中小学教育资源及组卷应用平台
第8讲 数据的分析
知识点1 平均数
1.平均数:在一组数据中,用数据的总和除以数据的总个数就得到这组数据的平均数;
2.加权平均数:在一组数据中,各个数在总结果中所占的百分比称为这个数的权重,每个数乘以它相应的权重后所得的平均数叫做这组数据的加权平均数.
【随堂练习】
1.(2018春 吴兴区期末)在某次考试中,现有甲、乙、丙3名同学,共四科测试实际成绩如下表:
语文 数学 英语 科学
甲 95 95 80 150
乙 105 90 90 139
丙 100 100 85 139
(1)若欲从中表扬2人,请你从平均数的角度分析,哪两人将被表扬?
(2)为了体现学科差异,参与测试的语文、数学、英语、科学实际成绩须以2:3:2:3的比例计入折合平均数.请你从折合平均数的角度分析,哪两人将被表扬?若欲从中表扬2人,请你从平均数的角度分析,哪两人将被表扬?
知识点2 中位数与众数
中位数:将一组数据按照大小顺序排列,若数据的个数是奇数,则处于最中间位置的那个数据就是该组数据的中位数;若数据的个数是偶数,则处于最中间位置的两个数据的平均数就是该组数据的中位数。一组数据的中位数是唯一的。
众数:一般地,一组数据中出现次数最多的那个数据叫做这组数据的众数。
【典例】
1.一组数据:1,2,1,0,2,a,若它们的众数为1,则这组数据的平均数为_________
2.在“爱满扬州”慈善一日捐款活动中,学校团总支为了了解本校学生的捐款情况,随机抽取了50名学生的捐款数进行了统计,并绘制成下面的统计图.
第11题图
(1)这50名同学捐款的众数为_____元,中位数为_______元;
(2)求这50名同学捐款的平均数;
(3)该校共有600名学生参与捐款,请估计该校学生的捐款总数
【方法总结】1.中位数也是反映一组数据的集中趋势的量,有时我们更关注的是该组数据的中位数,因为中位数不受极端值的影响。求中位数第一步必须按照顺序进行排列
2.一组数据中的众数可能不止一个,众数是反映一组数据的“多数水平”的数据代表
【随堂练习】
1.某公司有10名工作人员,他们的月工资情况如下表(其中x为未知数).他们的月平均工资是2.22万元.根据表中信息,计算该公司工作人员的月工资的中位数和众数分别是( )
职务 经理 副经理 A类职员 B类职员 C类职员
人数 1 2 2 4 1
月工资(万元/人) 5 3 2 x 0.8
A.2,4 B.1.8,1.6 C.2,1.6 D.1.6,1.8
2.某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励.为了确定一个适当的月销售目标,商场服装部统计了每位营业员在某月的销售额(单位:万元),数据如下:
17 18 16 13 24 15 28 26 18 19
22 17 16 19 32 30 16 14 15 26
15 32 23 17 15 15 28 28 16 19
对这30个数据按组距3进行分组,并整理、描述和分析如下.
频数分布表
组别 一 二 三 四 五 六 七
销售额 13≤x<16 16≤x<19 19≤x<22 22≤x<25 25≤x<28 28≤x<31 31≤x<34
频数 7 9 3 a 2 b 2
数据分析表
平均数 众数 中位数
20.3 c 18
请根据以上信息解答下列问题:
(1)填空:a=____ ,b=____,c=____;
(2)若将月销售额不低于25万元确定为销售目标,则有____位营业员获得奖励;
(3)若想让一半左右的营业员都能达到销售目标,你认为月销售额定为多少合适?说明理由.
知识点3 从统计图计算集中趋势
数据的统计:条形统计图、折线统计图、扇形统计图是三种最常用的统计图.
要点诠释:
这三种统计图各具特点:
条形统计图可以直观地反映出数据的数量特征;
折线统计图可以直观地反映出数据的数量变化规律;
扇形统计图可以直观地反映出各部分数量在总量中所占的份额.
【典例】
某校分别于2012年、2014年随机调查相同数量的学生,对数学课开展小组合作学习的情况进行调查(开展情况分为较少、有时、常常、总是四种),绘制成部分统计图如下,请根据图中信息,解答下列问题:
第5题图
(1)a=_____%,b=______%,“总是”对应阴影的圆心角为________°;
(2)请你补全条形统计图;
(3)若该校2014年共有1200名学生,请你统计其中认为数学课“总是”开展小组合作学习的学生有多少名?
(4)相比2012年,2014年数学课开展小组合作学习的情况有何变化?
【方法总结】
1. 解决统计图问题的方法,通常是结合两种统计图,对照统计图中各已知量,分析要求解的量.一般地,首先求出总量,再由总量及部分中的一个已知项求出另一个未知项,由此逐一求出所有的未知量,从而由所得结果补全统计图
2.统计图中相关量的计算方法:
(1)条形统计图:一般涉及补图,也就是求未知组的频数,方法如下:
①未知组频数=样本容量-已知组频数之和;
②未知组频数=样本容量×该组所占样本容量的百分比.
(2)扇形统计图:一般涉及求未知组的百分比或其所占扇形圆心角的度数
若求未知组在扇形统计图中圆心角的度数,利用360°×其所占百分比即可.
(3)折线统计图一般涉及求增长量.
(4)用样本估算总体:样本频数=总数×样本频率
【随堂练习】
1.某校积极开展中学生社会实践活动,决定成立文明宣传、环境保护、交通监督三个志愿者队伍,每名学生最多选择一个队伍,为了了解学生的选择意向,随机抽取A,B,C,D四个班,共200名学生进行调查.将调查得到的数据进行整理,绘制成如下统计图(不完整).
(1)求扇形统计图中交通监督所在扇形的圆心角度数;
(2)求D班选择环境保护的学生人数,并补全折线统计图;
(3)若该校共有学生2500人,试估计该校选择文明宣传的学生人数.
2.中华文化源远流长,在文学方面,《西游记》《三国演义》《水浒传》《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中抽取n名学生进行调查.根据调查结果绘制成如图所示的两个不完整的统计图,请结合图中信息解决下列问题:
(1)求n的值;
(2)请将条形统计图补充完整;
(3)若该校共有2000名学生,请估计该校四大古典名著均已读完的人数.
知识点4 数据的离散程度
极差:一组数据中最大值与最小值的差,能反映这组数据的变化范围,我们就把这样的数据叫做极差。一般来说,极差越小则说明数据的波动幅度越小。
方差:各个数据与它们的平均数的差的平方的平均数叫做这组数据的方差,记作s .
标准差:方差的算术平方根叫做一组数据的标准差,记作s
【典例】
1.甲乙两人8次射击的成绩如图所示(单位:环).根据图中的信息判断,这8次射击中成绩比较稳定的是_______(填“甲”或“乙”)
2.某工程队有14名员工,他们的工种及相应每人每月工资如下表所示:
工种 人数 每人每月工资/元
电工 5 7000
木工 4 6000
瓦工 5 5000
现该工程队进行了人员调整:减少木工2名,增加电工、瓦工各1名.与调整前相比,该工程队员工月工资的方差________(填“变小”,“不变”或“变大”)
【随堂练习】
1.中国经济的快速发展让众多国家感受到了威胁,随着钓鱼岛事件、南海危机、萨德入韩等一系列事件的发生,国家安全一再受到威胁,所谓“国家兴亡,匹夫有责”.岳池县某校积极开展国防知识教育,九年级甲、乙两班分别选5名同学参加“国防知识”比赛,其预赛成绩如图所示:
(1)根据上图填写如表:
平均数 中位数 众数 方差
甲班 8.5 8.5 ___ ____
乙班 8.5 _____ 10 1.6
(2)根据上表中的方差,分析哪个班的成绩更稳定.
2.某射击队为从甲乙两名运动员中选拔一人参加比赛,对他们进行了六次测试,测试成绩如下表(单位:环):
第一次 第二次 第三次 第四次 第五次 第六次 平均成绩 中位数
甲 10 8 9 8 10 9 9 ①
乙 10 7 10 10 9 8 ② 9.5
(1)写出表中①、②表示的数:①____,②____;
(2)请计算甲六次测试成绩的方差;
(3)你认为推荐谁参加比赛更合适?
综合运用:
1.某班体育委员对本班学生一周锻炼时间(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是
2.2017年6月2日,贵阳市生态委发布了《2016年贵阳市环境状况公报》,公报显示,2016年贵阳市生态环境质量进一步提升,小颖根据公报中的部分数据,制成了下面两幅统计图,请根据图中提供的信息,回答下列问题:
(1)a= ,b= ;(结果保留整数)
(2)求空气质量等级为“优”在扇形统计图中所占的圆心角的度数;(结果精确到1°)
(3)根据了解,今年1~5月贵阳市空气质量优良天数为142天,优良率为94%,与2016年全年的优良率相比,今年前五个月贵阳市空气质量的优良率是提高还是降低了?请对改善贵阳市空气质量提一条合理化建议
3.八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.
类别 频数(人数) 频率
小说 0.5
戏剧 4
散文 10 0.25
其他 6
合计 1
根据图表提供的信息,解答下列问题:
(1)八年级一班有多少名学生?
(2)请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;
(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.
4.某校九年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题中选择一个,九年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.
(1)求本次调查共抽取了多少名学生的征文;
(2)将上面的条形统计图和扇形统计图补充完整;
(3)如果该校九年级共有1200名学生,请估计选择以“友善”为主题的九年级学生有多少名;
(4)本次抽取的3份以“诚信”为主题的征文分别是小义、小玉和大力的,若从中随机选取2份以“诚信”为主题的征文进行交流,请用画树状图法或列表法求小义和小玉同学的征文同时被选中的概率.
5.家庭过期药品属于“国家危险废物”,处理不当将污染环境,危害健康.某市药监部门为了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调査.
(1)下列选取样本的方法最合理的一种是 .(只需填上正确答案的序号)
①在市中心某个居民区以家庭为单位随机抽取;②在全市医务工作者中以家庭为单位随机抽取;③在全市常住人口中以家庭为单位随机抽取.
(2)本次抽样调査发现,接受调査的家庭都有过期药品,现将有关数据呈现如图:
①m= ,n= ;
②补全条形统计图;
③根据调査数据,你认为该市市民家庭处理过期药品最常见的方式是什么?
④家庭过期药品的正确处理方式是送回收点,若该市有180万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收点.
21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
第8讲 数据的分析
知识点1 平均数
1.平均数:在一组数据中,用数据的总和除以数据的总个数就得到这组数据的平均数;
2.加权平均数:在一组数据中,各个数在总结果中所占的百分比称为这个数的权重,每个数乘以它相应的权重后所得的平均数叫做这组数据的加权平均数.
【随堂练习】
1.(2018春 吴兴区期末)在某次考试中,现有甲、乙、丙3名同学,共四科测试实际成绩如下表:
语文 数学 英语 科学
甲 95 95 80 150
乙 105 90 90 139
丙 100 100 85 139
(1)若欲从中表扬2人,请你从平均数的角度分析,哪两人将被表扬?
(2)为了体现学科差异,参与测试的语文、数学、英语、科学实际成绩须以2:3:2:3的比例计入折合平均数.请你从折合平均数的角度分析,哪两人将被表扬?若欲从中表扬2人,请你从平均数的角度分析,哪两人将被表扬?
【解答】解:(1)==105(分);==106(分);==106(分);
答:乙、丙将被表扬;
(2)==108.5(分);
==107.7(分);
==108.7(分);
答:甲、丙将被表扬.
知识点2 中位数与众数
中位数:将一组数据按照大小顺序排列,若数据的个数是奇数,则处于最中间位置的那个数据就是该组数据的中位数;若数据的个数是偶数,则处于最中间位置的两个数据的平均数就是该组数据的中位数。一组数据的中位数是唯一的。
众数:一般地,一组数据中出现次数最多的那个数据叫做这组数据的众数。
【典例】
1.一组数据:1,2,1,0,2,a,若它们的众数为1,则这组数据的平均数为_________
【答案】
【解析】本题考查众数、平均数的概念.根据众数为1,求出a的值,然后根据平均数的概念求解.∵众数为1,∴a=1.∴平均数为
2.在“爱满扬州”慈善一日捐款活动中,学校团总支为了了解本校学生的捐款情况,随机抽取了50名学生的捐款数进行了统计,并绘制成下面的统计图.
第11题图
(1)这50名同学捐款的众数为_____元,中位数为_______元;
(2)求这50名同学捐款的平均数;
(3)该校共有600名学生参与捐款,请估计该校学生的捐款总数
【答案】
【解析】(1)解:15,15;(4分)
.解:x=×(5×8+10×14+15×20+20×6+25×2)=13;
解:600×13=7800(元);
答:估计该校学生的捐款总数为7800元
【方法总结】1.中位数也是反映一组数据的集中趋势的量,有时我们更关注的是该组数据的中位数,因为中位数不受极端值的影响。求中位数第一步必须按照顺序进行排列
2.一组数据中的众数可能不止一个,众数是反映一组数据的“多数水平”的数据代表
【随堂练习】
1.某公司有10名工作人员,他们的月工资情况如下表(其中x为未知数).他们的月平均工资是2.22万元.根据表中信息,计算该公司工作人员的月工资的中位数和众数分别是( )
职务 经理 副经理 A类职员 B类职员 C类职员
人数 1 2 2 4 1
月工资(万元/人) 5 3 2 x 0.8
A.2,4 B.1.8,1.6 C.2,1.6 D.1.6,1.8
【解答】解:∵他们的月平均工资是2.22万元,
∴(1×5+2×3+2×2+4x+1×0.8)=2.22,
解得x=1.6,
∴该公司工作人员的月工资的中位数是(2+1.6)=1.8,众数是1.6,
故选:B.
2.某商场服装部为了调动营业员的积极性,决定实行目标管理,根据目标完成的情况对营业员进行适当的奖励.为了确定一个适当的月销售目标,商场服装部统计了每位营业员在某月的销售额(单位:万元),数据如下:
17 18 16 13 24 15 28 26 18 19
22 17 16 19 32 30 16 14 15 26
15 32 23 17 15 15 28 28 16 19
对这30个数据按组距3进行分组,并整理、描述和分析如下.
频数分布表
组别 一 二 三 四 五 六 七
销售额 13≤x<16 16≤x<19 19≤x<22 22≤x<25 25≤x<28 28≤x<31 31≤x<34
频数 7 9 3 a 2 b 2
数据分析表
平均数 众数 中位数
20.3 c 18
请根据以上信息解答下列问题:
(1)填空:a=____ ,b=____,c=____;
(2)若将月销售额不低于25万元确定为销售目标,则有____位营业员获得奖励;
(3)若想让一半左右的营业员都能达到销售目标,你认为月销售额定为多少合适?说明理由.
【解答】解:(1)在22≤x<25范围内的数据有3个,在28≤x<31范围内的数据有4个,
15出现的次数最大,则中位数为15;
(2)月销售额不低于25万元为后面三组数据,即有8位营业员获得奖励;
故答案为3,4,15;8;
(3)想让一半左右的营业员都能达到销售目标,你认为月销售额定为18万合适.
因为中位数为18,即大于18与小于18的人数一样多,
所以月销售额定为18万,有一半左右的营业员能达到销售目标.
知识点3 从统计图计算集中趋势
数据的统计:条形统计图、折线统计图、扇形统计图是三种最常用的统计图.
要点诠释:
这三种统计图各具特点:
条形统计图可以直观地反映出数据的数量特征;
折线统计图可以直观地反映出数据的数量变化规律;
扇形统计图可以直观地反映出各部分数量在总量中所占的份额.
【典例】
某校分别于2012年、2014年随机调查相同数量的学生,对数学课开展小组合作学习的情况进行调查(开展情况分为较少、有时、常常、总是四种),绘制成部分统计图如下,请根据图中信息,解答下列问题:
第5题图
(1)a=_____%,b=______%,“总是”对应阴影的圆心角为________°;
(2)请你补全条形统计图;
(3)若该校2014年共有1200名学生,请你统计其中认为数学课“总是”开展小组合作学习的学生有多少名?
(4)相比2012年,2014年数学课开展小组合作学习的情况有何变化?
【答案】
【解析】(1)解:80÷40%=200(人),a=38÷200=19%,b=100%-40%-21%-19%=20%,
40%×360°=144°;
(2)解:2014年“有时”的人数为:20%×200=40(人),
2014年“常常”的人数为:200×21%=42(人),
补全统计图如解图所示:
(3)解:1200×=480(人),
答:数学课“总是”开展小组合作学习的学生有480人;
解:相比2012年,2014年数学课开展小组合作学习情况有所好转
【方法总结】
1. 解决统计图问题的方法,通常是结合两种统计图,对照统计图中各已知量,分析要求解的量.一般地,首先求出总量,再由总量及部分中的一个已知项求出另一个未知项,由此逐一求出所有的未知量,从而由所得结果补全统计图
2.统计图中相关量的计算方法:
(1)条形统计图:一般涉及补图,也就是求未知组的频数,方法如下:
①未知组频数=样本容量-已知组频数之和;
②未知组频数=样本容量×该组所占样本容量的百分比.
(2)扇形统计图:一般涉及求未知组的百分比或其所占扇形圆心角的度数
若求未知组在扇形统计图中圆心角的度数,利用360°×其所占百分比即可.
(3)折线统计图一般涉及求增长量.
(4)用样本估算总体:样本频数=总数×样本频率
【随堂练习】
1.某校积极开展中学生社会实践活动,决定成立文明宣传、环境保护、交通监督三个志愿者队伍,每名学生最多选择一个队伍,为了了解学生的选择意向,随机抽取A,B,C,D四个班,共200名学生进行调查.将调查得到的数据进行整理,绘制成如下统计图(不完整).
(1)求扇形统计图中交通监督所在扇形的圆心角度数;
(2)求D班选择环境保护的学生人数,并补全折线统计图;
(3)若该校共有学生2500人,试估计该校选择文明宣传的学生人数.
【解答】解:(1)选择交通监督的人数是:12+15+13+14=54(人),
选择交通监督的百分比是:×100%=27%,
扇形统计图中交通监督所在扇形的圆心角度数是:360°×27%=97.2°;
(2)D班选择环境保护的学生人数是:200×30%﹣15﹣14﹣16=15(人).
补全折线统计图如图所示;
(3)2500×(1﹣30%﹣27%﹣5%)=950(人),
即估计该校选择文明宣传的学生人数是950人.
2.中华文化源远流长,在文学方面,《西游记》《三国演义》《水浒传》《红楼梦》是我国古代长篇小说中的典型代表,被称为“四大古典名著”.某中学为了了解学生对四大古典名著的阅读情况,就“四大古典名著你读完了几部”的问题在全校学生中抽取n名学生进行调查.根据调查结果绘制成如图所示的两个不完整的统计图,请结合图中信息解决下列问题:
(1)求n的值;
(2)请将条形统计图补充完整;
(3)若该校共有2000名学生,请估计该校四大古典名著均已读完的人数.
【解答】解:(1)根据题意得:30÷30%=100(人),
则n的值为100;
(2)四大古典名著你读完了2部的人数为100﹣(5+15+30+25)=25(人),
补全条形统计图,如图所示:
(3)根据题意得:25%×2000=500(人),
则该校四大古典名著均已读完的人数为500人.
知识点4 数据的离散程度
极差:一组数据中最大值与最小值的差,能反映这组数据的变化范围,我们就把这样的数据叫做极差。一般来说,极差越小则说明数据的波动幅度越小。
方差:各个数据与它们的平均数的差的平方的平均数叫做这组数据的方差,记作s .
标准差:方差的算术平方根叫做一组数据的标准差,记作s
【典例】
1.甲乙两人8次射击的成绩如图所示(单位:环).根据图中的信息判断,这8次射击中成绩比较稳定的是_______(填“甲”或“乙”)
【答案】甲
【解析】本题考查了方差,乙的8次成绩为5,9,6,8,6,8,8,6;甲的8次成绩为6,7,7,8,5,9,5,9,∴s2乙=,s2甲=,∴8次射击中成绩比较稳定的是甲.
2.某工程队有14名员工,他们的工种及相应每人每月工资如下表所示:
工种 人数 每人每月工资/元
电工 5 7000
木工 4 6000
瓦工 5 5000
现该工程队进行了人员调整:减少木工2名,增加电工、瓦工各1名.与调整前相比,该工程队员工月工资的方差________(填“变小”,“不变”或“变大”)
【答案】变大
【解析】变化前每月工资数据为5个7000,4个6000,5个5000,变化后每月工资数据为6个7000,2个6000,6个5000,因为两组数据的平均数均为6000,明显变化后数据的波动较大,方差较大,所以调整后的该工程队员工月工资的方差变大.
【随堂练习】
1.中国经济的快速发展让众多国家感受到了威胁,随着钓鱼岛事件、南海危机、萨德入韩等一系列事件的发生,国家安全一再受到威胁,所谓“国家兴亡,匹夫有责”.岳池县某校积极开展国防知识教育,九年级甲、乙两班分别选5名同学参加“国防知识”比赛,其预赛成绩如图所示:
(1)根据上图填写如表:
平均数 中位数 众数 方差
甲班 8.5 8.5 8 0.7
乙班 8.5 8 10 1.6
(2)根据上表中的方差,分析哪个班的成绩更稳定.
【解答】解:(1)甲的众数为:8,
方差为:[(8.5﹣8.5)2+(7.5﹣8.5)2+(8﹣8.5)2+(8.5﹣8.5)2+(10﹣8.5)2]=0.7,
乙的中位数是8,
(2)从方差看,甲班的方差小,所以甲班的成绩更稳定.
2.某射击队为从甲乙两名运动员中选拔一人参加比赛,对他们进行了六次测试,测试成绩如下表(单位:环):
第一次 第二次 第三次 第四次 第五次 第六次 平均成绩 中位数
甲 10 8 9 8 10 9 9 ①
乙 10 7 10 10 9 8 ② 9.5
(1)写出表中①、②表示的数:① 9 ,② 9 ;
(2)请计算甲六次测试成绩的方差;
(3)你认为推荐谁参加比赛更合适?
【解答】解:(1)甲的中位数是:=9;
乙的平均数是:(10+7+10+10+9+8)÷6=9;
故答案为:9,9;
(2)S甲2=[(10﹣9)2+(8﹣9)2+(9﹣9)2+(8﹣9)2+(10﹣9)2+(9﹣9)2]=;
(3)∵=,S甲2<S乙2,
∴推荐甲参加比赛合适.
综合运用:
1.某班体育委员对本班学生一周锻炼时间(单位:小时)进行了统计,绘制了如图所示的折线统计图,则该班这些学生一周锻炼时间的中位数是
【答案】11
【解析】解:由统计图可知,
一共有:6+9+10+8+7=40(人),
∴该班这些学生一周锻炼时间的中位数是第20个和21个学生对应的数据的平均数,
∴该班这些学生一周锻炼时间的中位数是11,
故答案为:11.
2.2017年6月2日,贵阳市生态委发布了《2016年贵阳市环境状况公报》,公报显示,2016年贵阳市生态环境质量进一步提升,小颖根据公报中的部分数据,制成了下面两幅统计图,请根据图中提供的信息,回答下列问题:
(1)a= ,b= ;(结果保留整数)
(2)求空气质量等级为“优”在扇形统计图中所占的圆心角的度数;(结果精确到1°)
(3)根据了解,今年1~5月贵阳市空气质量优良天数为142天,优良率为94%,与2016年全年的优良率相比,今年前五个月贵阳市空气质量的优良率是提高还是降低了?请对改善贵阳市空气质量提一条合理化建议
【答案】
【解析】解:(1)a=×3.83%=14,b=﹣14﹣225﹣1﹣1=125;
故答案为:14,125;
(2)因为2016年全年总天数为:125+225+14+1+1=366(天),则360°×=123°,
所以空气质量等级为“优”在扇形统计图中所占的圆心角的度数为123°;
(3)2016年贵阳市空气质量的优良率为×100%≈95.6%,
∵94%<95.6%,
∴与2016年全年的优良相比,今年前5 个月贵阳市空气质量优良率降低了,建议:低碳出行,少开空调等.
3.八年级一班开展了“读一本好书”的活动,班委会对学生阅读书籍的情况进行了问卷调查,问卷设置了“小说”“戏剧”“散文”“其他”四个类型,每位同学仅选一项,根据调查结果绘制了不完整的频数分布表和扇形统计图.
类别 频数(人数) 频率
小说 0.5
戏剧 4
散文 10 0.25
其他 6
合计 1
根据图表提供的信息,解答下列问题:
(1)八年级一班有多少名学生?
(2)请补全频数分布表,并求出扇形统计图中“其他”类所占的百分比;
(3)在调查问卷中,甲、乙、丙、丁四位同学选择了“戏剧”类,现从以上四位同学中任意选出2名同学参加学校的戏剧兴趣小组,请用画树状图或列表法的方法,求选取的2人恰好是乙和丙的概率.
【答案】
【解析】解:(1)∵喜欢散文的有10人,频率为0.25,
∴总人数=10÷0.25=40(人);
(2)在扇形统计图中,“其他”类所占的百分比为×100%=15%,
类别 频数(人数) 频率
小说 20 0.5
戏剧 4 0.1
散文 10 0.25
其他 6 0.15
合计 40 1
故答案为:15%;
(3)画树状图,如图所示:
所有等可能的情况有12种,其中恰好是丙与乙的情况有2种,
∴P(丙和乙)==.
4.某校九年级开展征文活动,征文主题只能从“爱国”“敬业”“诚信”“友善”四个主题中选择一个,九年级每名学生按要求都上交了一份征文,学校为了解选择各种征文主题的学生人数,随机抽取了部分征文进行了调查,根据调查结果绘制成如下两幅不完整的统计图.
(1)求本次调查共抽取了多少名学生的征文;
(2)将上面的条形统计图和扇形统计图补充完整;
(3)如果该校九年级共有1200名学生,请估计选择以“友善”为主题的九年级学生有多少名;
(4)本次抽取的3份以“诚信”为主题的征文分别是小义、小玉和大力的,若从中随机选取2份以“诚信”为主题的征文进行交流,请用画树状图法或列表法求小义和小玉同学的征文同时被选中的概率.
【答案】
【解析】解:(1)本次调查共抽取的学生有3÷6%=50(名).
(2)选择“友善”的人数有50﹣20﹣12﹣3=15(名),占=30%,
“爱国”占=40%,“敬业”占=24%.
条形统计图和扇形统计图如图所示,
(3)该校九年级共有1200名学生,请估计选择以“友善”为主题的九年级学生有1200×30%=360名.
(4)记小义、小玉和大力分别为A、B、C.
树状图如图所示:
共有6种情形,小义和小玉同学的征文同时被选中的有2种情形,
小义和小玉同学的征文同时被选中的概率=.
5.家庭过期药品属于“国家危险废物”,处理不当将污染环境,危害健康.某市药监部门为了解市民家庭处理过期药品的方式,决定对全市家庭作一次简单随机抽样调査.
(1)下列选取样本的方法最合理的一种是 .(只需填上正确答案的序号)
①在市中心某个居民区以家庭为单位随机抽取;②在全市医务工作者中以家庭为单位随机抽取;③在全市常住人口中以家庭为单位随机抽取.
(2)本次抽样调査发现,接受调査的家庭都有过期药品,现将有关数据呈现如图:
①m= ,n= ;
②补全条形统计图;
③根据调査数据,你认为该市市民家庭处理过期药品最常见的方式是什么?
④家庭过期药品的正确处理方式是送回收点,若该市有180万户家庭,请估计大约有多少户家庭处理过期药品的方式是送回收点.
【答案】
【解析】解:(1)根据抽样调查时选取的样本需具有代表性,可知下列选取样本的方法最合理的一种是③.
①在市中心某个居民区以家庭为单位随机抽取;②在全市医务工作者中以家庭为单位随机抽取;③在全市常住人口中以家庭为单位随机抽取.
(2)①抽样调査的家庭总户数为:80÷8%=1000(户),
m%==20%,m=20,
n%==6%,n=6.
故答案为20,6;
②C类户数为:1000﹣(80+510+200+60+50)=100,
条形统计图补充如下:
③根据调査数据,即可知道该市市民家庭处理过期药品最常见的方式是B类;
④180×10%=18(万户).
若该市有180万户家庭,估计大约有18万户家庭处理过期药品的方式是送回收点.
21世纪教育网(www.21cnjy.com)