第7讲 二次函数的图象与性质
1 二次函数的定义
要点一、二次函数的定义
一般地,如果是常数,,那么叫做的二次函数.
要点诠释:
如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.a 的绝对值越大,抛物线的开口越小.
1.(2017秋 大安市期末)函数y=(a﹣1)x+x﹣3是二次函数时,则a的值是( )
A.1 B.﹣1 C.±1 D.0
2.(2017秋 杜尔伯特县期末)若关于x的函数y=(2﹣a)x2﹣x是二次函数,则a的取值范围是( )
A.a≠0 B.a≠2 C.a<2 D.a>2
3.(2017秋 渝中区校级期中)若y=(3﹣m)是二次函数,则m的值是( )
A.±3 B.3 C.﹣3 D.9
4.(2017秋 海淀区校级期中)已知关于x的函数y=(m﹣1)xm+(3m+2)x+1是二次函数,则此解析式的一次项系数是( )
A.﹣1 B.8 C.﹣2 D.1
2 二次函数的图象与性质
1.二次函数由特殊到一般,可分为以下几种形式:
①;②;③;④,
其中;⑤.(以上式子a≠0)
几种特殊的二次函数的图象特征如下:
函数解析式 开口方向 对称轴 顶点坐标
当时
开口向上
当时
开口向下 (轴) (0,0)
(轴) (0,)
(,0)
(,)
()
2.抛物线的三要素:
开口方向、对称轴、顶点.
(1)的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同.
(2)平行于轴(或重合)的直线记作.特别地,轴记作直线.
1.(2018 潍坊)已知二次函数y=﹣(x﹣h)2(h为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为﹣1,则h的值为( )
A.3或6 B.1或6 C.1或3 D.4或6
2.(2018 泸州)已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且﹣2≤x≤1时,y的最大值为9,则a的值为( )
A.1或﹣2 B.或 C. D.1
3.(2018 青岛)已知一次函数y=x+c的图象如图,则二次函数y=ax2+bx+c在平面直角坐标系中的图象可能是( )
A. B. C. D.
4.(2018 顺德区模拟)当ab>0时,y=ax2与y=ax+b的图象大致是( )
A. B. C. D.
5.(2018 丰台区二模)在平面直角坐标系xOy中,二次函数y=x2﹣2hx+h的图象的顶点为点D.
(1)当h=﹣1时,求点D的坐标;
(2)当﹣1≤x≤1时,求函数的最小值m.(用含h的代数式表示m)
6.(2017秋 潍坊期末)有这样一个问题:探究函数y=(x﹣1)(x﹣2)(x﹣3)+x的性质.
(1)先从简单情况开始探究:
①当函数y=(x﹣1)+x时,y随x增大而___ (填“增大”或“减小”);
②当函数y=(x﹣1)(x﹣2)+x时,它的图象与直线y=x的交点坐标为______
(2)当函数y=(x﹣1)(x﹣2)(x﹣3)+x时,
下表为其y与x的几组对应值.
x … ﹣ 0 1 2 3 4 …
y … ﹣ ﹣3 1 2 3 7 …
①如图,在平面直角坐标系xOy中,描出了上表中各对对应值为坐标的点,请根据描出的点,画出该函数的图象;
②根据画出的函数图象,写出该函数的一条性质:_______.
3二次函数的解析式
(1)一般式:(a≠0).已知图象上三点或三对、的值,通常选择一般式.
(2)顶点式:(a≠0).已知图象的顶点或对称轴,通常选择顶点式.
(可以看成的图象平移后所对应的函数.)
(3)“交点式”:已知图象与轴的交点坐标、,通常选用交点式:
(a≠0).(由此得根与系数的关系:).
要点诠释:
求抛物线(a≠0)的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.
1.(2018 宁晋县模拟)已知一条抛物线经过E(0,10),F(2,2),G(4,2),H(3,1)四点,选择其中两点用待定系数法能求出抛物线解析式的为( )
A.E,F B.E,G C.E,H D.F,G
2.(2018 静安区一模)已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).
(1)求此抛物线的表达式;
(2)如果点A关于该抛物线对称轴的对称点是B点,且抛物线与y轴的交点是C点,求△ABC的面积.
3.(2018 惠州一模)已知抛物线y=ax2经过点A(﹣2,﹣8).
(1)求此抛物线的函数解析式;
(2)写出这个二次函数图象的顶点坐标、对称轴;
(3)判断点B(﹣1,﹣4)是否在此抛物线上;
(4)求出此抛物线上纵坐标为﹣6的点的坐标.
4.(2018 南关区校级一模)如图,直线y=﹣x+2过x轴上的点A(2,0),且与抛物线y=ax2交于B,C两点,点B坐标为(1,1).
(1)求抛物线的函数表达式;
(2)连结OC,求出△AOC的面积.
综合练习
一.填空题(共5小题)
1.把抛物线y=x2先向左平移1个单位长度,再向下平移3个单位长度,得到新的抛物线解析式为 .
2.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc<0;②b2﹣4ac<0;③3a+c<0;④m为任意实数,则m(am﹣b)+b≤a;⑤若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=﹣2,其中正确的有 (只填序号).
3.已知二次函数y=x2﹣2mx+1,当x≥2时,y随x的增大而增大,则m的取值范围是 .
4.将二次函数y=x2+2x+1的图象先向右平移2个单位,再向上移3个单位,所得到的新图象对应的解析式是 .
5.函数y=(x﹣2)2+1取得最小值时,x= .
二.解答题(共3小题)
6.已知抛物线图象过(﹣1,0)、(1,﹣4)、(3,0)三点,求抛物线的解析式.
7.如图,抛物线y=﹣x2+bx+c与一条直线相交于A(﹣1,0),C (2,3)两点.
(1)求抛物线和直线的解析式;
(2)若动点P在抛物线上位于直线AC上方运动,求△APC的面积最大值.
8.某网店销售甲、乙两种笔记本,已知甲种笔记本每本的售价比乙种笔记本多2元,为了给学习小组颁发奖品,刘老师从该网店购买了20本甲种笔记本和30本乙种笔记本,共花费340元.
(1)该网店甲、乙两种笔记本的售价是多少?
(2)根据消费者需求,该网店决定用不超过740元购进甲、乙两种笔记本共200本,且甲种笔记本的数量大于乙种笔记本数量的,已知甲种笔记本每本的进价为4元,乙种笔记本每本的进价为3.5元.
①若设购进甲种笔记本m本,则该网店有几种进货方案?
②若所购进笔记本均可全部售出,请求出网店所获利润W(元)与甲种笔记本进货量m(本)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?第7讲 二次函数的图象与性质
1 二次函数的定义
要点一、二次函数的定义
一般地,如果是常数,,那么叫做的二次函数.
要点诠释:
如果y=ax2+bx+c(a,b,c是常数,a≠0),那么y叫做x的二次函数.这里,当a=0时就不是二次函数了,但b、c可分别为零,也可以同时都为零.a 的绝对值越大,抛物线的开口越小.
1.(2017秋 大安市期末)函数y=(a﹣1)x+x﹣3是二次函数时,则a的值是( )
A.1 B.﹣1 C.±1 D.0
【解答】解:依题意得:a2+1=2且a﹣1≠0,
解得a=﹣1.
故选:B.
2.(2017秋 杜尔伯特县期末)若关于x的函数y=(2﹣a)x2﹣x是二次函数,则a的取值范围是( )
A.a≠0 B.a≠2 C.a<2 D.a>2
【解答】解:∵函数y=(2﹣a)x2﹣x是二次函数,
∴2﹣a≠0,即a≠2,
故选:B.
3.(2017秋 渝中区校级期中)若y=(3﹣m)是二次函数,则m的值是( )
A.±3 B.3 C.﹣3 D.9
【解答】解:由题意,得
m2﹣7=2,且3﹣m≠0,
解得m=﹣3,
故选:C.
4.(2017秋 海淀区校级期中)已知关于x的函数y=(m﹣1)xm+(3m+2)x+1是二次函数,则此解析式的一次项系数是( )
A.﹣1 B.8 C.﹣2 D.1
【解答】解:∵关于x的函数y=(m﹣1)xm+(3m+2)x+1是二次函数,
∴m=2,
则3m+2=8,
故此解析式的一次项系数是:8.
故选:B.
2 二次函数的图象与性质
1.二次函数由特殊到一般,可分为以下几种形式:
①;②;③;④,
其中;⑤.(以上式子a≠0)
几种特殊的二次函数的图象特征如下:
函数解析式 开口方向 对称轴 顶点坐标
当时
开口向上
当时
开口向下 (轴) (0,0)
(轴) (0,)
(,0)
(,)
()
2.抛物线的三要素:
开口方向、对称轴、顶点.
(1)的符号决定抛物线的开口方向:当时,开口向上;当时,开口向下;相等,抛物线的开口大小、形状相同.
(2)平行于轴(或重合)的直线记作.特别地,轴记作直线.
1.(2018 潍坊)已知二次函数y=﹣(x﹣h)2(h为常数),当自变量x的值满足2≤x≤5时,与其对应的函数值y的最大值为﹣1,则h的值为( )
A.3或6 B.1或6 C.1或3 D.4或6
【解答】解:当h<2时,有﹣(2﹣h)2=﹣1,
解得:h1=1,h2=3(舍去);
当2≤h≤5时,y=﹣(x﹣h)2的最大值为0,不符合题意;
当h>5时,有﹣(5﹣h)2=﹣1,
解得:h3=4(舍去),h4=6.
综上所述:h的值为1或6.
故选:B.
2.(2018 泸州)已知二次函数y=ax2+2ax+3a2+3(其中x是自变量),当x≥2时,y随x的增大而增大,且﹣2≤x≤1时,y的最大值为9,则a的值为( )
A.1或﹣2 B.或 C. D.1
【解答】解:∵二次函数y=ax2+2ax+3a2+3(其中x是自变量),
∴对称轴是直线x=﹣=﹣1,
∵当x≥2时,y随x的增大而增大,
∴a>0,
∵﹣2≤x≤1时,y的最大值为9,
∴x=1时,y=a+2a+3a2+3=9,
∴3a2+3a﹣6=0,
∴a=1,或a=﹣2(不合题意舍去).
故选:D.
3.(2018 青岛)已知一次函数y=x+c的图象如图,则二次函数y=ax2+bx+c在平面直角坐标系中的图象可能是( )
A. B. C. D.
【解答】解:观察函数图象可知:<0、c>0,
∴二次函数y=ax2+bx+c的图象对称轴x=﹣>0,与y轴的交点在y轴负正半轴.
故选:A.
4.(2018 顺德区模拟)当ab>0时,y=ax2与y=ax+b的图象大致是( )
A. B. C. D.
【解答】解:根据题意,ab>0,即a、b同号,
当a>0时,b>0,y=ax2与开口向上,过原点,y=ax+b过一、二、三象限;
此时,没有选项符合,
当a<0时,b<0,y=ax2与开口向下,过原点,y=ax+b过二、三、四象限;
此时,D选项符合,
故选:D.
5.(2018 丰台区二模)在平面直角坐标系xOy中,二次函数y=x2﹣2hx+h的图象的顶点为点D.
(1)当h=﹣1时,求点D的坐标;
(2)当﹣1≤x≤1时,求函数的最小值m.(用含h的代数式表示m)
【解答】解:(1)当h=﹣1时,y=x2+2x﹣1=(x+1)2﹣2,
则顶点D的坐标为(﹣1,﹣2);
(2)∵y=x2﹣2hx+h=(x﹣h)2+h﹣h2,
∴x=h时,函数有最小值h﹣h2.
①如果h≤﹣1,那么x=﹣1时,函数有最小值,此时m=(﹣1)2﹣2h×(﹣1)+h=1+3h;
②如果﹣1<h<1,那么x=h时,函数有最小值,此时m=h﹣h2;
③如果h≥1,那么x=1时,函数有最小值,此时m=12﹣2h×1+h=1﹣h.
6.(2017秋 潍坊期末)有这样一个问题:探究函数y=(x﹣1)(x﹣2)(x﹣3)+x的性质.
(1)先从简单情况开始探究:
①当函数y=(x﹣1)+x时,y随x增大而___ (填“增大”或“减小”);
②当函数y=(x﹣1)(x﹣2)+x时,它的图象与直线y=x的交点坐标为______
(2)当函数y=(x﹣1)(x﹣2)(x﹣3)+x时,
下表为其y与x的几组对应值.
x … ﹣ 0 1 2 3 4 …
y … ﹣ ﹣3 1 2 3 7 …
①如图,在平面直角坐标系xOy中,描出了上表中各对对应值为坐标的点,请根据描出的点,画出该函数的图象;
②根据画出的函数图象,写出该函数的一条性质:_______.
【解答】解:(1)①∵y=(x﹣1)+x=x﹣,
k=>0,
∴y随x增大而增大,
故答案为:增大;
②解方程组得:,,
所以两函数的交点坐标为(1,1),(2,2),
故答案为:(1,1),(2,2);
(2)①
②该函数的性质:
①y随x的增大而增大;
②函数的图象经过第一、三、四象限;
③函数的图象与x轴y轴各有一个交点等,
故答案为:y随x的增大而增大.
3二次函数的解析式
(1)一般式:(a≠0).已知图象上三点或三对、的值,通常选择一般式.
(2)顶点式:(a≠0).已知图象的顶点或对称轴,通常选择顶点式.
(可以看成的图象平移后所对应的函数.)
(3)“交点式”:已知图象与轴的交点坐标、,通常选用交点式:
(a≠0).(由此得根与系数的关系:).
要点诠释:
求抛物线(a≠0)的对称轴和顶点坐标通常用三种方法:配方法、公式法、代入法,这三种方法都有各自的优缺点,应根据实际灵活选择和运用.
1.(2018 宁晋县模拟)已知一条抛物线经过E(0,10),F(2,2),G(4,2),H(3,1)四点,选择其中两点用待定系数法能求出抛物线解析式的为( )
A.E,F B.E,G C.E,H D.F,G
【解答】解:∵F(2,2),G(4,2),
∴F和G点为抛物线上的对称点,
∴抛物线的对称轴为直线x=3,
∴H(3,1)点为抛物线的顶点,
设抛物线的解析式为y=a(x﹣3)2+1,
把E(0,10)代入得9a+1=10,解得a=1,
∴抛物线的解析式为y=(x﹣3)2+1.
故选:C.
2.(2018 静安区一模)已知:二次函数图象的顶点坐标是(3,5),且抛物线经过点A(1,3).
(1)求此抛物线的表达式;
(2)如果点A关于该抛物线对称轴的对称点是B点,且抛物线与y轴的交点是C点,求△ABC的面积.
【解答】解:(1)设抛物线的解析式为y=a(x﹣3)2+5,
将A(1,3)代入上式得3=a(1﹣3)2+5,解得a=﹣,
∴抛物线的解析式为y=﹣(x﹣3)2+5,
(2)∵A(1,3)抛物线对称轴为:直线x=3
∴B(5,3),
令x=0,y=﹣(x﹣3)2+5=,则C(0,),
△ABC的面积=×(5﹣1)×(3﹣)=5.
3.(2018 惠州一模)已知抛物线y=ax2经过点A(﹣2,﹣8).
(1)求此抛物线的函数解析式;
(2)写出这个二次函数图象的顶点坐标、对称轴;
(3)判断点B(﹣1,﹣4)是否在此抛物线上;
(4)求出此抛物线上纵坐标为﹣6的点的坐标.
【解答】解:(1)∵抛物线y=ax2经过点A(﹣2,﹣8),
∴a (﹣2)2=﹣8,
∴a=﹣2,
∴此抛物线对应的函数解析式为y=﹣2x2.
(2)由题可得,抛物线的顶点坐标为(0,0),对称轴为y轴;
(3)把x=﹣1代入得,y=﹣2×(﹣1)2=﹣2≠﹣4,
∴点B(﹣1,﹣4)不在此抛物线上;
(4)把y=﹣6代入y=﹣2x2得,﹣6=﹣2x2,
解得x=±,
∴抛物线上纵坐标为﹣6的点的坐标为(,﹣6)或(﹣,﹣6).
4.(2018 南关区校级一模)如图,直线y=﹣x+2过x轴上的点A(2,0),且与抛物线y=ax2交于B,C两点,点B坐标为(1,1).
(1)求抛物线的函数表达式;
(2)连结OC,求出△AOC的面积.
【解答】解:(1)∵点B(1,1)在抛物线y=ax2上,
∴1=a,
∴抛物线的解析式为y=x2;
(2)设直线AB的解析式为y=kx+b(k≠0),
将A(2,0)、B(1,1)代入y=kx+b中,
,解得:,
∴直线AB的解析式为y=﹣x+2.
联立两函数解析式成方程组,,
解得:,,
∴点C的坐标为(﹣2,4).
∴S△AOC=×2×4=4.
综合练习
一.填空题(共5小题)
1.把抛物线y=x2先向左平移1个单位长度,再向下平移3个单位长度,得到新的抛物线解析式为 y=(x+2)2﹣3 .
【解答】解:∵抛物线y=x2先向左平移2个单位长度,再向下平移3个单位长度,
∴新抛物线顶点坐标为(﹣2,﹣3),
∴所得到的新的抛物线的解析式为y=(x+2)2﹣3.
故答案是:y=(x+2)2﹣3.
2.二次函数y=ax2+bx+c(a≠0)的图象如图所示,下列结论:①abc<0;②b2﹣4ac<0;③3a+c<0;④m为任意实数,则m(am﹣b)+b≤a;⑤若ax12+bx1=ax22+bx2,且x1≠x2,则x1+x2=﹣2,其中正确的有 ③④⑤ (只填序号).
【解答】解:①∵抛物线的对称轴在y轴的左侧,
∴ab>0,
由图象可知:c>0,
∴abc>0,
故①错误;
②∵抛物线与x轴的交点有两个,
∴b2﹣4ac>0,②错误;
③∵,
∴b=2a,
由图象可知:9a﹣3b+c<0,
∴9a﹣6a+c<0,即3a+c<0,故③正确;
④∵抛物线的对称轴为直线x=﹣1,
∴当x=﹣1时,y有最大值,
∴am2﹣bm+c≤a﹣b+c(m为任意实数),
∴m(am﹣b)≤a﹣b(m为任意实数),
∴m为任意实数,则m(am﹣b)+b≤a,所以④正确;
⑤∵对称轴x=﹣1,
∴x1≠x2,x1+x2=﹣2时,有ax12+bx1+c=ax22+bx2+c,
∴ax12+bx1=ax22+bx2,
∴结论⑤正确.
综合以上可得:③④⑤.
3.已知二次函数y=x2﹣2mx+1,当x≥2时,y随x的增大而增大,则m的取值范围是 m≤2 .
【解答】解:抛物线的对称轴为直线x=﹣=m,
∵当x≥2时,y的值随x值的增大而增大,
∴m≤2.
故答案为:m≤2.
4.将二次函数y=x2+2x+1的图象先向右平移2个单位,再向上移3个单位,所得到的新图象对应的解析式是 y=(x﹣1)2+3 .
【解答】解:y=x2+2x+1=(x+1)2,抛物线的顶点坐标为(﹣1,0),把点(﹣1,0)先向右平移2个单位,再向上移3个单位所得对应点的坐标为(1,3),所以新图象对应的解析式为y=(x﹣1)2+3.
故答案为y=(x﹣1)2+3.
5.函数y=(x﹣2)2+1取得最小值时,x= 2 .
【解答】解:∵二次函数y=(x﹣2)2+1,
∴当x=2时,二次函数求得最小值为1.
故答案为:2.
二.解答题(共3小题)
6.已知抛物线图象过(﹣1,0)、(1,﹣4)、(3,0)三点,求抛物线的解析式.
【解答】解:∵抛物线图象过点(﹣1,0)、(3,0),
设抛物线解析式为y=a(x+1)(x﹣3),
把(1,﹣4)代入得,﹣4=a 2 (﹣2),解得a=1,
∴抛物线解析式为y=(x+1)(x﹣3)=x2﹣2x﹣3.
7.如图,抛物线y=﹣x2+bx+c与一条直线相交于A(﹣1,0),C (2,3)两点.
(1)求抛物线和直线的解析式;
(2)若动点P在抛物线上位于直线AC上方运动,求△APC的面积最大值.
【解答】解:(1)由抛物线y=﹣x2+bx+c过点A(﹣1,0),C(2,3),
得:,解得:,
∴抛物线的函数解析式为y=﹣x2+2x+3.
设直线AC的函数解析式为y=mx+n.
把A(﹣1,0),C(2,3)代入,
得,解得,
∴直线AC的函数解析式为y=x+1;
(2)如图,过点P作PQ⊥x轴于点H,交AC于点Q,
设P(x,﹣x2+2x+3),则Q(x,x+1).
∴PQ=﹣x2+2x+3﹣(x+1)=﹣x2+x+2,
∴S△APC=S△APQ+S△CPQ
=PQ×3
=(﹣x2+x+2)
=﹣(x﹣)2+,
∵﹣<0,
∴当x= 时,△APC的面积最大,最大值为.
8.某网店销售甲、乙两种笔记本,已知甲种笔记本每本的售价比乙种笔记本多2元,为了给学习小组颁发奖品,刘老师从该网店购买了20本甲种笔记本和30本乙种笔记本,共花费340元.
(1)该网店甲、乙两种笔记本的售价是多少?
(2)根据消费者需求,该网店决定用不超过740元购进甲、乙两种笔记本共200本,且甲种笔记本的数量大于乙种笔记本数量的,已知甲种笔记本每本的进价为4元,乙种笔记本每本的进价为3.5元.
①若设购进甲种笔记本m本,则该网店有几种进货方案?
②若所购进笔记本均可全部售出,请求出网店所获利润W(元)与甲种笔记本进货量m(本)之间的函数关系式,并说明当m为何值时所获利润最大?最大利润是多少?
【解答】解:(1)设乙种笔记本每本的售价为x元,则甲种笔记本每本的售价为(x+2)元,
根据题意可得 20(x+2)+30x=340,解得 x=6,x+2=8,
答:该网店甲种笔记本每本的售价为8元,乙种笔记本每本的售价为6元;
(2)①若购进甲种笔记本m本,则乙种笔记本为(200﹣m)本,
根据题意可得,
,
解得60<m≤80,
∵m为整数,
∴m的值为61、62、63、64、65、66、67、68、69、70、71、72、73、74、75、76、77、78、79、80,
∴进货方案有20种;
②根据题意可得W=(8﹣4)m+(6﹣3.5)(200﹣m)=1.5m+500,
∵1.5>0,
∴W随m的增大而增大,且60<m≤80,
∴当m=80时,W最大,W最大值为W=1.5×80+500=620(元),
答:当m=80时,所获利润最大,最大利润为620元.