【暑假专练】第9讲 实际问题与二次函数 -满分班(学生版+教师版)

文档属性

名称 【暑假专练】第9讲 实际问题与二次函数 -满分班(学生版+教师版)
格式 zip
文件大小 544.5KB
资源类型 试卷
版本资源 北师大版
科目 数学
更新时间 2022-07-06 08:47:59

文档简介

第9讲 实际问题与二次函数
1二次函数的应用
利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义.
  利用二次函数解决实际问题的一般步骤是:
  (1)建立适当的平面直角坐标系;
  (2)把实际问题中的一些数据与点的坐标联系起来;
  (3)用待定系数法求出抛物线的关系式;
  (4)利用二次函数的图象及其性质去分析问题、解决问题.
要点诠释:
常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.
1.(2018 单县三模)某低碳节能产品的年产量不超过100万件,该产品的生产费用y(万元)与年产量x(万件)之间的函数图象是顶点在原点的抛物线的一部分(如图①所示);该产品的销售单价z(元/件)与年销售量x(万件)之间的函数图象是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡.
(1)求y与x以及z与x之间的函数关系式;
(2)设年产量为x万件时,所获毛利润为w万元,求w与x之间的函数关系式;并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?(毛利润=销售额﹣生产费用).
【解答】解:图①可得函数经过点(100,1000),
设抛物线的解析式为y=ax2(a≠0),
将点(100,1000)代入得:1000=10000a,
解得:a=,
故y与x之间的关系式为y=x2.
图②可得:函数经过点(0,30)、(100,20),
设z=kx+b,则,
解得:,
故z与x之间的关系式为z=﹣x+30;
(2)年产量为x万件时,生产费用为x2,销售额为:zx=(﹣x+30)x=﹣x2+30x,
则w=﹣x2+30x﹣x2=﹣x2+30x=﹣(x2﹣150x)=﹣(x﹣75)2+1125,
当x=75时,获得毛利润最大,最大毛利润为1125万元.
答:当年产量为75万件时,获得毛利润最大,最大毛利润为1125万元.
 
2.(2018 建平县模拟)无锡市灵山胜境公司厂生产一种新的大佛纪念品,每件纪念品制造成本为18元,试销过程发现,每月销量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.
(1)写出公司每月的利润w(万元)与销售单价x(元)之间函数解析式;
(2)当销售单价为多少元时,公司每月能够获得最大利润?最大利润是多少?
(3)根据工商部门规定,这种纪念品的销售单价不得高于32元.如果公司要获得每月不低于350万元的利润,那么制造这种纪念品每月的最低制造成本需要多少万元?
【解答】解:(1)w=(x﹣18)y=(x﹣18)(﹣2x+100)=﹣2x2+136x﹣1800;
(2)将w=﹣2x2+136x﹣1800配方,得w=﹣2(x﹣34)2+512(x>18),
答:当销售单价为34元时,每月能获得最大利润,最大利润是512万元;
(3)由w=350,得350=﹣2x2+136x﹣1800
解这个方程得x1=25,x2=43,即销售单价定为25元或43元,
结合函数w=﹣2x2+136x﹣1800的图象可知,
当25≤x≤43时w≥350,
又由限价32元,得25≤x≤32,
根据一次函数的性质,得y=﹣2x+100中y随x的增大而减小,
∵x最大取32,
∴当x=32时,每月制造成本最低.最低成本是18×(﹣2×32+100)=648(万元)
答:每月最低制造成本为648万元.
3.(2018 安次区二模)某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y1与投资量x成正比例关系,种植花卉的利润y2与投资量x的平方成正比例关系,并得到了表格中的数据.
投资量x(万元) 2
种植树木利润y1(万元) 4
种植花卉利润y2(万元) 2
(1)分别求出利润y1与y2关于投资量x的函数关系式;
(2)如果这位专业户以8万元资金投入种植花卉和树木,设他投入种植花卉金额m万元,种植花卉和树木共获利利润W万元,直接写出W关于m的函数关系式,并求他至少获得多少利润?他能获取的最大利润是多少?
(3)若该专业户想获利不低于22万,在(2)的条件下,直接写出投资种植花卉的金额m的范围.
【解答】解:(1)设y1=kx,
由表格数据可知,函数y1=kx的图象过(2,4),
∴4=k 2,
解得:k=2,
故利润y1关于投资量x的函数关系式是y1=2x(x≥0);
∵设y2=ax2,
由表格数据可知,函数y2=ax2的图象过(2,2),
∴2=a 22,
解得:a=,
故利润y2关于投资量x的函数关系式是:y2=x2(x≥0);
(2)因为种植花卉m万元(0≤m≤8),则投入种植树木(8﹣m)万元,
w=2(8﹣m)+m2=m2﹣2m+16=(m﹣2)2+14,
∵a=0.5>0,0≤m≤8,
∴当m=2时,w的最小值是14,
∵a=>0,
∴当m>2时,w随m的增大而增大
∵0≤m≤8,
∴当m=8时,w的最大值是32,
答:他至少获得14万元利润,他能获取的最大利润是32万元.
(3)根据题意,当w=22时,(m﹣2)2+14=22,
解得:m=﹣2(舍)或m=6,
故:6≤m≤8.
 
4.(2018 陵城区二模)浩然文具店新到一种计算器,进价为25元,营销时发现:当销售单价定为30元时,每天的销售量为150件,若销售单价每上涨1元,每天的销售量就会减少10件.
(1)写出商店销售这种计算器,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;
(2)求销售单价定为多少元时,每天的销售利润最大?最大值是多少?
(3)商店的营销部结合上述情况,提出了A、B两种营销方案:
方案A:为了让利学生,该计算器的销售利润不超过进价的24%;
方案B:为了满足市场需要,每天的销售量不少于120件.
请比较哪种方案的最大利润更高,并说明理由.
【解答】解:(1)由题意得,销售量=150﹣10(x﹣30)=﹣10x+450,
则w=(x﹣25)(﹣10x+450)
=﹣10x2+700x﹣11250;
(2)w=﹣10x2+700x﹣11250=﹣10(x﹣35)2+1000,
∵﹣10<0,
∴函数图象开口向下,w有最大值,
当x=35时,w最大=1000元,
故当单价为35元时,该计算器每天的利润最大;
(3)B方案利润高.理由如下:
A方案中:∵25×24%=6,
此时wA=6×(150﹣10)=840元,
B方案中:每天的销售量为120件,单价为33元,
∴最大利润是120×(33﹣25)=960元,
此时wB=960元,
∵wB>wA,
∴B方案利润更高.
 
5.(2018 滦南县一模)我市“佳禾”农场的十余种有机蔬菜在北京市场上颇具竞争力.某种有机蔬菜上市后,一经销商在市场价格为10元/千克时,从“佳禾”农场收购了某种有机蔬菜2000 千克存放入冷库中.据预测,该种蔬菜的市场价格每天每千克将上涨0.2元,但冷库存放这批蔬菜时每天需要支出各种费用合计148元,已知这种蔬莱在冷库中最多保存90天,同时,平均每天将会有6千克的蔬菜损坏不能出售.
(1)若存放x天后,将这批蔬菜一次性出售,设这批蔬菜的销售总金额为y元,试写出y与x之间的函数关系式.
(2)经销商想获得利润7200元,需将这批蔬菜存放多少天后出售?(利润=销售总金额﹣收购成本﹣各种费用)
(3)经销商将这批蔬菜存放多少天后出售可获得最大利润?最大利润是多少?
【解答】解:(1)由题意得y与x之间的函数关系式为:
y=(10+0.2x)(2000﹣6x)=﹣1.2x2+340x+20000(1≤x≤90);
(2)由题意得:﹣1.2x2+340x+20000﹣10×2000﹣148x=7200,
解方程得:x1=60;x2=100(不合题意,舍去),
经销商想获得利润7200元需将这批蔬菜存放60天后出售;
(3)设最大利润为W元,
由题意得W=﹣1.2x2+340x+20000﹣10×2000﹣148x
即W=﹣1.2(x﹣80)2+7680,
∴当x=80时,W最大=7680,
由于80<90,
∴存放80天后出售这批蔬菜可获得最大利润7680元.
2二次函数的综合
1.(2018 天津)在平面直角坐标系中,点O(0,0),点A(1,0).已知抛物线y=x2+mx﹣2m(m是常数),顶点为P.
(Ⅰ)当抛物线经过点A时,求顶点P的坐标;
(Ⅱ)若点P在x轴下方,当∠AOP=45°时,求抛物线的解析式;
(Ⅲ)无论m取何值,该抛物线都经过定点H.当∠AHP=45°时,求抛物线的解析式.
【解答】解:(Ⅰ)∵抛物线y=x2+mx﹣2m经过点A(1,0),
∴0=1+m﹣2m,
解得:m=1,
∴抛物线解析式为y=x2+x﹣2,
∵y=x2+x﹣2=(x+)2﹣,
∴顶点P的坐标为(﹣,﹣);
(Ⅱ)抛物线y=x2+mx﹣2m的顶点P的坐标为(﹣,﹣),
由点A(1,0)在x轴的正半轴上,点P在x轴的下方,∠AOP=45°知点P在第四象限,
如图1,过点P作PQ⊥x轴于点Q,
则∠POQ=∠OPQ=45°,
可知PQ=OQ,即=﹣,
解得:m1=0,m2=﹣10,
当m=0时,点P不在第四象限,舍去;
∴m=﹣10,
∴抛物线的解析式为y=x2﹣10x+20;
(Ⅲ)由y=x2+mx﹣2m=x2+m(x﹣2)可知当x=2时,无论m取何值时y都等于﹣4,
∴点H的坐标为(2,4),
过点A作AD⊥AH,交射线HP于点D,分别过点D、H作x轴的垂线,垂足分别为E、G,
则∠DEA=∠AGH=90°,
∵∠DAH=90°,∠AHD=45°,
∴∠ADH=45°,
∴AH=AD,
∵∠DAE+∠HAG=∠AHG+∠HAG=90°,
∴∠DAE=∠AHG,
∴△ADE≌△HAG,
∴DE=AG=1、AE=HG=4,
则点D的坐标为(﹣3,1)或(5,﹣1);
①当点D的坐标为(﹣3,1)时,可得直线DH的解析式为y=x+,
∵点P(﹣,﹣)在直线y=x+上,
∴﹣=×(﹣)+,
解得:m1=﹣4、m2=﹣,
当m=﹣4时,点P与点H重合,不符合题意,
∴m=﹣;
②当点D的坐标为(5,﹣1)时,可得直线DH的解析式为y=﹣x+,
∵点P(﹣,﹣)在直线y=﹣x+上,
∴﹣=﹣×(﹣)+,
解得:m1=﹣4(舍),m2=﹣,
综上,m=﹣或m=﹣,
则抛物线的解析式为y=x2﹣x+或y=x2﹣x+.
2.(2018 济宁)如图,已知抛物线y=ax2+bx+c(a≠0)经过点A(3,0),B(﹣1,0),C(0,﹣3).
(1)求该抛物线的解析式;
(2)若以点A为圆心的圆与直线BC相切于点M,求切点M的坐标;
(3)若点Q在x轴上,点P在抛物线上,是否存在以点B,C,Q,P为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.
【解答】解:(1)把A(3,0),B(﹣1,0),C(0,﹣3)代入抛物线解析式得:,
解得:,
则该抛物线解析式为y=x2﹣2x﹣3;
(2)设直线BC解析式为y=kx﹣3,
把B(﹣1,0)代入得:﹣k﹣3=0,即k=﹣3,
∴直线BC解析式为y=﹣3x﹣3,
∴直线AM解析式为y=x+m,
把A(3,0)代入得:1+m=0,即m=﹣1,
∴直线AM解析式为y=x﹣1,
联立得:,
解得:,
则M(﹣,﹣);
(3)存在以点B,C,Q,P为顶点的四边形是平行四边形,
分两种情况考虑:
设Q(x,0),P(m,m2﹣2m﹣3),
当四边形BCQP为平行四边形时,由B(﹣1,0),C(0,﹣3),
根据平移规律得:﹣1+x=0+m,0+0=﹣3+m2﹣2m﹣3,
解得:m=1±,x=2±,
当m=1+时,m2﹣2m﹣3=8+2﹣2﹣2﹣3=3,即P(1+,2);
当m=1﹣时,m2﹣2m﹣3=8﹣2﹣2+2﹣3=3,即P(1﹣,2);
当四边形BCPQ为平行四边形时,由B(﹣1,0),C(0,﹣3),
根据平移规律得:﹣1+m=0+x,0+m2﹣2m﹣3=﹣3+0,
解得:m=0或2,
当m=0时,P(0,﹣3)(舍去);当m=2时,P(2,﹣3),
综上,存在以点B,C,Q,P为顶点的四边形是平行四边形,P的坐标为(1+,2)或(1﹣,2)或(2,﹣3).
 
3.(2018 娄底)如图,抛物线y=ax2+bx+c与两坐标轴相交于点A(﹣1,0)、B(3,0)、C(0,3),D是抛物线的顶点,E是线段AB的中点.
(1)求抛物线的解析式,并写出D点的坐标;
(2)F(x,y)是抛物线上的动点:
①当x>1,y>0时,求△BDF的面积的最大值;
②当∠AEF=∠DBE时,求点F的坐标.
【解答】解:(1)将A(﹣1,0)、B(3,0)、C(0,3)代入y=ax2+bx+c,
,解得:,
∴抛物线的解析式为y=﹣x2+2x+3.
∵y=﹣x2+2x+3=﹣(x﹣1)2+4,
∴顶点D的坐标为(1,4).
(2)①过点F作FM∥y轴,交BD于点M,如图1所示.
设直线BD的解析式为y=mx+n(m≠0),
将(3,0)、(1,4)代入y=mx+n,
,解得:,
∴直线BD的解析式为y=﹣2x+6.
∵点F的坐标为(x,﹣x2+2x+3),
∴点M的坐标为(x,﹣2x+6),
∴FM=﹣x2+2x+3﹣(﹣2x+6)=﹣x2+4x﹣3,
∴S△BDF=FM (yB﹣yD)=﹣x2+4x﹣3=﹣(x﹣2)2+1.
∵﹣1<0,
∴当x=2时,S△BDF取最大值,最大值为1.
②过点E作EN∥BD交y轴于点N,交抛物线于点F1,在y轴负半轴取ON′=ON,连接EN′,射线EN′交抛物线于点F2,如图2所示.
∵EF1∥BD,
∴∠AEF1=∠DBE.
∵ON=ON′,EO⊥NN′,
∴∠AEF2=∠AEF1=∠DBE.
∵E是线段AB的中点,A(﹣1,0),B(3,0),
∴点E的坐标为(1,0).
设直线EF1的解析式为y=﹣2x+b1,
将E(1,0)代入y=﹣2x+b1,
﹣2+b1=0,解得:b1=2,
∴直线EF1的解析式为y=﹣2x+2.
联立直线EF1、抛物线解析式成方程组,,
解得:,(舍去),
∴点F1的坐标为(2﹣,2﹣2).
当x=0时,y=﹣2x+2=2,
∴点N的坐标为(0,2),
∴点N′的坐标为(0,﹣2).
同理,利用待定系数法可求出直线EF2的解析式为y=2x﹣2.
联立直线EF2、抛物线解析式成方程组,,
解得:,(舍去),
∴点F2的坐标为(﹣,﹣2﹣2).
综上所述:当∠AEF=∠DBE时,点F的坐标为(2﹣,2﹣2)或(﹣,﹣2﹣2).
综合练习
一.选择题(共3小题)
1.将进货单价为70元的某种商品按零售价100元一个售出时,每天能卖出20个.若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1个,则能获取的最大利润是(  )
A.600元 B.625元 C.650元 D.675元
【解答】解:设降价x元,所获得的利润为W元,
则W=(20+x)(100﹣x﹣70)=﹣x2+10x+600=﹣(x﹣5)2+625,
∵﹣1<0
∴当x=5元时,二次函数有最大值W=625.
∴获得的最大利润为625元.
故选:B.
2.汽车刹车后行驶的距离s(单位:米)关于行驶的时间t(单位:秒)的函数解析式为s=﹣6t2+bt(b为常数).已知t=时,s=6,则汽车刹车后行驶的最大距离为(  )
A.米 B.8米 C.米 D.10米
【解答】解:把t=,s=6代入s=﹣6t2+bt得,
6=﹣6×+b×,
解得,b=15
∴函数解析式为s=﹣6t2+15t=﹣6(t﹣)2+,
∴当t=时,s取得最大值,此时s=,
故选:C.
3.超市有一种“喜之郎“果冻礼盒,内装两个上下倒置的果冻,果冻高为4cm,底面是个直径为6cm的圆,轴截面可以近似地看作一个抛物线,为了节省成本,包装应尽可能的小,这个包装盒的长AD(不计重合部分,两个果冻之间没有挤压)至少为(  )
A.(6+3)cm B.(6+2)cm C.(6+2)cm D.(6+3)cm
【解答】解:设左侧抛物线的方程为:y=ax2,
点A的坐标为(﹣3,4),将点A坐标代入上式并解得:a=,
则抛物线的表达式为:y=x2,
由题意得:点MG是矩形HFEO的中线,则点N的纵坐标为2,
将y=2代入抛物线表达式得:2=x2,解得:x=(负值已舍去),
则AD=2AH+2x=6+3,
故选:A.
二.解答题(共5小题)
4.如图,抛物线y=ax2+bx+3(a≠0)的对称轴为直线x=﹣1,抛物线交x轴于A、C两点,与直线y=x﹣1交于A、B两点,直线AB与抛物线的对称轴交于点E.
(1)求抛物线的解板式.
(2)点P在直线AB上方的抛物线上运动,若△ABP的面积最大,求此时点P的坐标.
(3)在平面直角坐标系中,以点B、E、C、D为顶点的四边形是平行四边形,请直接写出符合条件点D的坐标.
【解答】解:(1)令y=0,可得:x﹣1=0,解得:x=1,
∴点A(1,0),
∵抛物线y=ax2+bx+3(a≠0)的对称轴为直线x=﹣1,
∴﹣1×2﹣1=﹣3,即点C(﹣3,0),
∴,解得:,
∴抛物线的解析式为:y=﹣x2﹣2x+3;
(2)∵点P在直线AB上方的抛物线上运动,
∴设点P(m,﹣m2﹣2m+3),
∵抛物线与直线y=x﹣1交于A、B两点,
∴,解得:,,
∴点B(﹣4,﹣5),
如图,过点P作PM∥y轴交直线AB于点M,
则点M(m,m﹣1),
∴PM=﹣m2﹣2m+3﹣m+1=﹣m2﹣3m+4,
∴S△ABP=S△PBM+S△PBA
=(﹣m2﹣3m+4)(m+4)+(﹣m2﹣3m+4)(1﹣m)
=,
∴当m=时,P最大,
∴点P(,);
(3)当x=﹣1时,y=﹣1﹣1=﹣2,
∴点E(﹣1,﹣2),
如图,直线BC的解析式为y=5x+15,直线BE的解析式为y=x﹣1,直线CE的解析式为y=﹣x﹣3,
∵以点B、C、E、D为顶点的四边形是平行四边形,
∴直线D1D3的解析式为y=5x+3,直线D1D2的解析式为y=x+3,直线D2D3的解析式为y=﹣x﹣9,
联立得D1(0,3),
同理可得D2(﹣6,﹣3),D3(﹣2,﹣7),
综上所述,符合条件的点D的坐标为D1(0,3),D2(﹣6,﹣3),D3(﹣2,﹣7).
5.某商场试销一种成本为60元/件的T恤,规定试销期间单价不低于成本单价,又获利不得高于40%,经试销发现,销售量y(件)不销售单价x(元/件)符合一次函数y=kx+b,且x=70时,y=50;x=80时,y=40;
(1)写出销售单价x的取值范围;
(2)求出一次函数y=kx+b的解析式;
(3)若该商场获得利润为w元,试写出利润w与销售单价x之间的关系式,销售单价定为多少时,商场可获得最大利润,最大利润是多少?
【解答】解:(1)根据题意得,
60≤x≤60×(1+40%),
即60≤x≤84;
(2)由题意得:,
∴.
∴一次函数的解析式为:y=﹣x+120;
(3)w=(x﹣60)(﹣x+120)=﹣x2+180x﹣7200=﹣(x﹣90)2+900,
∵抛物线开口向下,
∴当x<90时,w随x的增大而增大,
而60≤x≤84,
∴当x=84时,w=(84﹣60)×(120﹣84)=864.
答:当销售价定为84元/件时,商场可以获得最大利润,最大利润是864元.
6.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现:销售量y(件)与销售单价x(元)符合一次函数y=kx+b(k≠0),且当x=65时,y=55;当x=70时,y=50.
(1)求y与x之间的解析式;
(2)若该商场获得利润为w元,写出利润w与销售单价x之间的关系式,并求出利润是500元时的销售单价;
(3)销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
【解答】解:(1)∵当x=65时,y=55;当x=70时,y=50.
∴,
解得:,
∴y=﹣x+120(60≤x≤87).
(2)w=(﹣x+120)(x﹣60),
w=﹣x2+180x﹣7200,
w=﹣(x﹣90)2+900,
当w=500时,有500=﹣(x﹣90)2+900,
解得,x=110(舍去)或x=70,
故利润是500元时的销售单价70元/件.
(3)又∵60<x≤60×(1+45%),
即60≤x≤87,
则x=87时获利最多,
将x=87代入,得w=﹣(87﹣90)2+900=891元.
答:售价定为87元有最大利润为891元.
7.公司销售一种进价为20元/个的计算器,销售过程中的其他开支(不含造价)总计40万元,其销售量y(万个)与销售价格x(元/个)的变化如下表:
(1)求出当销售量等于2.5万个时,销售价格等于多少?
(2)求出该公司销售这种计算器的净得利润z(万元)与销售价格x(元/个)的函数解析式;
(3)销售价格应定为多少元时,获得利润最大,最大利润是多少?
销售价格x(元/个) 销售量y(万元)
30≤x≤60 ﹣x+8
60≤x≤80
【解答】解:(1)由题意得,﹣x+8=2.5,
解得,x=55,
答:当销售量等于2.5万个时,销售价格等于55元/个;
(2)当30≤x≤60时,w=(x﹣20)(﹣0.1x+8)﹣40=﹣0.1x2+10x﹣200;
当60<x≤80时,w=(x﹣20) ﹣40=﹣+89;
(3)当30≤x≤60时,w=﹣0.1x2+10x﹣200=﹣0.1(x﹣50)2+50,
∴当x=50时,w取得最大值50(万元);
当60<x≤80时,w=﹣+89,
∵﹣2580<0,
∴w随x的增大而增大,当x=80时,w最大=121.25(万元)>50万元,
∴销售价格定为80元/件时,获得的利润最大,最大利润是121.25万元.
答:销售价格定为80元/件时,获得的利润最大,最大利润是121.25万元.
8.如图隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣x2+bx+c表示,且抛物线上的点C到OB的水平距离为3m,到地面OA的距离为m.
(1)求抛物线的函数关系式,并计算出拱顶D到地面OA的距离;
(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向车道,那么这辆货车能否安全通过?
【解答】解:(1)根据题意得B(0,4),C(3,),
把B(0,4),C(3,)代入y=﹣x2+bx+c得
解得.
所以抛物线解析式为y=﹣x2+2x+4,
则y=﹣(x﹣6)2+10,
所以D(6,10),
所以拱顶D到地面OA的距离为10m;
(2)由题意得货运汽车最外侧与地面OA的交点为(2,0)或(10,0),
当x=2或x=10时,y=>6,
所以这辆货车能安全通过.第9讲 实际问题与二次函数
1二次函数的应用
利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义.
  利用二次函数解决实际问题的一般步骤是:
  (1)建立适当的平面直角坐标系;
  (2)把实际问题中的一些数据与点的坐标联系起来;
  (3)用待定系数法求出抛物线的关系式;
  (4)利用二次函数的图象及其性质去分析问题、解决问题.
要点诠释:
常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.
1.(2018 单县三模)某低碳节能产品的年产量不超过100万件,该产品的生产费用y(万元)与年产量x(万件)之间的函数图象是顶点在原点的抛物线的一部分(如图①所示);该产品的销售单价z(元/件)与年销售量x(万件)之间的函数图象是如图②所示的一条线段,生产出的产品都能在当年销售完,达到产销平衡.
(1)求y与x以及z与x之间的函数关系式;
(2)设年产量为x万件时,所获毛利润为w万元,求w与x之间的函数关系式;并求年产量多少万件时,所获毛利润最大?最大毛利润是多少?(毛利润=销售额﹣生产费用).
 
2.(2018 建平县模拟)无锡市灵山胜境公司厂生产一种新的大佛纪念品,每件纪念品制造成本为18元,试销过程发现,每月销量y(万件)与销售单价x(元)之间的关系可以近似地看作一次函数y=﹣2x+100.
(1)写出公司每月的利润w(万元)与销售单价x(元)之间函数解析式;
(2)当销售单价为多少元时,公司每月能够获得最大利润?最大利润是多少?
(3)根据工商部门规定,这种纪念品的销售单价不得高于32元.如果公司要获得每月不低于350万元的利润,那么制造这种纪念品每月的最低制造成本需要多少万元?
3.(2018 安次区二模)某园林专业户计划投资种植花卉及树木,根据市场调查与预测,种植树木的利润y1与投资量x成正比例关系,种植花卉的利润y2与投资量x的平方成正比例关系,并得到了表格中的数据.
投资量x(万元) 2
种植树木利润y1(万元) 4
种植花卉利润y2(万元) 2
(1)分别求出利润y1与y2关于投资量x的函数关系式;
(2)如果这位专业户以8万元资金投入种植花卉和树木,设他投入种植花卉金额m万元,种植花卉和树木共获利利润W万元,直接写出W关于m的函数关系式,并求他至少获得多少利润?他能获取的最大利润是多少?
(3)若该专业户想获利不低于22万,在(2)的条件下,直接写出投资种植花卉的金额m的范围.
4.(2018 陵城区二模)浩然文具店新到一种计算器,进价为25元,营销时发现:当销售单价定为30元时,每天的销售量为150件,若销售单价每上涨1元,每天的销售量就会减少10件.
(1)写出商店销售这种计算器,每天所得的销售利润w(元)与销售单价x(元)之间的函数关系式;
(2)求销售单价定为多少元时,每天的销售利润最大?最大值是多少?
(3)商店的营销部结合上述情况,提出了A、B两种营销方案:
方案A:为了让利学生,该计算器的销售利润不超过进价的24%;
方案B:为了满足市场需要,每天的销售量不少于120件.
请比较哪种方案的最大利润更高,并说明理由.
 
5.(2018 滦南县一模)我市“佳禾”农场的十余种有机蔬菜在北京市场上颇具竞争力.某种有机蔬菜上市后,一经销商在市场价格为10元/千克时,从“佳禾”农场收购了某种有机蔬菜2000 千克存放入冷库中.据预测,该种蔬菜的市场价格每天每千克将上涨0.2元,但冷库存放这批蔬菜时每天需要支出各种费用合计148元,已知这种蔬莱在冷库中最多保存90天,同时,平均每天将会有6千克的蔬菜损坏不能出售.
(1)若存放x天后,将这批蔬菜一次性出售,设这批蔬菜的销售总金额为y元,试写出y与x之间的函数关系式.
(2)经销商想获得利润7200元,需将这批蔬菜存放多少天后出售?(利润=销售总金额﹣收购成本﹣各种费用)
(3)经销商将这批蔬菜存放多少天后出售可获得最大利润?最大利润是多少?
2二次函数的综合
1.(2018 天津)在平面直角坐标系中,点O(0,0),点A(1,0).已知抛物线y=x2+mx﹣2m(m是常数),顶点为P.
(Ⅰ)当抛物线经过点A时,求顶点P的坐标;
(Ⅱ)若点P在x轴下方,当∠AOP=45°时,求抛物线的解析式;
(Ⅲ)无论m取何值,该抛物线都经过定点H.当∠AHP=45°时,求抛物线的解析式.
2.(2018 济宁)如图,已知抛物线y=ax2+bx+c(a≠0)经过点A(3,0),B(﹣1,0),C(0,﹣3).
(1)求该抛物线的解析式;
(2)若以点A为圆心的圆与直线BC相切于点M,求切点M的坐标;
(3)若点Q在x轴上,点P在抛物线上,是否存在以点B,C,Q,P为顶点的四边形是平行四边形?若存在,求点P的坐标;若不存在,请说明理由.
3.(2018 娄底)如图,抛物线y=ax2+bx+c与两坐标轴相交于点A(﹣1,0)、B(3,0)、C(0,3),D是抛物线的顶点,E是线段AB的中点.
(1)求抛物线的解析式,并写出D点的坐标;
(2)F(x,y)是抛物线上的动点:
①当x>1,y>0时,求△BDF的面积的最大值;
②当∠AEF=∠DBE时,求点F的坐标.
综合练习
一.选择题(共3小题)
1.将进货单价为70元的某种商品按零售价100元一个售出时,每天能卖出20个.若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1个,则能获取的最大利润是(  )
A.600元 B.625元 C.650元 D.675元
2.汽车刹车后行驶的距离s(单位:米)关于行驶的时间t(单位:秒)的函数解析式为s=﹣6t2+bt(b为常数).已知t=时,s=6,则汽车刹车后行驶的最大距离为(  )
A.米 B.8米 C.米 D.10米
3.超市有一种“喜之郎“果冻礼盒,内装两个上下倒置的果冻,果冻高为4cm,底面是个直径为6cm的圆,轴截面可以近似地看作一个抛物线,为了节省成本,包装应尽可能的小,这个包装盒的长AD(不计重合部分,两个果冻之间没有挤压)至少为(  )
A.(6+3)cm B.(6+2)cm C.(6+2)cm D.(6+3)cm
二.解答题(共5小题)
4.如图,抛物线y=ax2+bx+3(a≠0)的对称轴为直线x=﹣1,抛物线交x轴于A、C两点,与直线y=x﹣1交于A、B两点,直线AB与抛物线的对称轴交于点E.
(1)求抛物线的解板式.
(2)点P在直线AB上方的抛物线上运动,若△ABP的面积最大,求此时点P的坐标.
(3)在平面直角坐标系中,以点B、E、C、D为顶点的四边形是平行四边形,请直接写出符合条件点D的坐标.
5.某商场试销一种成本为60元/件的T恤,规定试销期间单价不低于成本单价,又获利不得高于40%,经试销发现,销售量y(件)不销售单价x(元/件)符合一次函数y=kx+b,且x=70时,y=50;x=80时,y=40;
(1)写出销售单价x的取值范围;
(2)求出一次函数y=kx+b的解析式;
(3)若该商场获得利润为w元,试写出利润w与销售单价x之间的关系式,销售单价定为多少时,商场可获得最大利润,最大利润是多少?
6.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现:销售量y(件)与销售单价x(元)符合一次函数y=kx+b(k≠0),且当x=65时,y=55;当x=70时,y=50.
(1)求y与x之间的解析式;
(2)若该商场获得利润为w元,写出利润w与销售单价x之间的关系式,并求出利润是500元时的销售单价;
(3)销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
7.公司销售一种进价为20元/个的计算器,销售过程中的其他开支(不含造价)总计40万元,其销售量y(万个)与销售价格x(元/个)的变化如下表:
(1)求出当销售量等于2.5万个时,销售价格等于多少?
(2)求出该公司销售这种计算器的净得利润z(万元)与销售价格x(元/个)的函数解析式;
(3)销售价格应定为多少元时,获得利润最大,最大利润是多少?
销售价格x(元/个) 销售量y(万元)
30≤x≤60 ﹣x+8
60≤x≤80
8.如图隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣x2+bx+c表示,且抛物线上的点C到OB的水平距离为3m,到地面OA的距离为m.
(1)求抛物线的函数关系式,并计算出拱顶D到地面OA的距离;
(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向车道,那么这辆货车能否安全通过?
同课章节目录