(共19张PPT)
第十八章 平行四边形
18.1.2 平行四边形判定
第1课时 平行四边形的判定(2)
1.知道“一组对边平行且相等的四边形是平行四边形”的判定方法.
2.会进行平行四边形的性质与判定的综合运用.
重点难点:
1.掌握“一组对边平行且相等的四边形是平行四边形”的判定方法.
2.会进行平行四边形的性质与判定的综合运用.
学习目标:
数学来源于生活,高铁被外媒誉为我国新四大发明之一,我们知道铁路的两条直铺的铁轨互相平行,那么铁路工人是怎样的确保它们平行的呢?
情景导入
只要使互相平行的夹在铁轨之间的枕木长相等就可以了.那这会不会跟我们学过的平行四边形有关呢?
知识精讲
知识点一 一组对边平行且相等的四边形是平行四边形
问题 我们知道,两组对边分别平行或相等的是平行四边形.如果只考虑四边形的一组对边,它们满足什么条件时这个四边形能成为平行四边形呢?
猜想1:一组对边相等的四边形是平行四边形.
等腰梯形不是平行四边形,因而此猜想错误.
猜想2:一组对边平行的四边形是平行四边形.
梯形的上下底平行,但不是平行四边形,因而此猜想错误.
A
B
C
D
如图,在四边形ABCD中,AB=CD且AB∥CD,
求证:四边形ABCD是平行四边形.
证明:连接AC.
∵AB∥CD, ∴∠1=∠2.
在△ABC和△CDA中,
AB=CD,
AC=CA,
∠1=∠2,
∴△ABC≌△CDA(SAS),
∴BC=DA .
又∵AB= CD,
∴四边形ABCD是平行四边形.
平行四边形的判定定理:
一组对边平行且相等的四边形是平行四边形.
几何语言描述:
在四边形ABCD中,∵AB∥CD,AB=CD,
∴四边形ABCD是平行四边形.
B
D
A
C
证明:∵四边形ABCD是平行四边形,
∴AB =CD,EB //FD.
又∵EB = AB ,FD = CD,
∴EB =FD .
∴四边形EBFD是平行四边形.
例1 如图 ,在平行四边形ABCD中,E,F分别是AB,CD的中点.求证:四边形EBFD是平行四边形.
针对练习
1.已知四边形ABCD中有四个条件:AB∥CD,AB=CD,BC∥AD,BC=AD,从中任选两个,不能使四边形ABCD成为平行四边形的选法是 ( )
A.AB∥CD,AB=CD
B.AB∥CD,BC∥AD
C.AB∥CD,BC=AD
D.AB=CD,BC=AD
C
A
B
C
D
E
F
证明:∵四边形AEFD和EBCF都是平行四边形,
∴AD∥ EF,AD=EF,
EF∥ BC, EF=BC.
∴AD∥ BC,AD=BC.
∴四边形ABCD是平行四边形.
2.四边形AEFD和EBCF都是平行四边形,求证:四边形ABCD 是平行四边形.
知识点一 平行四边形的性质与判定的综合运用
例2 如图,△ABC中,BD平分∠ABC,DF∥BC,EF∥AC,试问BF与CE相等吗?为什么?
解:BF=CE.理由如下:
∵DF∥BC,EF∥AC,
∴四边形FECD是平行四边形,
∴∠FDB=∠DBE,∴FD=CE.
∵BD平分∠ABC,∴∠FBD=∠EBD,
∴∠FBD=∠FDB.∴BF=FD.∴BF=CE.
例3 如图,将 ABCD沿过点A的直线l折叠,使点D落到AB边上的点D′处,折痕l交CD边于点E,连接BE.求证:四边形BCED′是平行四边形.
证明:由题意得∠DAE=∠D′AE,
∠DEA=∠D′EA,∠D=∠AD′E,
∵DE∥AD′,∴∠DEA=∠EAD′,
∴∠DAE=∠EAD′=∠DEA=∠D′EA,
∴∠DAD′=∠DED′,
∴四边形DAD′E是平行四边形,∴DE=AD′.
∵四边形ABCD是平行四边形,
∴AB∥DC,AB=DC,
∴CE∥D′B,CE=D′B,
∴四边形BCED′是平行四边形.
归纳:此题利用翻折变换的性质以及平行线的性质得出∠DAE=∠EAD′=∠DEA=∠D′EA,再结合平行四边形的判定及性质进行解题.
归纳
1.四边形ABCD中,对角线AC、BD相交于点O,给出下列四个条件:①AD∥BC;②AD=BC;③OA=OC;④OB=OD.从中任选两个条件,能使四边形ABCD为平行四边形的选法有( )
A.3种 B.4种 C.5种 D.6种
B
O
D
A
C
B
针对练习
2.如图,在 ABCD中,E,F分别是AB,CD的中点,连接DE,EF,BF,写出图中除 ABCD以外的所有的平行四边形.
解:∵四边形ABCD是平行四边形,
∴AD∥BC,AD=BC.
∵E,F分别是AB,CD的中点,
∴AE=BF=DE=FC,
∴四边形ADFE是平行四边形,四边形EFCB是平行四边形,四边形BEDF是平行四边形.
1.在 ABCD中,E、F分别在BC、AD上,若想要使四边形AFCE为平行四边形,需添加一个条件,这个条件不可以是 ( )
A.AF=CE
B.AE=CF
C.∠BAE=∠FCD
D.∠BEA=∠FCE
B
当堂训练
2. 已知四边形ABCD中,AB∥CD,AB=CD,周长为40cm,两邻边的比是3:2,则较大边的长度是( )
A.8cm B.10cm
C.12cm D.14cm
C
3.如图,在平行四边形ABCD中,EF∥AD,HN∥AB,则图中的平行四边形共有____个.
9
4.如图,点E,C在线段BF上,BE=CF,∠B=∠DEF,∠ACB=∠F,求证:四边形ABED为平行四边形.
证明:∵BE=CF,
∴BE+EC=CF+EC.即BC=EF.
又∵∠B=∠DEF,∠ACB=∠F,
∴△ABC≌△DEF,∴AB=DE.
∵∠B=∠DEF,∴AB∥DE.
∴四边形ABED是平行四边形.
5.如图,△ABC中,AB=AC=10,D是BC边上的任意一点,分别作DF∥AB交AC于F,DE∥AC交AB于E,求DE+DF的值.
解:∵DE∥AC,DF∥AB,
∴四边形AEDF是平行四边形,∴DE=AF.
又∵AB=AC=10,∴∠B=∠C.
∵DF∥AB,∴∠CDF=∠B,
∴∠CDF=∠C,∴DF=CF,
∴DE+DF=AF+FC=AC=10.
平行四边形的判定(2)
平行四边形的性质与判定的综合运用
一组对边平行且相等的四边形是平行四边形.
课堂小结