第9讲 实际问题与二次函数
1二次函数的应用
利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义.
利用二次函数解决实际问题的一般步骤是:
(1)建立适当的平面直角坐标系;
(2)把实际问题中的一些数据与点的坐标联系起来;
(3)用待定系数法求出抛物线的关系式;
(4)利用二次函数的图象及其性质去分析问题、解决问题.
要点诠释:
常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.
1.(2018 衢州)某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为x轴,喷水池中心为原点建立直角坐标系.
(1)求水柱所在抛物线(第一象限部分)的函数表达式;
(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?
(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.
2.(2018 威海)为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款.小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款.已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其它费用1万元.该产品每月销售量y(万件)与销售单价x(元)万件之间的函数关系如图所示.
(1)求该网店每月利润w(万元)与销售单价x(元)之间的函数表达式;
(2)小王自网店开业起,最快在第几个月可还清10万元的无息贷款?
3.(2018 十堰)为早日实现脱贫奔小康的宏伟目标,我市结合本地丰富的山水资源,大力发展旅游业,王家庄在当地政府的支持下,办起了民宿合作社,专门接待游客,合作社共有80间客房.根据合作社提供的房间单价x(元)和游客居住房间数y(间)的信息,乐乐绘制出y与x的函数图象如图所示:
(1)求y与x之间的函数关系式;
(2)合作社规定每个房间价格不低于60元且不超过150元,对于游客所居住的每个房间,合作社每天需支出20元的各种费用,房价定为多少时,合作社每天获利最大?最大利润是多少?
4.(2018 眉山)传统的端午节即将来临,某企业接到一批粽子生产任务,约定这批粽子的出厂价为每只4元,按要求在20天内完成.为了按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x满足如下关系:
y=
(1)李明第几天生产的粽子数量为280只?
(2)如图,设第x天生产的每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价﹣成本)
5.(2018 青岛)某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=﹣x+26.
(1)求这种产品第一年的利润W1(万元)与售价x(元/件)满足的函数关系式;
(2)该产品第一年的利润为20万元,那么该产品第一年的售价是多少?
(3)第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润W2至少为多少万元.
2二次函数的综合
1.(2018 柘城县模拟)如图1,在平面直角坐标系中,直线y=﹣x+1与抛物线y=ax2+bx+c(a≠0)相交于点A(1,0)和点D(﹣4,5),并与y轴交于点C,抛物线的对称轴为直线x=﹣1,且抛物线与x轴交于另一点B.
(1)求该抛物线的函数表达式;
(2)若点E是直线下方抛物线上的一个动点,求出△ACE面积的最大值;
(3)如图2,若点M是直线x=﹣1的一点,点N在抛物线上,以点A,D,M,N为顶点的四边形能否成为平行四边形?若能,请直接写出点M的坐标;若不能,请说明理由.
2.(2018 广安模拟)如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,OC=OE=4,B为线段OA的中点,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交于M,点P为线段FG上一个动点(与F、G不重合),PQ∥y轴与抛物线交于点Q.
(1)求经过B、E、C三点的抛物线的解析式;
(2)判断△BDC的形状,并给出证明;当P在什么位置时,以P、O、C为顶点的三角形是等腰三角形,并求出此时点P的坐标;
(3)若抛物线的顶点为N,连接QN,探究四边形PMNQ的形状:①能否成为菱形;②能否成为等腰梯形?若能,请直接写出点P的坐标;若不能,请说明理由.
3.(2018 会宁县模拟)如图,二次函数y=ax2+bx+c(a≠0)与x轴交于A、B两点,其中点A在点B的左侧,A为(﹣1,0),抛物线与y轴交于点C(0,4),对称轴为x=1,连接BC.
(1)计算a、b、c的值;
(2)若点G为直线BC上方的抛物线上的一动点,试计算以A、B、G、C为顶点的四边形的面积的最大值;
(3)若点H为对称轴上的一个动点,点P为抛物线上的一个动点,当以H、P、B、C四点为顶点的四边形为平行四边形时,求出点H的坐标
综合练习
一.选择题(共3小题)
1.将进货单价为70元的某种商品按零售价100元一个售出时,每天能卖出20个.若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1个,则能获取的最大利润是( )
A.600元 B.625元 C.650元 D.675元
2.汽车刹车后行驶的距离s(单位:米)关于行驶的时间t(单位:秒)的函数解析式为s=﹣6t2+bt(b为常数).已知t=时,s=6,则汽车刹车后行驶的最大距离为( )
A.米 B.8米 C.米 D.10米
3.超市有一种“喜之郎“果冻礼盒,内装两个上下倒置的果冻,果冻高为4cm,底面是个直径为6cm的圆,轴截面可以近似地看作一个抛物线,为了节省成本,包装应尽可能的小,这个包装盒的长AD(不计重合部分,两个果冻之间没有挤压)至少为( )
A.(6+3)cm B.(6+2)cm C.(6+2)cm D.(6+3)cm
二.解答题(共5小题)
4.如图,抛物线y=ax2+bx+3(a≠0)的对称轴为直线x=﹣1,抛物线交x轴于A、C两点,与直线y=x﹣1交于A、B两点,直线AB与抛物线的对称轴交于点E.
(1)求抛物线的解板式.
(2)点P在直线AB上方的抛物线上运动,若△ABP的面积最大,求此时点P的坐标.
(3)在平面直角坐标系中,以点B、E、C、D为顶点的四边形是平行四边形,请直接写出符合条件点D的坐标.
5.某商场试销一种成本为60元/件的T恤,规定试销期间单价不低于成本单价,又获利不得高于40%,经试销发现,销售量y(件)不销售单价x(元/件)符合一次函数y=kx+b,且x=70时,y=50;x=80时,y=40;
(1)写出销售单价x的取值范围;
(2)求出一次函数y=kx+b的解析式;
(3)若该商场获得利润为w元,试写出利润w与销售单价x之间的关系式,销售单价定为多少时,商场可获得最大利润,最大利润是多少?
6.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现:销售量y(件)与销售单价x(元)符合一次函数y=kx+b(k≠0),且当x=65时,y=55;当x=70时,y=50.
(1)求y与x之间的解析式;
(2)若该商场获得利润为w元,写出利润w与销售单价x之间的关系式,并求出利润是500元时的销售单价;
(3)销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
7.公司销售一种进价为20元/个的计算器,销售过程中的其他开支(不含造价)总计40万元,其销售量y(万个)与销售价格x(元/个)的变化如下表:
(1)求出当销售量等于2.5万个时,销售价格等于多少?
(2)求出该公司销售这种计算器的净得利润z(万元)与销售价格x(元/个)的函数解析式;
(3)销售价格应定为多少元时,获得利润最大,最大利润是多少?
销售价格x(元/个) 销售量y(万元)
30≤x≤60 ﹣x+8
60≤x≤80
8.如图隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣x2+bx+c表示,且抛物线上的点C到OB的水平距离为3m,到地面OA的距离为m.
(1)求抛物线的函数关系式,并计算出拱顶D到地面OA的距离;
(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向车道,那么这辆货车能否安全通过?第9讲 实际问题与二次函数
1二次函数的应用
利用二次函数解决实际问题,要建立数学模型,即把实际问题转化为二次函数问题,利用题中存在的公式、内含的规律等相等关系,建立函数关系式,再利用函数的图象及性质去研究问题.在研究实际问题时要注意自变量的取值范围应具有实际意义.
利用二次函数解决实际问题的一般步骤是:
(1)建立适当的平面直角坐标系;
(2)把实际问题中的一些数据与点的坐标联系起来;
(3)用待定系数法求出抛物线的关系式;
(4)利用二次函数的图象及其性质去分析问题、解决问题.
要点诠释:
常见的问题:求最大(小)值(如求最大利润、最大面积、最小周长等)、涵洞、桥梁、抛物体、抛物线的模型问题等.解决这些实际问题关键是找等量关系,把实际问题转化为函数问题,列出相关的函数关系式.
1.(2018 衢州)某游乐园有一个直径为16米的圆形喷水池,喷水池的周边有一圈喷水头,喷出的水柱为抛物线,在距水池中心3米处达到最高,高度为5米,且各方向喷出的水柱恰好在喷水池中心的装饰物处汇合.如图所示,以水平方向为x轴,喷水池中心为原点建立直角坐标系.
(1)求水柱所在抛物线(第一象限部分)的函数表达式;
(2)王师傅在喷水池内维修设备期间,喷水管意外喷水,为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心多少米以内?
(3)经检修评估,游乐园决定对喷水设施做如下设计改进:在喷出水柱的形状不变的前提下,把水池的直径扩大到32米,各方向喷出的水柱仍在喷水池中心保留的原装饰物(高度不变)处汇合,请探究扩建改造后喷水池水柱的最大高度.
【解答】解:(1)设水柱所在抛物线(第一象限部分)的函数表达式为y=a(x﹣3)2+5(a≠0),
将(8,0)代入y=a(x﹣3)2+5,得:25a+5=0,
解得:a=﹣,
∴水柱所在抛物线(第一象限部分)的函数表达式为y=﹣(x﹣3)2+5(0<x<8).
(2)当y=1.8时,有﹣(x﹣3)2+5=1.8,
解得:x1=﹣1,x2=7,
∴为了不被淋湿,身高1.8米的王师傅站立时必须在离水池中心7米以内.
(3)当x=0时,y=﹣(x﹣3)2+5=.
设改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣x2+bx+,
∵该函数图象过点(16,0),
∴0=﹣×162+16b+,解得:b=3,
∴改造后水柱所在抛物线(第一象限部分)的函数表达式为y=﹣x2+3x+=﹣(x﹣)2+.
∴扩建改造后喷水池水柱的最大高度为米.
2.(2018 威海)为了支持大学生创业,某市政府出台了一项优惠政策:提供10万元的无息创业贷款.小王利用这笔贷款,注册了一家淘宝网店,招收5名员工,销售一种火爆的电子产品,并约定用该网店经营的利润,逐月偿还这笔无息贷款.已知该产品的成本为每件4元,员工每人每月的工资为4千元,该网店还需每月支付其它费用1万元.该产品每月销售量y(万件)与销售单价x(元)万件之间的函数关系如图所示.
(1)求该网店每月利润w(万元)与销售单价x(元)之间的函数表达式;
(2)小王自网店开业起,最快在第几个月可还清10万元的无息贷款?
【解答】解:(1)设直线AB的解析式为:y=kx+b,
代入A(4,4),B(6,2)得:,
解得:,
∴直线AB的解析式为:y=﹣x+8,(2分)
同理代入B(6,2),C(8,1)可得直线BC的解析式为:y=﹣x+5,(3分)
∵工资及其他费作为:0.4×5+1=3万元,
∴当4≤x≤6时,w1=(x﹣4)(﹣x+8)﹣3=﹣x2+12x﹣35,(5分)
当6≤x≤8时,w2=(x﹣4)(﹣x+5)﹣3=﹣x2+7x﹣23;(6分)
(2)当4≤x≤6时,
w1=﹣x2+12x﹣35=﹣(x﹣6)2+1,
∴当x=6时,w1取最大值是1,(8分)
当6≤x≤8时,
w2=﹣x2+7x﹣23=﹣(x﹣7)2+,
当x=7时,w2取最大值是1.5,(9分)
∴==6,
即最快在第7个月可还清10万元的无息贷款.(10分)
3.(2018 十堰)为早日实现脱贫奔小康的宏伟目标,我市结合本地丰富的山水资源,大力发展旅游业,王家庄在当地政府的支持下,办起了民宿合作社,专门接待游客,合作社共有80间客房.根据合作社提供的房间单价x(元)和游客居住房间数y(间)的信息,乐乐绘制出y与x的函数图象如图所示:
(1)求y与x之间的函数关系式;
(2)合作社规定每个房间价格不低于60元且不超过150元,对于游客所居住的每个房间,合作社每天需支出20元的各种费用,房价定为多少时,合作社每天获利最大?最大利润是多少?
【解答】解:(1)设y与x之间的函数关系式为y=kx+b,
,得,
即y与x之间的函数关系式是y=﹣0.5x+110;
(2)设合作社每天获得的利润为w元,
w=x(0.5x+110)﹣20(0.5x+110)=0.5x2+100x﹣2200=0.5(x+100)2﹣7200,
∵60≤x≤150,
∴当x=150时,w取得最大值,此时w=24050,
答:房价定为150元时,合作社每天获利最大,最大利润是24050元.
4.(2018 眉山)传统的端午节即将来临,某企业接到一批粽子生产任务,约定这批粽子的出厂价为每只4元,按要求在20天内完成.为了按时完成任务,该企业招收了新工人,设新工人李明第x天生产的粽子数量为y只,y与x满足如下关系:
y=
(1)李明第几天生产的粽子数量为280只?
(2)如图,设第x天生产的每只粽子的成本是p元,p与x之间的关系可用图中的函数图象来刻画.若李明第x天创造的利润为w元,求w与x之间的函数表达式,并求出第几天的利润最大?最大利润是多少元?(利润=出厂价﹣成本)
【解答】解:(1)设李明第x天生产的粽子数量为280只,
由题意可知:20x+80=280,
解得x=10.
答:第10天生产的粽子数量为420只.
(2)由图象得,当0≤x<10时,p=2;
当10≤x≤20时,设P=kx+b,
把点(10,2),(20,3)代入得,,
解得,
∴p=0.1x+1,
①0≤x≤6时,w=(4﹣2)×34x=68x,当x=6时,w最大=408(元);
②6<x≤10时,w=(4﹣2)×(20x+80)=40x+160,
∵x是整数,
∴当x=10时,w最大=560(元);
③10<x≤20时,w=(4﹣0.1x﹣1)×(20x+80)=﹣2x2+52x+240,
∵a=﹣3<0,
∴当x=﹣=13时,w最大=578(元);
综上,当x=13时,w有最大值,最大值为578.
5.(2018 青岛)某公司投入研发费用80万元(80万元只计入第一年成本),成功研发出一种产品.公司按订单生产(产量=销售量),第一年该产品正式投产后,生产成本为6元/件.此产品年销售量y(万件)与售价x(元/件)之间满足函数关系式y=﹣x+26.
(1)求这种产品第一年的利润W1(万元)与售价x(元/件)满足的函数关系式;
(2)该产品第一年的利润为20万元,那么该产品第一年的售价是多少?
(3)第二年,该公司将第一年的利润20万元(20万元只计入第二年成本)再次投入研发,使产品的生产成本降为5元/件.为保持市场占有率,公司规定第二年产品售价不超过第一年的售价,另外受产能限制,销售量无法超过12万件.请计算该公司第二年的利润W2至少为多少万元.
【解答】解:(1)W1=(x﹣6)(﹣x+26)﹣80=﹣x2+32x﹣236.
(2)由题意:20=﹣x2+32x﹣236.
解得:x=16,
答:该产品第一年的售价是16元.
(3)由题意:14≤x≤16,
W2=(x﹣5)(﹣x+26)﹣20=﹣x2+31x﹣150,
∵14≤x≤16,
∴x=14或16时,W2有最小值,最小值=88(万元),
答:该公司第二年的利润W2至少为88万元.
2二次函数的综合
1.(2018 柘城县模拟)如图1,在平面直角坐标系中,直线y=﹣x+1与抛物线y=ax2+bx+c(a≠0)相交于点A(1,0)和点D(﹣4,5),并与y轴交于点C,抛物线的对称轴为直线x=﹣1,且抛物线与x轴交于另一点B.
(1)求该抛物线的函数表达式;
(2)若点E是直线下方抛物线上的一个动点,求出△ACE面积的最大值;
(3)如图2,若点M是直线x=﹣1的一点,点N在抛物线上,以点A,D,M,N为顶点的四边形能否成为平行四边形?若能,请直接写出点M的坐标;若不能,请说明理由.
【解答】解:(1)∵A(1,0),抛物线的对称轴为x=﹣1,
∴B(﹣3,0).
设抛物线的解析式为y=a(x+3)(x﹣1),
将点D的坐标代入得:5a=5,解得a=1,
∴抛物线的解析式为y=x2+2x﹣3.
(2)如图1所示:过点E作EF∥y轴,交AD与点F,过点C作CH⊥EF,垂足为H.
设点E(m,m2+2m﹣3),则F(m,﹣m+1).
∴EF=﹣m+1﹣m2﹣2m+3=﹣m2﹣3m+4
∴△ACE的面积=△EFA的面积﹣△EFC的面积=EF AG﹣EF HC=EF OA=﹣(m+)2+.
∴△ACE的面积的最大值为.
(3)当AD为平行四边形的对角线时.
设点M的坐标为(﹣1,a),点N的坐标为(x,y).
∵平行四边的对角线互相平分,
∴=,=.
解得:x=﹣2,5﹣a.
将点N的坐标代入抛物线的解析式得:5﹣a=﹣3,
∴a=8.
∴点M的坐标为(﹣1,8).
当AD为平行四边形的边时.
设点M的坐标为(﹣1,a).
∵四边形MNAD为平行四边形,
∴点N的坐标为(﹣6,a+5)或(4,a﹣5).
∵将x=﹣6,y=a+5代入抛物线的解析式得:a+5=36﹣12﹣3,解得:a=16,
∴M(﹣1,16).
将x=4,y=a﹣5代入抛物线的解析式得:a﹣5=16+8﹣3,解得:a=26,
∴M(﹣1,26).
综上所述,当点M的坐标为(﹣1,26)或(﹣1,16)或(﹣1,8)时,以点A,D,M,N为顶点的四边形能成为平行四边形.
2.(2018 广安模拟)如图,平面直角坐标系中,点A、B、C在x轴上,点D、E在y轴上,OA=OD=2,OC=OE=4,B为线段OA的中点,直线AD与经过B、E、C三点的抛物线交于F、G两点,与其对称轴交于M,点P为线段FG上一个动点(与F、G不重合),PQ∥y轴与抛物线交于点Q.
(1)求经过B、E、C三点的抛物线的解析式;
(2)判断△BDC的形状,并给出证明;当P在什么位置时,以P、O、C为顶点的三角形是等腰三角形,并求出此时点P的坐标;
(3)若抛物线的顶点为N,连接QN,探究四边形PMNQ的形状:①能否成为菱形;②能否成为等腰梯形?若能,请直接写出点P的坐标;若不能,请说明理由.
【解答】解:(1)B(﹣1,0)E(0,4)C(4,0)设解析式是y=ax2+bx+c,
可得,
解得,
∴y=﹣x2+3x+4;
(2)△BDC是直角三角形,
∵BD2=BO2+DO2=5,DC2=DO2+CO2=20,BC2=(BO+CO)2=25
∴BD2+DC2=BC2,
∴△BDC是直角三角形.
点A坐标是(﹣2,0),点D坐标是(0,2),
设直线AD的解析式是y=kx+b,则,
解得:,
则直线AD的解析式是y=x+2,
设点P坐标是(x,x+2)
当OP=OC时x2+(x+2)2=16,
解得:x=﹣1±(不符合,舍去)此时点P(﹣1+,1+)
当PC=OC时(x+2)2+(4﹣x)2=16,方程无解;
当PO=PC时,点P在OC的中垂线上,
∴点P横坐标是2,得点P坐标是(2,4);
∴当△POC是等腰三角形时,点P坐标是(﹣1+,1+)或(2,4);
(3)点M坐标是(,点N坐标是(),∴MN=,
设点P为(x,x+2),Q(x,﹣x2+3x+4),则PQ=﹣x2+2x+2
①若PQNM是菱形,则PQ=MN,可得x1=0.5,x2=1.5
当x2=1.5时,点P与点M重合;当x1=0.5时,可求得PM=,所以菱形不存在.
②能成为等腰梯形,作QH⊥MN于点H,作PJ⊥MN于点J,则NH=MJ,
则﹣(﹣x2+3x+4)=x+2﹣,
解得:x=2.5,
此时点P的坐标是(2.5,4.5).
3.(2018 会宁县模拟)如图,二次函数y=ax2+bx+c(a≠0)与x轴交于A、B两点,其中点A在点B的左侧,A为(﹣1,0),抛物线与y轴交于点C(0,4),对称轴为x=1,连接BC.
(1)计算a、b、c的值;
(2)若点G为直线BC上方的抛物线上的一动点,试计算以A、B、G、C为顶点的四边形的面积的最大值;
(3)若点H为对称轴上的一个动点,点P为抛物线上的一个动点,当以H、P、B、C四点为顶点的四边形为平行四边形时,求出点H的坐标
【解答】解:(1)∵二次函数y=ax2+bx+c的图象过点A(﹣1,0)、C(0,4),且对称轴为直线x=1,
∴,
解得:.
(2)过点G作y轴的平行线,交BC于点E,如图1所示.
∵A(﹣1,0),抛物线的对称轴为直线x=1,
∴B(3,0).
设直线BC的解析式为y=mx+n(m≠0),
∵直线BC过点B(3,0),C(0,4),
∴,解得:,
∴直线BC的解析式为y=﹣x+4.
设点G的坐标为(t,﹣t2+t+4),则点E的坐标为(t,﹣t+4),
∴GE=﹣t2+t+4﹣(﹣t+4)=﹣t2+4t,
∴S四边形ABGC=S△ABC+S△BCG=AB OC+OB GE=﹣2t2+6t+8=﹣2(t﹣)2+.
∵﹣2<0,
∴当t=时,S四边形ABGC取最大值,最大值为.
(3)①当BC为边,四边形PHBC为平行四边形时,
∵B(3,0),C(0,4),点H的横坐标为1,
∴点P的横坐标1+0﹣3=﹣2,
∴点P的坐标为(﹣2,﹣),
∴点H的坐标为(1,﹣﹣4),即(1,﹣);
当BC为边,四边形HPBC为平行四边形时,
∵B(3,0),C(0,4),点H的横坐标为1,
∴点P的横坐标1+3﹣0=4,
∴点P的坐标为(4,﹣),
∴点H的坐标为(1,﹣+4),即(1,﹣);
②当BC为对角线时,
∵B(3,0),C(0,4),点H的横坐标为1,
∴点P的横坐标为3+0﹣1=2,
∴点P的坐标为(2,4),
∴点H的坐标为(1,0+4﹣4),即(1,0).
综上所述:点H的坐标为(1,﹣)、(1,﹣)或(1,0).
综合练习
一.选择题(共3小题)
1.将进货单价为70元的某种商品按零售价100元一个售出时,每天能卖出20个.若这种商品的零售价在一定范围内每降价1元,其日销售量就增加1个,则能获取的最大利润是( )
A.600元 B.625元 C.650元 D.675元
【解答】解:设降价x元,所获得的利润为W元,
则W=(20+x)(100﹣x﹣70)=﹣x2+10x+600=﹣(x﹣5)2+625,
∵﹣1<0
∴当x=5元时,二次函数有最大值W=625.
∴获得的最大利润为625元.
故选:B.
2.汽车刹车后行驶的距离s(单位:米)关于行驶的时间t(单位:秒)的函数解析式为s=﹣6t2+bt(b为常数).已知t=时,s=6,则汽车刹车后行驶的最大距离为( )
A.米 B.8米 C.米 D.10米
【解答】解:把t=,s=6代入s=﹣6t2+bt得,
6=﹣6×+b×,
解得,b=15
∴函数解析式为s=﹣6t2+15t=﹣6(t﹣)2+,
∴当t=时,s取得最大值,此时s=,
故选:C.
3.超市有一种“喜之郎“果冻礼盒,内装两个上下倒置的果冻,果冻高为4cm,底面是个直径为6cm的圆,轴截面可以近似地看作一个抛物线,为了节省成本,包装应尽可能的小,这个包装盒的长AD(不计重合部分,两个果冻之间没有挤压)至少为( )
A.(6+3)cm B.(6+2)cm C.(6+2)cm D.(6+3)cm
【解答】解:设左侧抛物线的方程为:y=ax2,
点A的坐标为(﹣3,4),将点A坐标代入上式并解得:a=,
则抛物线的表达式为:y=x2,
由题意得:点MG是矩形HFEO的中线,则点N的纵坐标为2,
将y=2代入抛物线表达式得:2=x2,解得:x=(负值已舍去),
则AD=2AH+2x=6+3,
故选:A.
二.解答题(共5小题)
4.如图,抛物线y=ax2+bx+3(a≠0)的对称轴为直线x=﹣1,抛物线交x轴于A、C两点,与直线y=x﹣1交于A、B两点,直线AB与抛物线的对称轴交于点E.
(1)求抛物线的解板式.
(2)点P在直线AB上方的抛物线上运动,若△ABP的面积最大,求此时点P的坐标.
(3)在平面直角坐标系中,以点B、E、C、D为顶点的四边形是平行四边形,请直接写出符合条件点D的坐标.
【解答】解:(1)令y=0,可得:x﹣1=0,解得:x=1,
∴点A(1,0),
∵抛物线y=ax2+bx+3(a≠0)的对称轴为直线x=﹣1,
∴﹣1×2﹣1=﹣3,即点C(﹣3,0),
∴,解得:,
∴抛物线的解析式为:y=﹣x2﹣2x+3;
(2)∵点P在直线AB上方的抛物线上运动,
∴设点P(m,﹣m2﹣2m+3),
∵抛物线与直线y=x﹣1交于A、B两点,
∴,解得:,,
∴点B(﹣4,﹣5),
如图,过点P作PM∥y轴交直线AB于点M,
则点M(m,m﹣1),
∴PM=﹣m2﹣2m+3﹣m+1=﹣m2﹣3m+4,
∴S△ABP=S△PBM+S△PBA
=(﹣m2﹣3m+4)(m+4)+(﹣m2﹣3m+4)(1﹣m)
=,
∴当m=时,P最大,
∴点P(,);
(3)当x=﹣1时,y=﹣1﹣1=﹣2,
∴点E(﹣1,﹣2),
如图,直线BC的解析式为y=5x+15,直线BE的解析式为y=x﹣1,直线CE的解析式为y=﹣x﹣3,
∵以点B、C、E、D为顶点的四边形是平行四边形,
∴直线D1D3的解析式为y=5x+3,直线D1D2的解析式为y=x+3,直线D2D3的解析式为y=﹣x﹣9,
联立得D1(0,3),
同理可得D2(﹣6,﹣3),D3(﹣2,﹣7),
综上所述,符合条件的点D的坐标为D1(0,3),D2(﹣6,﹣3),D3(﹣2,﹣7).
5.某商场试销一种成本为60元/件的T恤,规定试销期间单价不低于成本单价,又获利不得高于40%,经试销发现,销售量y(件)不销售单价x(元/件)符合一次函数y=kx+b,且x=70时,y=50;x=80时,y=40;
(1)写出销售单价x的取值范围;
(2)求出一次函数y=kx+b的解析式;
(3)若该商场获得利润为w元,试写出利润w与销售单价x之间的关系式,销售单价定为多少时,商场可获得最大利润,最大利润是多少?
【解答】解:(1)根据题意得,
60≤x≤60×(1+40%),
即60≤x≤84;
(2)由题意得:,
∴.
∴一次函数的解析式为:y=﹣x+120;
(3)w=(x﹣60)(﹣x+120)=﹣x2+180x﹣7200=﹣(x﹣90)2+900,
∵抛物线开口向下,
∴当x<90时,w随x的增大而增大,
而60≤x≤84,
∴当x=84时,w=(84﹣60)×(120﹣84)=864.
答:当销售价定为84元/件时,商场可以获得最大利润,最大利润是864元.
6.某商场试销一种成本为每件60元的服装,规定试销期间销售单价不低于成本单价,且获利不得高于45%,经试销发现:销售量y(件)与销售单价x(元)符合一次函数y=kx+b(k≠0),且当x=65时,y=55;当x=70时,y=50.
(1)求y与x之间的解析式;
(2)若该商场获得利润为w元,写出利润w与销售单价x之间的关系式,并求出利润是500元时的销售单价;
(3)销售单价定为多少元时,商场可获得最大利润,最大利润是多少元?
【解答】解:(1)∵当x=65时,y=55;当x=70时,y=50.
∴,
解得:,
∴y=﹣x+120(60≤x≤87).
(2)w=(﹣x+120)(x﹣60),
w=﹣x2+180x﹣7200,
w=﹣(x﹣90)2+900,
当w=500时,有500=﹣(x﹣90)2+900,
解得,x=110(舍去)或x=70,
故利润是500元时的销售单价70元/件.
(3)又∵60<x≤60×(1+45%),
即60≤x≤87,
则x=87时获利最多,
将x=87代入,得w=﹣(87﹣90)2+900=891元.
答:售价定为87元有最大利润为891元.
7.公司销售一种进价为20元/个的计算器,销售过程中的其他开支(不含造价)总计40万元,其销售量y(万个)与销售价格x(元/个)的变化如下表:
(1)求出当销售量等于2.5万个时,销售价格等于多少?
(2)求出该公司销售这种计算器的净得利润z(万元)与销售价格x(元/个)的函数解析式;
(3)销售价格应定为多少元时,获得利润最大,最大利润是多少?
销售价格x(元/个) 销售量y(万元)
30≤x≤60 ﹣x+8
60≤x≤80
【解答】解:(1)由题意得,﹣x+8=2.5,
解得,x=55,
答:当销售量等于2.5万个时,销售价格等于55元/个;
(2)当30≤x≤60时,w=(x﹣20)(﹣0.1x+8)﹣40=﹣0.1x2+10x﹣200;
当60<x≤80时,w=(x﹣20) ﹣40=﹣+89;
(3)当30≤x≤60时,w=﹣0.1x2+10x﹣200=﹣0.1(x﹣50)2+50,
∴当x=50时,w取得最大值50(万元);
当60<x≤80时,w=﹣+89,
∵﹣2580<0,
∴w随x的增大而增大,当x=80时,w最大=121.25(万元)>50万元,
∴销售价格定为80元/件时,获得的利润最大,最大利润是121.25万元.
答:销售价格定为80元/件时,获得的利润最大,最大利润是121.25万元.
8.如图隧道的截面由抛物线和长方形构成,长方形的长是12m,宽是4m.按照图中所示的直角坐标系,抛物线可以用y=﹣x2+bx+c表示,且抛物线上的点C到OB的水平距离为3m,到地面OA的距离为m.
(1)求抛物线的函数关系式,并计算出拱顶D到地面OA的距离;
(2)一辆货运汽车载一长方体集装箱后高为6m,宽为4m,如果隧道内设双向车道,那么这辆货车能否安全通过?
【解答】解:(1)根据题意得B(0,4),C(3,),
把B(0,4),C(3,)代入y=﹣x2+bx+c得
解得.
所以抛物线解析式为y=﹣x2+2x+4,
则y=﹣(x﹣6)2+10,
所以D(6,10),
所以拱顶D到地面OA的距离为10m;
(2)由题意得货运汽车最外侧与地面OA的交点为(2,0)或(10,0),
当x=2或x=10时,y=>6,
所以这辆货车能安全通过.