021·全国(文))将3个1和2个0随机排成一行,则2个0不相邻的概率为( )
A.0.3 B.0.5 C.0.6 D.0.8
10.(2021·全国(理))在区间与中各随机取1个数,则两数之和大于的概率为( )
A. B. C. D.
11.(2021·全国(文))在区间随机取1个数,则取到的数小于的概率为( )
A. B. C. D.
12.(2021·全国)有6个相同的球,分别标有数字1,2,3,4,5,6,从中有放回的随机取两次,每次取1个球,甲表示事件“第一次取出的球的数字是1”,乙表示事件“第二次取出的球的数字是2”,丙表示事件“两次取出的球的数字之和是8”,丁表示事件“两次取出的球的数字之和是7”,则( )
A.甲与丙相互独立 B.甲与丁相互独立
C.乙与丙相互独立 D.丙与丁相互独立
13.(2020·天津)从一批零件中抽取80个,测量其直径(单位:),将所得数据分为9组:,并整理得到如下频率分布直方图,则在被抽取的零件中,直径落在区间内的个数为( )
A.10 B.18 C.20 D.36
14.(2020·全国(文))设一组样本数据x1,x2,…,xn的方差为0.01,则数据10x1,10x2,…,10xn的方差为( )
A.0.01 B.0.1 C.1 D.10
15.(2020·全国(文))如图,将钢琴上的12个键依次记为a1,a2,…,a12.设1≤iA.5 B.8 C.10 D.15
16.(2020·全国(理))在一组样本数据中,1,2,3,4出现的频率分别为,且,则下面四种情形中,对应样本的标准差最大的一组是( )
A. B.
C. D.
17.(2020·全国(文))设O为正方形ABCD的中心,在O,A,B,C,D中任取3点,则取到的3点共线的概率为( )
A. B.
C. D.
18.(2020·全国(理))某校一个课外学习小组为研究某作物种子的发芽率y和温度x(单位:°C)的关系,在20个不同的温度条件下进行种子发芽实验,由实验数据得到下面的散点图:
由此散点图,在10°C至40°C之间,下面四个回归方程类型中最适宜作为发芽率y和温度x的回归方程类型的是( )
A. B.
C. D.
19.(2019·浙江)设,则随机变量的分布列是:
则当在内增大时
A.增大 B.减小
C.先增大后减小 D.先减小后增大
20.(2019·全国(文))某学校为了解1 000名新生的身体素质,将这些学生编号为1,2,…,1 000,从这些新生中用系统抽样方法等距抽取100名学生进行体质测验,若46号学生被抽到,则下面4名学生中被抽到的是
A.8号学生 B.200号学生 C.616号学生 D.815号学生
21.(2019·全国(理))演讲比赛共有9位评委分别给出某选手的原始评分,评定该选手的成绩时,从9个原始评分中去掉1个最高分、1个最低分,得到7个有效评分.7个有效评分与9个原始评分相比,不变的数字特征是
A.中位数 B.平均数
C.方差 D.极差
22.(2019·全国(理))我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“— —”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是
A. B. C. D.
23.(2018·浙江)设,随机变量的分布列如图,则当在内增大时,
A.减小 B.增大
C.先减小后增大 D.先增大后减小
24.(2018·全国(理))某群体中的每位成员使用移动支付的概率都为,各成员的支付方式相互独立,设为该群体的10位成员中使用移动支付的人数,,,则
A.0.7 B.0.6 C.0.4 D.0.3
25.(2018·全国(理))如图来自古希腊数学家希波克拉底所研究的几何图形.此图由三个半圆构成,三个半圆的直径分别为直角三角形ABC的斜边BC,直角边AB,AC.△ABC的三边所围成的区域记为I,黑色部分记为II,其余部分记为III.在整个图形中随机取一点,此点取自I,II,III的概率分别记为p1,p2,p3,则
A.p1=p2 B.p1=p3
C.p2=p3 D.p1=p2+p3
26.(2018·全国(文))某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:
则下面结论中不正确的是
A.新农村建设后,种植收入减少
B.新农村建设后,其他收入增加了一倍以上
C.新农村建设后,养殖收入增加了一倍
D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
27.(2021·全国)有一组样本数据,,…,,由这组数据得到新样本数据,,…,,其中(为非零常数,则( )
A.两组样本数据的样本平均数相同
B.两组样本数据的样本中位数相同
C.两组样本数据的样本标准差相同
D.两组样数据的样本极差相同
28.(2020·海南)我国新冠肺炎疫情进入常态化,各地有序推进复工复产,下面是某地连续11天复工复产指数折线图,下列说法正确的是
A.这11天复工指数和复产指数均逐日增加;
B.这11天期间,复产指数增量大于复工指数的增量;
C.第3天至第11天复工复产指数均超过80%;
D.第9天至第11天复产指数增量大于复工指数的增量;
29.(2020·海南)信息熵是信息论中的一个重要概念.设随机变量X所有可能的取值为,且,定义X的信息熵.( )
A.若n=1,则H(X)=0
B.若n=2,则H(X)随着的增大而增大
C.若,则H(X)随着n的增大而增大
D.若n=2m,随机变量Y所有可能的取值为,且,则H(X)≤H(Y)
二:填空题
30.(2022·浙江卷T15) 现有7张卡片,分别写上数字1,2,2,3,4,5,6.从这7张卡片中随机抽取3张,记所抽取卡片上数字最小值为,则__________,_________.
31.(2022·全国甲(理)T15) 从正方体的8个顶点中任选4个,则这4个点在同一个平面的概率为________.
32.(2022·全国乙(文T14)(理T13)) 从甲、乙等5名同学中随机选3名参加社区服务工作,则甲、乙都入选的概率为____________.
33.(2022·新高考Ⅱ卷T13) 已知随机变量X服从正态分布,且,则____________.
34.(2021·浙江)袋中有4个红球m个黄球,n个绿球.现从中任取两个球,记取出的红球数为,若取出的两个球都是红球的概率为,一红一黄的概率为,则___________,___________.
35.(2020·浙江)盒子里有4个球,其中1个红球,1个绿球,2个黄球,从盒中随机取球,每次取1个,不放回,直到取出红球为止.设此过程中取到黄球的个数为,则_______;______.
36.(2017·北京(理))三名工人加工同一种零件,他们在一天中的工作情况如图所示,其中点Ai的横、纵坐标分别为第i名工人上午的工作时间和加工的零件数,点Bi的横、纵坐标分别为第i名工人下午的工作时间和加工的零件数,i=1,2,3.
①记Qi为第i名工人在这一天中加工的零件总数,则Q1,Q2,Q3中最大的是_________.
②记pi为第i名工人在这一天中平均每小时加工的零件数,则p1,p2,p3中最大的是_________.
37.(2020·天津)已知甲、乙两球落入盒子的概率分别为和.假定两球是否落入盒子互不影响,则甲、乙两球都落入盒子的概率为_________;甲、乙两球至少有一个落入盒子的概率为_________.
38.(2020·江苏)已知一组数据的平均数为4,则的值是_____.
39.(2020·江苏)将一颗质地均匀的正方体骰子先后抛掷2次,观察向上的点数,则点数和为5的概率是_____.
40.(2019·全国(文))我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,有10个车次的正点率为0.97,有20个车次的正点率为0.98,有10个车次的正点率为0.99,则经停该站高铁列车所有车次的平均正点率的估计值为___________.
三:解答题
41.(2022·全国甲(文)T)(2022·全国甲(文)T17)甲、乙两城之间的长途客车均由A和B两家公司运营,为了解这两家公司长途客车的运行情况,随机调查了甲、乙两城之间的500个班次,得到下面列联表:
准点班次数 未准点班次数
A 240 20
B 210 30
(1)根据上表,分别估计这两家公司甲、乙两城之间的长途客车准点的概率;
(2)能否有90%的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关?
附:
0.050 0.010 0.001
k 3.841 6.635 10.828
42.(2022·全国甲(理)T19)甲、乙两个学校进行体育比赛,比赛共设三个项目,每个项目胜方得10分,负方得0分,没有平局.三个项目比赛结束后,总得分高的学校获得冠军.已知甲学校在三个项目中获胜的概率分别为0.5,0.4,0.8,各项目的比赛结果相互独立.
(1)求甲学校获得冠军的概率;
(2)用X表示乙学校的总得分,求X的分布列与期望.
43.(2022·全国乙(文T19)(理T19) 某地经过多年的环境治理,已将荒山改造成了绿水青山.为估计一林区某种树木的总材积量,随机选取了10棵这种树木,测量每棵树的根部横截面积(单位:)和材积量(单位:),得到如下数据:
样本号i 1 2 3 4 5 6 7 8 9 10 总和
根部横截面积 0.04 0.06 0.04 0.08 0.08 0.05 0.05 0.07 0.07 0.06 0.6
材积量 0.25 0.40 0.22 0.54 0.51 0.34 0.36 0.46 0.42 0.40 3.9
并计算得.
(1)估计该林区这种树木平均一棵的根部横截面积与平均一棵的材积量;
(2)求该林区这种树木的根部横截面积与材积量的样本相关系数(精确到0.01);
(3)现测量了该林区所有这种树木的根部横截面积,并得到所有这种树木的根部横截面积总和为.已知树木的材积量与其根部横截面积近似成正比.利用以上数据给出该林区这种树木的总材积量的估计值.
附:相关系数.
44(2022·新高考Ⅰ卷T20)一医疗团队为研究某地的一种地方性疾病与当地居民的卫生习惯(卫生习惯分为良好和不够良好两类)的关系,在已患该疾病的病例中随机调查了100例(称为病例组),同时在未患该疾病的人群中随机调查了100人(称为对照组),得到如下数据:
不够良好 良好
病例组 40 60
对照组 10 90
(1)能否有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异?
(2)从该地的人群中任选一人,A表示事件“选到的人卫生习惯不够良好”,B表示事件“选到的人患有该疾病”.与的比值是卫生习惯不够良好对患该疾病风险程度的一项度量指标,记该指标为R.
(ⅰ)证明:;
(ⅱ)利用该调查数据,给出的估计值,并利用(ⅰ)的结果给出R的估计值.
附,
0.050 0.010 0.001
k 3.841 6.635 10.828
45.(2022·新高考Ⅱ卷T19) 在某地区进行流行病调查,随机调查了100名某种疾病患者的年龄,得到如下的样本数据频率分布直方图.
(1)估计该地区这种疾病患者的平均年龄(同一组中的数据用该组区间的中点值作代表);
(2)估计该地区一人患这种疾病年龄在区间的概率;
(3)已知该地区这种疾病的患病率为,该地区年龄位于区间的人口占该地区总人口的,从该地区任选一人,若此人年龄位于区间,求此人患该种疾病的概率.(样本数据中的患者年龄位于各区间的频率作为患者年龄位于该区间的概率,精确到0.0001)
46.(2022·北京卷T18) 在校运动会上,只有甲、乙、丙三名同学参加铅球比赛,比赛成绩达到以上(含)的同学将获得优秀奖.为预测获得优秀奖的人数及冠军得主,收集了甲、乙、丙以往的比赛成绩,并整理得到如下数据(单位:m):
甲:9.80,9.70,9.55,9.54,9.48,9.42,9.40,935,9.30,9.25;
乙:9.78,9.56,9.51,9.36,9.32,9.23;
丙:9.85,9.65,9.20,9.16.
假设用频率估计概率,且甲、乙、丙的比赛成绩相互独立.
(1)估计甲在校运动会铅球比赛中获得优秀奖的概率;
(2)设X是甲、乙、丙在校运动会铅球比赛中获得优秀奖的总人数,估计X的数学期望E(X);
(3)在校运动会铅球比赛中,甲、乙、丙谁获得冠军的概率估计值最大?(结论不要求证明)
47.(2021·全国)某学校组织“一带一路”知识竞赛,有A,B两类问题,每位参加比赛的同学先在两类问题中选择一类并从中随机抽取一个问题回答,若回答错误则该同学比赛结束;若回答正确则从另一类问题中再随机抽取一个问题回答,无论回答正确与否,该同学比赛结束.A类问题中的每个问题回答正确得20分,否则得0分;B类问题中的每个问题回答正确得80分,否则得0分,己知小明能正确回答A类问题的概率为0.8,能正确回答B类问题的概率为0.6,且能正确回答问题的概率与回答次序无关.
(1)若小明先回答A类问题,记为小明的累计得分,求的分布列;
(2)为使累计得分的期望最大,小明应选择先回答哪类问题?并说明理由.
48.(2021·全国(文))甲、乙两台机床生产同种产品,产品按质量分为一级品和二级品,为了比较两台机床产品的质量,分别用两台机床各生产了200件产品,产品的质量情况统计如下表:
一级品 二级品 合计
甲机床 150 50 200
乙机床 120 80 200
合计 270 130 400
(1)甲机床、乙机床生产的产品中一级品的频率分别是多少
(2)能否有99%的把握认为甲机床的产品质量与乙机床的产品质量有差异
附:
0.050 0.010 0.001
k 3.841 6.635 10.828
49.(2021·全国(理))某厂研制了一种生产高精产品的设备,为检验新设备生产产品的某项指标有无提高,用一台旧设备和一台新设备各生产了10件产品,得到各件产品该项指标数据如下:
旧设备 9.8 10.3 10.0 10.2 9.9 9.8 10.0 10.1 10.2 9.7
新设备 10.1 10.4 10.1 10.0 10.1 10.3 10.6 10.5 10.4 10.5
旧设备和新设备生产产品的该项指标的样本平均数分别记为和,样本方差分别记为和.
(1)求,,,;
(2)判断新设备生产产品的该项指标的均值较旧设备是否有显著提高(如果,则认为新设备生产产品的该项指标的均值较旧设备有显著提高,否则不认为有显著提高).
50.(2020·海南)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了天空气中的和浓度(单位:),得下表:
32 18 4
6 8 12
3 7 10
(1)估计事件“该市一天空气中浓度不超过,且浓度不超过”的概率;
(2)根据所给数据,完成下面的列联表:
(3)根据(2)中的列联表,判断是否有的把握认为该市一天空气中浓度与浓度有关?
附:,
0.050 0.010 0.001
3.841 6.635 10.828
51.(2020·北京)某校为举办甲、乙两项不同活动,分别设计了相应的活动方案:方案一、方案二.为了解该校学生对活动方案是否支持,对学生进行简单随机抽样,获得数据如下表:
男生 女生
支持 不支持 支持 不支持
方案一 200人 400人 300人 100人
方案二 350人 250人 150人 250人
假设所有学生对活动方案是否支持相互独立.
(Ⅰ)分别估计该校男生支持方案一的概率、该校女生支持方案一的概率;
(Ⅱ)从该校全体男生中随机抽取2人,全体女生中随机抽取1人,估计这3人中恰有2人支持方案一的概率;
(Ⅲ)将该校学生支持方案二的概率估计值记为,假设该校一年级有500名男生和300名女生,除一年级外其他年级学生支持方案二的概率估计值记为,试比较与 的大小.(结论不要求证明)
52.(2020·山东)为加强环境保护,治理空气污染,环境监测部门对某市空气质量进行调研,随机抽查了天空气中的和浓度(单位:),得下表:
(1)估计事件“该市一天空气中浓度不超过,且浓度不超过”的概率;
(2)根据所给数据,完成下面的列联表:
(3)根据(2)中的列联表,判断是否有的把握认为该市一天空气中浓度与浓度有关?
附:,
53.(2020·江苏)甲口袋中装有2个黑球和1个白球,乙口袋中装有3个白球.现从甲、乙两口袋中各任取一个球交换放入另一口袋,重复n次这样的操作,记甲口袋中黑球个数为Xn,恰有2个黑球的概率为pn,恰有1个黑球的概率为qn.
(1)求p1·q1和p2·q2;
(2)求2pn+qn与2pn-1+qn-1的递推关系式和Xn的数学期望E(Xn)(用n表示) .
54.(2020·全国(文))某学生兴趣小组随机调查了某市100天中每天的空气质量等级和当天到某公园锻炼的人次,整理数据得到下表(单位:天):
锻炼人次 空气质量等级 [0,200] (200,400] (400,600]
1(优) 2 16 25
2(良) 5 10 12
3(轻度污染) 6 7 8
4(中度污染) 7 2 0
(1)分别估计该市一天的空气质量等级为1,2,3,4的概率;
(2)求一天中到该公园锻炼的平均人次的估计值(同一组中的数据用该组区间的中点值为代表);
(3)若某天的空气质量等级为1或2,则称这天“空气质量好”;若某天的空气质量等级为3或4,则称这天“空气质量不好”.根据所给数据,完成下面的2×2列联表,并根据列联表,判断是否有95%的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关?
人次≤400 人次>400
空气质量好
空气质量不好
附:,
P(K2≥k) 0.050 0.010 0.001
k 3.841 6.635 10.828
55.(2020·全国(文))某厂接受了一项加工业务,加工出来的产品(单位:件)按标准分为A,B,C,D四个等级.加工业务约定:对于A级品、B级品、C级品,厂家每件分别收取加工费90元,50元,20元;对于D级品,厂家每件要赔偿原料损失费50元.该厂有甲、乙两个分厂可承接加工业务.甲分厂加工成本费为25元/件,乙分厂加工成本费为20元/件.厂家为决定由哪个分厂承接加工业务,在两个分厂各试加工了100件这种产品,并统计了这些产品的等级,整理如下:
甲分厂产品等级的频数分布表
等级 A B C D
频数 40 20 20 20
乙分厂产品等级的频数分布表
等级 A B C D
频数 28 17 34 21
(1)分别估计甲、乙两分厂加工出来的一件产品为A级品的概率;
(2)分别求甲、乙两分厂加工出来的100件产品的平均利润,以平均利润为依据,厂家应选哪个分厂承接加工业务
56.(2020·全国(理))甲、乙、丙三位同学进行羽毛球比赛,约定赛制如下:累计负两场者被淘汰;比赛前抽签决定首先比赛的两人,另一人轮空;每场比赛的胜者与轮空者进行下一场比赛,负者下一场轮空,直至有一人被淘汰;当一人被淘汰后,剩余的两人继续比赛,直至其中一人被淘汰,另一人最终获胜,比赛结束.经抽签,甲、乙首先比赛,丙轮空.设每场比赛双方获胜的概率都为,
(1)求甲连胜四场的概率;
(2)求需要进行第五场比赛的概率;
(3)求丙最终获胜的概率.
57.(2020·全国(理))某沙漠地区经过治理,生态系统得到很大改善,野生动物数量有所增加.为调查该地区某种野生动物的数量,将其分成面积相近的200个地块,从这些地块中用简单随机抽样的方法抽取20个作为样区,调查得到样本数据(xi,yi)(i=1,2,…,20),其中xi和yi分别表示第i个样区的植物覆盖面积(单位:公顷)和这种野生动物的数量,并计算得,,,,.
(1)求该地区这种野生动物数量的估计值(这种野生动物数量的估计值等于样区这种野生动物数量的平均数乘以地块数);
(2)求样本(xi,yi)(i=1,2,…,20)的相关系数(精确到0.01);
(3)根据现有统计资料,各地块间植物覆盖面积差异很大.为提高样本的代表性以获得该地区这种野生动物数量更准确的估计,请给出一种你认为更合理的抽样方法,并说明理由.
附:相关系数r=,≈1.414.
58.(2019·江苏)在平面直角坐标系xOy中,设点集,令.从集合Mn中任取两个不同的点,用随机变量X表示它们之间的距离.
(1)当n=1时,求X的概率分布;
(2)对给定的正整数n(n≥3),求概率P(X≤n)(用n表示).
59.(2019·北京(文))改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校所有的1000名学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:
(Ⅰ)估计该校学生中上个月A,B两种支付方式都使用的人数;
(Ⅱ)从样本仅使用B的学生中随机抽取1人,求该学生上个月支付金额大于2000元的概率;
(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用B的学生中随机抽查1人,发现他本月的支付金额大于2000元.结合(Ⅱ)的结果,能否认为样本仅使用B的学生中本月支付金额大于2000元的人数有变化?说明理由.
60.(2019·北京(理))改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月A,B两种移动支付方式的使用情况,从全校学生中随机抽取了100人,发现样本中A,B两种支付方式都不使用的有5人,样本中仅使用A和仅使用B的学生的支付金额分布情况如下:
交付金额(元) 支付方式 (0,1000] (1000,2000] 大于2000
仅使用A 18人 9人 3人
仅使用B 10人 14人 1人
(Ⅰ)从全校学生中随机抽取1人,估计该学生上个月A,B两种支付方式都使用的概率;
(Ⅱ)从样本仅使用A和仅使用B的学生中各随机抽取1人,以X表示这2人中上个月支付金额大于1000元的人数,求X的分布列和数学期望;
(Ⅲ)已知上个月样本学生的支付方式在本月没有变化.现从样本仅使用A的学生中,随机抽查3人,发现他们本月的支付金额都大于2000元.根据抽查结果,能否认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化?说明理由.
61.(2019·全国(理))为了解甲、乙两种离子在小鼠体内的残留程度,进行如下试验:将200只小鼠随机分成两组,每组100只,其中组小鼠给服甲离子溶液,组小鼠给服乙离子溶液.每只小鼠给服的溶液体积相同、摩尔浓度相同.经过一段时间后用某种科学方法测算出残留在小鼠体内离子的百分比.根据试验数据分别得到如下直方图:
记为事件:“乙离子残留在体内的百分比不低于”,根据直方图得到的估计值为.
(1)求乙离子残留百分比直方图中的值;
(2)分别估计甲、乙离子残留百分比的平均值(同一组中的数据用该组区间的中点值为代表).
62.(2019·天津(文))2019年,我国施行个人所得税专项附加扣除办法,涉及子女教育、继续教育、大病医疗、住房贷款利息或者住房租金、赡养老人等六项专项附加扣除.某单位老、中、青员工分别有人,现采用分层抽样的方法,从该单位上述员工中抽取人调查专项附加扣除的享受情况.
(Ⅰ)应从老、中、青员工中分别抽取多少人?
(Ⅱ)抽取的25人中,享受至少两项专项附加扣除的员工有6人,分别记为.享受情况如下表,其中“”表示享受,“×”表示不享受.现从这6人中随机抽取2人接受采访.
员工 项目 A B C D E F
子女教育 ○ ○ × ○ × ○
继续教育 × × ○ × ○ ○
大病医疗 × × × ○ × ×
住房贷款利息 ○ ○ × × ○ ○
住房租金 × × ○ × × ×
赡养老人 ○ ○ × × × ○
(i)试用所给字母列举出所有可能的抽取结果;
(ii)设为事件“抽取的2人享受的专项附加扣除至少有一项相同”,求事件发生的概率.
63.(2019·天津(理))设甲、乙两位同学上学期间,每天7:30之前到校的概率均为.假定甲、乙两位同学到校情况互不影响,且任一同学每天到校情况相互独立.
(Ⅰ)用表示甲同学上学期间的三天中7:30之前到校的天数,求随机变量的分布列和数学期望;
(Ⅱ)设为事件“上学期间的三天中,甲同学在7:30之前到校的天数比乙同学在7:30之前到校的天数恰好多2”,求事件发生的概率.
64.(2019·全国(文))某行业主管部门为了解本行业中小企业的生产情况,随机调查了100个企业,得到这些企业第一季度相对于前一年第一季度产值增长率y的频数分布表.
的分组
企业数 2 24 53 14 7
(1)分别估计这类企业中产值增长率不低于40%的企业比例、产值负增长的企业比例;
(2)求这类企业产值增长率的平均数与标准差的估计值(同一组中的数据用该组区间的中点值为代表).(精确到0.01)
附:.
65.(2019·全国(文))某商场为提高服务质量,随机调查了50名男顾客和50名女顾客,每位顾客对该商场的服务给出满意或不满意的评价,得到下面列联表:
满意 不满意
男顾客 40 10
女顾客 30 20
(1)分别估计男、女顾客对该商场服务满意的概率;
(2)能否有95%的把握认为男、女顾客对该商场服务的评价有差异?
附:.
P(K2≥k) 0.050 0.010 0.001
k 3.841 6.635 10.828
66.(2019·全国(理))
11分制乒乓球比赛,每赢一球得1分,当某局打成10:10平后,每球交换发球权,先多得2分的一方获胜,该局比赛结束.甲、乙两位同学进行单打比赛,假设甲发球时甲得分的概率为0.5,乙发球时甲得分的概率为0.4,各球的结果相互独立.在某局双方10:10平后,甲先发球,两人又打了X个球该局比赛结束.
(1)求P(X=2);
(2)求事件“X=4且甲获胜”的概率.
67.(2019·全国(理))为了治疗某种疾病,研制了甲、乙两种新药,希望知道哪种新药更有效,为此进行动物试验.试验方案如下:每一轮选取两只白鼠对药效进行对比试验.对于两只白鼠,随机选一只施以甲药,另一只施以乙药.一轮的治疗结果得出后,再安排下一轮试验.当其中一种药治愈的白鼠比另一种药治愈的白鼠多4只时,就停止试验,并认为治愈只数多的药更有效.为了方便描述问题,约定:对于每轮试验,若施以甲药的白鼠治愈且施以乙药的白鼠未治愈则甲药得1分,乙药得分;若施以乙药的白鼠治愈且施以甲药的白鼠未治愈则乙药得1分,甲药得分;若都治愈或都未治愈则两种药均得0分.甲、乙两种药的治愈率分别记为α和β,一轮试验中甲药的得分记为X.
(1)求的分布列;
(2)若甲药、乙药在试验开始时都赋予4分,表示“甲药的累计得分为时,最终认为甲药比乙药更有效”的概率,则,,,其中,,.假设,.
(i)证明:为等比数列;
(ii)求,并根据的值解释这种试验方案的合理性.
68.(2018·北京(理))电影公司随机收集了电影的有关数据,经分类整理得到下表:
电影类型 第一类 第二类 第三类 第四类 第五类 第六类
电影部数 140 50 300 200 800 510
好评率 0.4 0.2 0.15 0.25 0.2 0.1
好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.
假设所有电影是否获得好评相互独立.
(Ⅰ)从电影公司收集的电影中随机选取1部,求这部电影是获得好评的第四类电影的概率;
(Ⅱ)从第四类电影和第五类电影中各随机选取1部,估计恰有1部获得好评的概率;
(Ⅲ)假设每类电影得到人们喜欢的概率与表格中该类电影的好评率相等,用“”表示第k类电影得到人们喜欢,“”表示第k类电影没有得到人们喜欢(k=1,2,3,4,5,6).写出方差,,,,,的大小关系.
69.(2018·北京(文))电影公司随机收集了电影的有关数据,经分类整理得到下表:
电影类型 第一类 第二类 第三类 第四类 第五类 第六类
电影部数
好评率
好评率是指:一类电影中获得好评的部数与该类电影的部数的比值.
(Ⅰ)从电影公司收集的电影中随机选取部,求这部电影是获得好评的第四类电影的概率;
(Ⅱ)随机选取部电影,估计这部电影没有获得好评的概率;
(Ⅲ)电影公司为增加投资回报,拟改变投资策略,这将导致不同类型电影的好评率发生变化.假设表格中只有两类电影的好评率数据发生变化,那么哪类电影的好评率增加,哪类电影的好评率减少,使得获得好评的电影总部数与样本中的电影总部数的比值达到最大?(只需写出结论)
70.(2018·全国(理))某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:
(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;
(2)求40名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表:
超过 不超过
第一种生产方式
第二种生产方式
(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?
附:,
71.(2018·全国(文))某家庭记录了未使用节水龙头天的日用水量数据(单位:)和使用了节水龙头天的日用水量数据,得到频数分布表如下:
未使用节水龙头天的日用水量频数分布表
日用水量
频数
使用了节水龙头天的日用水量频数分布表
日用水量
频数
(1)在答题卡上作出使用了节水龙头天的日用水量数据的频率分布直方图:
(2)估计该家庭使用节水龙头后,日用水量小于的概率;
(3)估计该家庭使用节水龙头后,一年能节省多少水?(一年按天计算,同一组中的数据以这组数据所在区间中点的值作代表.)
72.(2018·全国(文))下图是某地区2000年至2016年环境基础设施投资额(单位:亿元)的折线图.
为了预测该地区2018年的环境基础设施投资额,建立了与时间变量的两个线性回归模型.根据2000年至2016年的数据(时间变量的值依次为)建立模型①:;根据2010年至2016年的数据(时间变量的值依次为)建立模型②:.
(1)分别利用这两个模型,求该地区2018年的环境基础设施投资额的预测值;
(2)你认为用哪个模型得到的预测值更可靠?并说明理由.
73.(2018·天津(理))已知某单位甲、乙、丙三个部门的员工人数分别为24,16,16.现采用分层抽样的方法从中抽取7人,进行睡眠时间的调查.
(I)应从甲、乙、丙三个部门的员工中分别抽取多少人?
(II)若抽出的7人中有4人睡眠不足,3人睡眠充足,现从这7人中随机抽取3人做进一步的身体检查.
(i)用X表示抽取的3人中睡眠不足的员工人数,求随机变量X的分布列与数学期望;
(ii)设A为事件“抽取的3人中,既有睡眠充足的员工,也有睡眠不足的员工”,求事件A发生的概率.
74.(2018·全国(理))某工厂的某种产品成箱包装,每箱件,每一箱产品在交付用户之前要对产品作检验,如检验出不合格品,则更换为合格品.检验时,先从这箱产品中任取件作检验,再根据检验结果决定是否对余下的所有产品作检验,设每件产品为不合格品的概率都为,且各件产品是否为不合格品相互独立.
(1)记件产品中恰有件不合格品的概率为,求的最大值点;
(2)现对一箱产品检验了件,结果恰有件不合格品,以(1)中确定的作为的值.已知每件产品的检验费用为元,若有不合格品进入用户手中,则工厂要对每件不合格品支付元的赔偿费用.
(i)若不对该箱余下的产品作检验,这一箱产品的检验费用与赔偿费用的和记为,求;
(ii)以检验费用与赔偿费用和的期望值为决策依据,是否该对这箱余下的所有产品作检验?
75.(2018·天津(文))已知某校甲、乙、丙三个年级的学生志愿者人数分别为240,160,160.现采用分层抽样的方法从中抽取7名同学去某敬老院参加献爱心活动.
(Ⅰ)应从甲、乙、丙三个年级的学生志愿者中分别抽取多少人?
(Ⅱ)设抽出的7名同学分别用A,B,C,D,E,F,G表示,现从中随机抽取2名同学承担敬老院的卫生工作.
(i)试用所给字母列举出所有可能的抽取结果;
(ii)设M为事件“抽取的2名同学来自同一年级”,求事件M发生的概率.
参考答案
1.B
【解析】
讲座前中位数为,所以错;
讲座后问卷答题的正确率只有一个是个,剩下全部大于等于,所以讲座后问卷答题的正确率的平均数大于,所以B对;
讲座前问卷答题的正确率更加分散,所以讲座前问卷答题的正确率的标准差大于讲座后正确率的标准差,所以C错;
讲座后问卷答题的正确率的极差为,
讲座前问卷答题正确率的极差为,所以错.
故选:B
2.C
【解析】
【详解】从6张卡片中无放回抽取2张,共有15种情况,
其中数字之积为4的倍数的有6种情况,故概率为.故选:C.
3.C
【解析】
对于A选项,甲同学周课外体育运动时长的样本中位数为,A选项结论正确.
对于B选项,乙同学课外体育运动时长的样本平均数为:
,
B选项结论正确.
对于C选项,甲同学周课外体育运动时长大于的概率的估计值,
C选项结论错误.
对于D选项,乙同学周课外体育运动时长大于的概率的估计值,
D选项结论正确.
故选:C
4.D
【解析】该棋手连胜两盘,则第二盘为必胜盘,
记该棋手在第二盘与甲比赛,且连胜两盘的概率为
则
记该棋手在第二盘与乙比赛,且连胜两盘的概率为
则
记该棋手在第二盘与丙比赛,且连胜两盘的概率为
则
则
即,,
则该棋手在第二盘与丙比赛,最大.选项D判断正确;选项BC判断错误;
与该棋手与甲、乙、丙的比赛次序有关.选项A判断错误.
故选:D
5.D
【解析】从2至8的7个整数中随机取2个不同的数,共有种不同的取法,
若两数不互质,不同的取法有:,共7种,
故所求概率.
故选:D.
6.B
【解析】因为丙丁要在一起,先把丙丁捆绑,看做一个元素,连同乙,戊看成三个元素排列,有种排列方式;为使甲不在两端,必须且只需甲在此三个元素的中间两个位置任选一个位置插入,有2种插空方式;注意到丙丁两人的顺序可交换,有2种排列方式,故安排这5名同学共有:种不同的排列方式,
故选:B
7.C
【解析】
因为频率直方图中的组距为1,所以各组的直方图的高度等于频率.样本频率直方图中的频率即可作为总体的相应比率的估计值.
该地农户家庭年收入低于4.5万元的农户的比率估计值为,故A正确;
该地农户家庭年收入不低于10.5万元的农户比率估计值为,故B正确;
该地农户家庭年收入介于4.5万元至8.5万元之间的比例估计值为,故D正确;
该地农户家庭年收入的平均值的估计值为(万元),超过6.5万元,故C错误.
综上,给出结论中不正确的是C.
故选:C.
8.C
【解析】
将4个1和2个0随机排成一行,可利用插空法,4个1产生5个空,
若2个0相邻,则有种排法,若2个0不相邻,则有种排法,
所以2个0不相邻的概率为.
故选:C.
9.C
【解析】
解:将3个1和2个0随机排成一行,可以是:
,
共10种排法,
其中2个0不相邻的排列方法为:
,
共6种方法,
故2个0不相邻的概率为,
故选:C.
10.B
【解析】
如图所示:
设从区间中随机取出的数分别为,则实验的所有结果构成区域为,其面积为.
设事件表示两数之和大于,则构成的区域为,即图中的阴影部分,其面积为,所以.
故选:B.
11.B
【解析】
设“区间随机取1个数” ,
“取到的数小于”,所以.
故选:B.
12.B
【解析】
,
故选:B
13.B
【解析】
根据直方图,直径落在区间之间的零件频率为:,
则区间内零件的个数为:.
故选:B.
14.C
【解析】
因为数据的方差是数据的方差的倍,
所以所求数据方差为
故选:C
15.C
【解析】
根据题意可知,原位大三和弦满足:.
∴;;;;.
原位小三和弦满足:.
∴;;;;.
故个数之和为10.
故选:C.
16.B
【解析】
对于A选项,该组数据的平均数为,
方差为;
对于B选项,该组数据的平均数为,
方差为;
对于C选项,该组数据的平均数为,
方差为;
对于D选项,该组数据的平均数为,
方差为.
因此,B选项这一组的标准差最大.
故选:B.
17.A
【解析】
如图,从5个点中任取3个有
共种不同取法,
3点共线只有与共2种情况,
由古典概型的概率计算公式知,
取到3点共线的概率为.
故选:A
18.D
【解析】
由散点图分布可知,散点图分布在一个对数函数的图象附近,
因此,最适合作为发芽率和温度的回归方程类型的是.
故选:D.
19.D
【解析】
方法1:由分布列得,则
,则当在内增大时,先减小后增大.
方法2:则
故选D.
20.C
【解析】
解析:由已知将1000名学生分成100个组,每组10名学生,用系统抽样,46号学生被抽到,
所以第一组抽到6号,且每组抽到的学生号构成等差数列,公差,
所以,
若,则,不合题意;若,则,不合题意;
若,则,符合题意;若,则,不合题意.故选C.
21.A
【解析】
设9位评委评分按从小到大排列为.
则①原始中位数为,去掉最低分,最高分,后剩余,
中位数仍为,A正确.
②原始平均数,后来平均数
平均数受极端值影响较大,与不一定相同,B不正确
③
由②易知,C不正确.
④原极差,后来极差可能相等可能变小,D不正确.
【小结】
本题旨在考查学生对中位数、平均数、方差、极差本质的理解.
22.A
【解析】
由题知,每一爻有2种情况,一重卦的6爻有情况,其中6爻中恰有3个阳爻情况有,所以该重卦恰有3个阳爻的概率为=,故选A.
23.D
【解析】
,
,
,∴先增后减,因此选D.
24.B
【解析】
或
,
,可知
故答案选B.
25.A
【解析】
设,则有,
从而可以求得的面积为,
黑色部分的面积为,
其余部分的面积为,所以有,
根据面积型几何概型的概率公式,可以得到,故选A.
26.A
【解析】
设新农村建设前的收入为M,而新农村建设后的收入为2M,
则新农村建设前种植收入为0.6M,而新农村建设后的种植收入为0.74M,所以种植收入增加了,所以A项不正确;
新农村建设前其他收入我0.04M,新农村建设后其他收入为0.1M,故增加了一倍以上,所以B项正确;
新农村建设前,养殖收入为0.3M,新农村建设后为0.6M,所以增加了一倍,所以C项正确;
新农村建设后,养殖收入与第三产业收入的综合占经济收入的,所以超过了经济收入的一半,所以D正确;
故选A.
27.CD
【解析】
A:且,故平均数不相同,错误;
B:若第一组中位数为,则第二组的中位数为,显然不相同,错误;
C:,故方差相同,正确;
D:由极差的定义知:若第一组的极差为,则第二组的极差为,故极差相同,正确;
故选:CD
28.CD
【解析】
由图可知,第1天到第2天复工指数减少,第7天到第8天复工指数减少,第10天到第11复工指数减少,第8天到第9天复产指数减少,故A错误;
由图可知,第一天的复产指标与复工指标的差大于第11天的复产指标与复工指标的差,所以这11天期间,复产指数增量小于复工指数的增量,故B错误;
由图可知,第3天至第11天复工复产指数均超过80%,故C正确;
由图可知,第9天至第11天复产指数增量大于复工指数的增量,故D正确;
29.AC
【解析】
对于A选项,若,则,所以,所以A选项正确.
对于B选项,若,则,,
所以,
当时,,
当时,,
两者相等,所以B选项错误.
对于C选项,若,则
,
则随着的增大而增大,所以C选项正确.
对于D选项,若,随机变量的所有可能的取值为,且 ( ).
.
由于,所以 ,所以 ,
所以,
所以,所以D选项错误.
故选:AC
二:填空题
30. ①. , ②. ##
【解析】从写有数字1,2,2,3,4,5,6的7张卡片中任取3张共有种取法,其中所抽取的卡片上的数字的最小值为2的取法有种,所以,
由已知可得的取值有1,2,3,4,
,,
,
所以,
故答案为:,.
31 ..
【解析】从正方体的个顶点中任取个,有个结果,这个点在同一个平面的有个,故所求概率.
故答案为:.
或0.3
【解析】从5名同学中随机选3名的方法数为
甲、乙都入选的方法数为,所以甲、乙都入选的概率
故答案为:
或.
【解析】
【详解】因为,所以,因此.
故答案为:.
34.1
【解析】
,所以,
, 所以, 则.
由于
.
故答案为:1;.
35.
【解析】
因为对应事件为第一次拿红球或第一次拿绿球,第二次拿红球,
所以,
随机变量,
,
,
所以.
故答案为:.
36.Q1 p2
【解析】
试题分析:作图可得中点的纵坐标比中点的纵坐标大,所以Q1,Q2,Q3中最大的是,
分别作关于原点的对称点,比较直线的斜率(即为第i名工人在这一天中平均每小时加工的零件数),可得最大,所以p1,p2,p3中最大的是
37.
【解析】
甲、乙两球落入盒子的概率分别为,
且两球是否落入盒子互不影响,
所以甲、乙都落入盒子的概率为,
甲、乙两球都不落入盒子的概率为,
所以甲、乙两球至少有一个落入盒子的概率为.
故答案为:;.
38.2
【解析】
∵数据的平均数为4
∴,即.
故答案为:2.
39.
【解析】
根据题意可得基本事件数总为个.
点数和为5的基本事件有,,,共4个.
∴出现向上的点数和为5的概率为.
故答案为:.
40.0.98.
【解析】
由题意得,经停该高铁站的列车正点数约为,其中高铁个数为10+20+10=40,所以该站所有高铁平均正点率约为.
三:解答题
41.(1)A,B两家公司长途客车准点的概率分别为,
(2)有
【解析】
(2)根据表格中数据及公式计算,再利用临界值表比较即可得结论.
【小问1详解】
根据表中数据,A共有班次260次,准点班次有240次,
设A家公司长途客车准点事件为M,
则;
B共有班次240次,准点班次有210次,
设B家公司长途客车准点事件为N,
则.
A家公司长途客车准点的概率为;
B家公司长途客车准点的概率为.
【小问2详解】
列联表
准点班次数 未准点班次数 合计
A 240 20 260
B 210 30 240
合计 450 50 500
=,
根据临界值表可知,有的把握认为甲、乙两城之间的长途客车是否准点与客车所属公司有关.
42.(1);
(2)分布列见解析,.
【解析】
【小问1详解】
设甲在三个项目中获胜的事件依次记为,所以甲学校获得冠军的概率为
.
【小问2详解】
依题可知,的可能取值为,所以,
,
,
,
.
即分布列为
0 10 20 30
0.16 0.44 0.34 0.06
期望.
43.(1);
(2)
(3)
【解析】
小问1详解】
样本中10棵这种树木的根部横截面积的平均值
样本中10棵这种树木的材积量的平均值
据此可估计该林区这种树木平均一棵的根部横截面积为,
平均一棵的材积量为
小问2详解】
则
【小问3详解】
设该林区这种树木的总材积量的估计值为,
又已知树木的材积量与其根部横截面积近似成正比,
可得,解之得.
则该林区这种树木的总材积量估计为
44.(1)答案见解析
(2)(i)证明见解析;(ii);
【解析】
【小问1详解】
由已知,
又,,
所以有99%的把握认为患该疾病群体与未患该疾病群体的卫生习惯有差异.
【小问2详解】
(i)因为,
所以
所以,
(ii)
由已知,,
又,,
所以
45.(1)岁;
(2);
(3).
【解析】
【小问1详解】
平均年龄
(岁).
【小问2详解】
设{一人患这种疾病的年龄在区间},所以
.
【小问3详解】
设任选一人年龄位于区间,任选一人患这种疾病,
则由条件概率公式可得
.
46.(1)0.4 (2)
(3)丙
【解析】
【小问1详解】
由频率估计概率可得
甲获得优秀的概率为0.4,乙获得优秀的概率为0.5,丙获得优秀的概率为0.5,
故答案为0.4
【小问2详解】
设甲获得优秀为事件A1,乙获得优秀为事件A2,丙获得优秀为事件A3
,
,
,
.
∴X的分布列为
X 0 1 2 3
P
∴
【小问3详解】
丙夺冠概率估计值最大.
因为铅球比赛无论比赛几次就取最高成绩.比赛一次,丙获得9.85的概率为,甲获得9.80的概率为,乙获得9.78的概率为.并且丙的最高成绩是所有成绩中最高的,比赛次数越多,对丙越有利.
47.(1)见解析;(2)类.
【解析】
(1)由题可知,的所有可能取值为,,.
;
;
.
所以的分布列为
(2)由(1)知,.
若小明先回答问题,记为小明的累计得分,则的所有可能取值为,,.
;
;
.
所以.
因为,所以小明应选择先回答类问题.
48.(1)75%;60%;
(2)能.
【解析】
(1)甲机床生产的产品中的一级品的频率为,
乙机床生产的产品中的一级品的频率为.
(2),
故能有99%的把握认为甲机床的产品与乙机床的产品质量有差异.
49.(1);(2)新设备生产产品的该项指标的均值较旧设备没有显著提高.
【解析】
(1),
,
,
.
(2)依题意,,,
,所以新设备生产产品的该项指标的均值较旧设备没有显著提高.
50.(1);(2)答案见解析;(3)有.
【解析】
(1)由表格可知,该市100天中,空气中的浓度不超过75,且浓度不超过150的天数有天,
所以该市一天中,空气中的浓度不超过75,且浓度不超过150的概率为;
(2)由所给数据,可得列联表为:
合计
64 16 80
10 10 20
合计 74 26 100
(3)根据列联表中的数据可得
,
因为根据临界值表可知,有的把握认为该市一天空气中浓度与浓度有关.
51.(Ⅰ)该校男生支持方案一的概率为,该校女生支持方案一的概率为;
(Ⅱ),(Ⅲ)
【解析】
(Ⅰ)该校男生支持方案一的概率为,
该校女生支持方案一的概率为;
(Ⅱ)3人中恰有2人支持方案一分两种情况,(1)仅有两个男生支持方案一,(2)仅有一个男生支持方案一,一个女生支持方案一,
所以3人中恰有2人支持方案一概率为:;
(Ⅲ)
52.(1);(2)答案见解析;(3)有.
【解析】
(1)由表格可知,该市100天中,空气中的浓度不超过75,且浓度不超过150的天数有天,
所以该市一天中,空气中的浓度不超过75,且浓度不超过150的概率为;
(2)由所给数据,可得列联表为:
合计
64 16 80
10 10 20
合计 74 26 100
(3)根据列联表中的数据可得
,
因为根据临界值表可知,有的把握认为该市一天空气中浓度与浓度有关.
53.(1)(2)
【解析】
(1),
,
.
(2),
,
因此,
从而,
即.
又的分布列为
0 1 2
故.
54.(1)该市一天的空气质量等级分别为、、、的概率分别为、、、;(2);(3)有,理由见解析.
【解析】
(1)由频数分布表可知,该市一天的空气质量等级为的概率为,等级为的概率为,等级为的概率为,等级为的概率为;
(2)由频数分布表可知,一天中到该公园锻炼的人次的平均数为
(3)列联表如下:
人次 人次
空气质量不好
空气质量好
,
因此,有的把握认为一天中到该公园锻炼的人次与该市当天的空气质量有关.
55.(1)甲分厂加工出来的级品的概率为,乙分厂加工出来的级品的概率为;(2)选甲分厂,理由见解析.
【解析】
(1)由表可知,甲厂加工出来的一件产品为级品的概率为,乙厂加工出来的一件产品为级品的概率为;
(2)甲分厂加工件产品的总利润为元,
所以甲分厂加工件产品的平均利润为元每件;
乙分厂加工件产品的总利润为
元,
所以乙分厂加工件产品的平均利润为元每件.
故厂家选择甲分厂承接加工任务.
56.(1);(2);(3).
【解析】
(1)记事件甲连胜四场,则;
(2)记事件为甲输,事件为乙输,事件为丙输,
则四局内结束比赛的概率为
,
所以,需要进行第五场比赛的概率为;
(3)记事件为甲输,事件为乙输,事件为丙输,
记事件甲赢,记事件丙赢,
则甲赢的基本事件包括:、、、
、、、、,
所以,甲赢的概率为.
由对称性可知,乙赢的概率和甲赢的概率相等,
所以丙赢的概率为.
57.(1);(2);(3)详见解析
【解析】
(1)样区野生动物平均数为,
地块数为200,该地区这种野生动物的估计值为
(2)样本(i=1,2,…,20)的相关系数为
(3)由(2)知各样区的这种野生动物的数量与植物覆盖面积有很强的正相关性,
由于各地块间植物覆盖面积差异很大,从俄各地块间这种野生动物的数量差异很大,
采用分层抽样的方法较好地保持了样本结构与总体结构得以执行,提高了样本的代表性,
从而可以获得该地区这种野生动物数量更准确的估计.
58.(1)见解析;
(2)
【解析】
(1)当时,的所有可能取值是.
的概率分布为,
.
(2)设和是从中取出的两个点.
因为,所以仅需考虑的情况.
①若,则,不存在的取法;
②若,则,所以当且仅当,此时或,有2种取法;
③若,则,因为当时,,所以当且仅当,此时或,有2种取法;
④若,则,所以当且仅当,此时或,有2种取法.
综上,当时,的所有可能取值是和,且
.
因此,.
59.(Ⅰ)400人;
(Ⅱ);
(Ⅲ)见解析.
【解析】
(Ⅰ)由图表可知仅使用A的人数有30人,仅使用B的人数有25人,
由题意知A,B两种支付方式都不使用的有5人,
所以样本中两种支付方式都使用的有,
所以全校学生中两种支付方式都使用的有(人).
(Ⅱ)因为样本中仅使用B的学生共有25人,只有1人支付金额大于2000元,
所以该学生上个月支付金额大于2000元的概率为.
(Ⅲ)由(Ⅱ)知支付金额大于2000元的概率为,
因为从仅使用B的学生中随机调查1人,发现他本月的支付金额大于2000元,
依据小概率事件它在一次试验中是几乎不可能发生的,所以可以认为仅使用B的学生中本月支付金额大于2000元的人数有变化,且比上个月多.
60.(Ⅰ) ;
(Ⅱ)见解析;
(Ⅲ)见解析.
【解析】
(Ⅰ)由题意可知,两种支付方式都是用的人数为:人,则:
该学生上个月A,B两种支付方式都使用的概率.
(Ⅱ)由题意可知,
仅使用A支付方法的学生中,金额不大于1000的人数占,金额大于1000的人数占,
仅使用B支付方法的学生中,金额不大于1000的人数占,金额大于1000的人数占,
且X可能的取值为0,1,2.
,,,
X的分布列为:
X 0 1 2
其数学期望:.
(Ⅲ)我们不认为样本仅使用A的学生中本月支付金额大于2000元的人数有变化.理由如下:
随机事件在一次随机实验中是否发生是随机的,是不能预知的,随着试验次数的增多,频率越来越稳定于概率.
学校是一个相对消费稳定的地方,每个学生根据自己的实际情况每个月的消费应该相对固定,出现题中这种现象可能是发生了“小概率事件”.
61.(1) ,;(2) ,.
【解析】
(1)由题得,解得,由,解得.
(2)由甲离子的直方图可得,甲离子残留百分比的平均值为,
乙离子残留百分比的平均值为
62.(I)6人,9人,10人;
(II)(i)见解析;(ii).
【解析】
(I)由已知,老、中、青员工人数之比为,
由于采取分层抽样的方法从中抽取25位员工,
因此应从老、中、青员工中分别抽取6人,9人,10人.
(II)(i)从已知的6人中随机抽取2人的所有可能结果为
,,,,共15种;
(ii)由表格知,符合题意的所有可能结果为,,,,共11种,
所以,事件M发生的概率.
63.(Ⅰ)见解析;(Ⅱ)
【解析】
(Ⅰ)因为甲同学上学期间的三天中到校情况相互独立,且每天7:30之前到校的概率均为,
故,从面.
所以,随机变量的分布列为:
0 1 2 3
随机变量的数学期望.
(Ⅱ)设乙同学上学期间的三天中7:30之前到校的天数为,则.
且.
由题意知事件与互斥,
且事件与,事件与均相互独立,
从而由(Ⅰ)知:
.
64.(1) 增长率超过的企业比例为,产值负增长的企业比例为;(2)平均数;标准差.
【解析】
(1)由题意可知,随机调查的个企业中增长率超过的企业有个,
产值负增长的企业有个,
所以增长率超过的企业比例为,产值负增长的企业比例为.
(2)由题意可知,平均值,
标准差的平方:
=
所以标准差
65.(1);
(2)能有的把握认为男、女顾客对该商场服务的评价有差异.
【解析】
(1)由题中表格可知,50名男顾客对商场服务满意的有40人,
所以男顾客对商场服务满意率估计为,
50名女顾客对商场满意的有30人,
所以女顾客对商场服务满意率估计为,
(2)由列联表可知,
所以能有的把握认为男、女顾客对该商场服务的评价有差异.
66.(1);(2)0.1
【解析】
(1)由题意可知,所包含的事件为“甲连赢两球或乙连赢两球”
所以
(2)由题意可知,包含的事件为“前两球甲乙各得分,后两球均为甲得分”
所以
67.(1)见解析;(2)(i)见解析;(ii).
【解析】
(1)由题意可知所有可能的取值为:,,
;;
则的分布列如下:
(2),
,,
(i)
即
整理可得:
是以为首项,为公比的等比数列
(ii)由(i)知:
,,……,
作和可得:
表示最终认为甲药更有效的.由计算结果可以看出,在甲药治愈率为0.5,乙药治愈率为0.8时,认为甲药更有效的概率为,此时得出错误结论的概率非常小,说明这种实验方案合理.
68.(1) 概率为0.025
(2) 概率估计为0.35
(3) >>=>>
【解析】
解:(Ⅰ)由题意知,样本中电影的总部数是140+50+300+200+800+510=2000,
第四类电影中获得好评的电影部数是200×0.25=50.
故所求概率为.
(Ⅱ)设事件A为“从第四类电影中随机选出的电影获得好评”,
事件B为“从第五类电影中随机选出的电影获得好评”.
故所求概率为P()=P()+P()
=P(A)(1–P(B))+(1–P(A))P(B).
由题意知:P(A)估计为0.25,P(B)估计为0.2.
故所求概率估计为0.25×0.8+0.75×0.2=0.35.
(Ⅲ)>>=>>.
小结:互斥事件概率加法公式:若A,B互斥,则P(A+B)=P(A)+P(B),独立事件概率乘法公式:若A,B相互独立,则P(AB)=P(A)P(B).
69(Ⅰ);(Ⅱ);(Ⅲ)增加第五类电影的好评率,减少第二类电影的好评率.
【解析】
(Ⅰ)由题意知,样本中电影的总部数是,
第四类电影中获得好评的电影部数是,
故所求概率为;
(Ⅱ)设“随机选取部电影,这部电影没有获得好评”为事件B.
没有获得好评的电影共有部,
由古典概型概率公式得;
(Ⅲ)增加第五类电影的好评率, 减少第二类电影的好评率.
70.(1)第二种生产方式的效率更高. 理由见解析
(2)80
(3)能
【解析】
解析:(1)第二种生产方式的效率更高.
理由如下:
(i)由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.
(ii)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.
(iii)由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高.
(iv)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.
以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分.
(2)由茎叶图知.
列联表如下:
超过 不超过
第一种生产方式 15 5
第二种生产方式 5 15
(3)由于,所以有99%的把握认为两种生产方式的效率有差异.
小结:本题主要考查了茎叶图和独立性检验,考察学生的计算能力和分析问题的能力,贴近生活.
71.(1)直方图见解析;(2);(3).
【解析】
(1)频率分布直方图如下图所示:
(2)根据以上数据,该家庭使用节水龙头后天日用水量小于的频率为
;
因此该家庭使用节水龙头后日用水量小于的概率的估计值为;
(3)该家庭未使用节水龙头天日用水量的平均数为
.
该家庭使用了节水龙头后50天日用水量的平均数为.
估计使用节水龙头后,一年可节省水.
72.(1)利用模型①预测值为226.1,利用模型②预测值为256.5,(2)利用模型②得到的预测值更可靠.
【解析】
分析:(1)两个回归直线方程中无参数,所以分别求自变量为2018时所对应的函数值,就得结果;(2)根据折线图知2000到2009,与2010到2016是两个有明显区别的直线,且2010到2016的增幅明显高于2000到2009,也高于模型1的增幅,因此所以用模型2更能较好得到2018的预测.
解析:(1)利用模型①,该地区2018年的环境基础设施投资额的预测值为
=–30.4+13.5×19=226.1(亿元).
利用模型②,该地区2018年的环境基础设施投资额的预测值为
=99+17.5×9=256.5(亿元).
(2)利用模型②得到的预测值更可靠.
理由如下:
(i)从折线图可以看出,2000年至2016年的数据对应的点没有随机散布在直线y=–30.4+13.5t上下,这说明利用2000年至2016年的数据建立的线性模型①不能很好地描述环境基础设施投资额的变化趋势.2010年相对2009年的环境基础设施投资额有明显增加,2010年至2016年的数据对应的点位于一条直线的附近,这说明从2010年开始环境基础设施投资额的变化规律呈线性增长趋势,利用2010年至2016年的数据建立的线性模型=99+17.5t可以较好地描述2010年以后的环境基础设施投资额的变化趋势,因此利用模型②得到的预测值更可靠.
(ii)从计算结果看,相对于2016年的环境基础设施投资额220亿元,由模型①得到的预测值226.1亿元的增幅明显偏低,而利用模型②得到的预测值的增幅比较合理,说明利用模型②得到的预测值更可靠.
73.(Ⅰ)从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人.(Ⅱ)(i)答案见解析;(ii).
【解析】
分析:(Ⅰ)由分层抽样的概念可知应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人.
(Ⅱ)(i)随机变量X的所有可能取值为0,1,2,3.且分布列为超几何分布,即P(X=k)=(k=0,1,2,3).据此求解分布列即可,计算相应的数学期望为.
(ii)由题意结合题意和互斥事件概率公式可得事件A发生的概率为.
解析:(Ⅰ)由已知,甲、乙、丙三个部门的员工人数之比为3∶2∶2,
由于采用分层抽样的方法从中抽取7人,
因此应从甲、乙、丙三个部门的员工中分别抽取3人,2人,2人.
(Ⅱ)(i)随机变量X的所有可能取值为0,1,2,3.
P(X=k)=(k=0,1,2,3).
所以,随机变量X的分布列为
X 0 1 2 3
P
随机变量X的数学期望.
(ii)设事件B为“抽取的3人中,睡眠充足的员工有1人,睡眠不足的员工有2人”;
事件C为“抽取的3人中,睡眠充足的员工有2人,睡眠不足的员工有1人”,
则A=B∪C,且B与C互斥,
由(i)知,P(B)=P(X=2),P(C)=P(X=1),
故P(A)=P(B∪C)=P(X=2)+P(X=1)=.
所以,事件A发生的概率为.
小结:本题主要在考查超几何分布和分层抽样.超几何分布描述的是不放回抽样问题,随机变量为抽到的某类个体的个数.超几何分布的特征是:①考查对象分两类;②已知各类对象的个数;③从中抽取若干个个体,考查某类个体个数X的概率分布,超几何分布主要用于抽检产品、摸不同类别的小球等概率模型,其实质是古典概型.进行分层抽样的相关计算时,常利用以下关系式巧解:(1) ;(2)总体中某两层的个体数之比=样本中这两层抽取的个体数之比.
74.(1);(2)(i);(ii)应该对余下的产品作检验.
【解析】
(1)件产品中恰有件不合格品的概率为.
因此.
令,得.当时,;当时,.
所以的最大值点为;
(2)由(1)知,.
(i)令表示余下的件产品中的不合格品件数,依题意知,,即.
所以.
(ii)如果对余下的产品作检验,则这一箱产品所需要的检验费为400元.
由于,故应该对余下的产品作检验.
75.(1)3,2,2(2)(i)见解析(ii)
【解析】
分析:(Ⅰ)结合人数的比值可知应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.
(Ⅱ)(i)由题意列出所有可能的结果即可,共有21种.
(ii)由题意结合(i)中的结果和古典概型计算公式可得事件M发生的概率为P(M)=.
解析:(Ⅰ)由已知,甲、乙、丙三个年级的学生志愿者人数之比为3∶2∶2,由于采用分层抽样的方法从中抽取7名同学,因此应从甲、乙、丙三个年级的学生志愿者中分别抽取3人,2人,2人.
(Ⅱ)(i)从抽出的7名同学中随机抽取2名同学的所有可能结果为
{A,B},{A,C},{A,D},{A,E},{A,F},{A,G},{B,C},{B,D},{B,E},{B,F},{B,G},{C,D},{C,E},{C,F},{C,G},{D,E},{D,F},{D,G},{E,F},{E,G},{F,G},共21种.
(ii)由(Ⅰ),不妨设抽出的7名同学中,来自甲年级的是A,B,C,来自乙年级的是D,E,来自丙年级的是F,G,则从抽出的7名同学中随机抽取的2名同学来自同一年级的所有可能结果为{A,B},{A,C},{B,C},{D,E},{F,G},共5种.
所以,事件M发生的概率为P(M)=.