高中数学必修1教学案例设计 对数函数及其性质(1)

文档属性

名称 高中数学必修1教学案例设计 对数函数及其性质(1)
格式 zip
文件大小 160.9KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2013-06-22 20:43:32

图片预览

文档简介

对数函数及其性质(1)
教材分析
本小节选自《普通高中课程标准数学教科书-数学必修(一)》(人教版)第二章基本初等函数(1)2.2.2对数函数及其性质(第一课时),主要内容是学习对数函数的定义、图象、性质及初步应用。对数函数是继指数函数之后的又一个重要初等函数,无论从知识或思想方法的角度对数函数与指数函数都有许多类似之处。与指数函数相比,对数函数所涉及的知识更丰富、方法更灵活,能力要求也更高。学习对数函数是对指数函数知识和方法的巩固、深化和提高,也为解决函数综合问题及其在实际上的应用奠定良好的基础。虽然这个内容十分熟悉,但新教材做了一定的改动,如何设计能够符合新课标理念,是人们十分关注的,正因如此,本人选择这课题立求某些方面有所突破。
学生学习情况分析
刚从初中升入高一的学生,仍保留着初中生许多学习特点,能力发展正处于形象思维向抽象思维转折阶段,但更注重形象思维。由于函数概念十分抽象,又以对数运算为基础,同时,初中函数教学要求降低,初中生运算能力有所下降,这双重问题增加了对数函数教学的难度。教师必须认识到这一点,教学中要控制要求 的拔高,关注学习过程。
三、设计理念
本节课以建构主义基本理论为指导,以新课标基本理念为依据进行设计的,针对学生的学习背景,对数函数的教学首先要挖掘其知识背景贴近学生实际,其次,激发学生的学习热情,把学习的主动权交给学生,为他们提供自主探究、合作交流的机会,确实改变学生的学习方式。
四、教学目标
1.通过具体实例,直观了解对数函数模型所刻画的数量关系,初步理解对数函数的概念,体会对数函数是一类重要的函数模型;
2.能借助计算器或计算机画出具体对数函数的图象,探索并了解对数函数的单调性与特殊点;
3.通过比较、对照的方法,引导学生结合图象类比指数函数,探索研究对数函数的性质,培养学生运用函数的观点解决实际问题。
五、教学重点与难点
重点是掌握对数函数的图象和性质,难点是底数对对数函数值变化的影响.
六、教学过程设计
教学流程:背景材料→ 引出课题 → 函数图象→ 函数性质 →问题解决→归纳小结
(一)熟悉背景、引入课题
1.让学生看材料:
材料1(幻灯):马王堆女尸千年不腐之谜:一九七二年,马王堆考古发现震惊世界,专家发掘西汉辛追遗尸时,形体完整,全身润泽,皮肤仍有弹性,关节还可以活动,骨质比现在六十岁的正常人还好,是世界上发现的首例历史悠久的湿尸。大家知道,世界发现的不腐之尸都是在干燥的环境风干而成,譬如沙漠环境,这类干尸虽然肌肤未腐,是因为干燥不利细菌繁殖,但关节和一般人死后一样,是僵硬的,而马王堆辛追夫人却是在湿润的环境中保存二千多年,而且关节可以活动。人们最关注有两个问题,第一:怎么鉴定尸体的年份?第二:是什么环境使尸体未腐?其中第一个问题与数学有关。
图 4—1
(如图 4—1在长沙马王堆“沉睡”近2200年的古长沙国丞相夫人辛追,日前奇迹般地“复活”了)
那么,考古学家是怎么计算出古长沙国丞相夫人辛追“沉睡”近2200年?上
面已经知道考古学家是通过提取尸体的残留物碳14的残留量p,利用
估算尸体出土的年代,不难发现:对每一个碳14的含量的取值,通过这个对应关系,
生物死亡年数t都有唯一的值与之对应,从而t是P的函数;
如图4—2材料2(幻灯):某种细胞分裂时,由1个分裂成2个,2个分裂成4个 ……,
如果要求这种细胞经过多少次分裂,大约可以得到细胞1万个,10万个 ……,不难发现:分裂次数y就是要得到的细胞个数x的函数,即;
图 4—2
1.引导学生观察这些函数的特征:含有对数符号,底数是常数,真数是变量,从而得出对数函数的定义:函数,且叫做对数函数,其中是自变量,函数的定义域是(0,+∞).
注意: 对数函数的定义与指数函数类似,都是形式定义,注意辨别.如: , 都不是对数函数. 对数函数对底数的限制:,且.
3.根据对数函数定义填空;
例1 (1)函数 y=logax2的定义域是___________ (其中a>0,a≠1)
(2) 函数y=loga(4-x) 的定义域是___________ (其中a>0,a≠1)
说明:本例主要考察对数函数定义中底数和定义域的限制,加深对概念的理解,所以把教材中的解答题改为填空题,节省时间,点到为止,以避免挖深、拓展、引入复合函数的概念。
[设计意图:新课标强调“考虑到多数高中生的认知特点,为了有助于他们对函数概念本质的理解,不妨从学生自己的生活经历和实际问题入手”。因此,新课引入不是按旧教材从反函数出发,而是选择从两个材料引出对数函数的概念,让学生熟悉它的知识背景,初步感受对数函数是刻画现实世界的又一重要数学模型。这样处理,对数函数显得不抽象,学生容易接受,降低了新课教学的起点]
(二)尝试画图、形成感知
1.确定探究问题
教师:当我们知道对数函数的定义之后,紧接着需要探讨什么问题?
学生1:对数函数的图象和性质
教师:你能类比前面研究指数函数的思路,提出研究对数函数图象和性质的方法吗?
学生2:先画图象,再根据图象得出性质
教师:画对数函数的图象是否象指数函数那样也需要分类?
学生3:按和分类讨论
教师:观察图象主要看哪几个特征?
学生4:从图象的形状、位置、升降、定点等角度去识图
教师:在明确了探究方向后,下面,按以下步骤共同探究对数函数的图象:
步骤一:(1)用描点法在同一坐标系中画出下列对数函数的图象
(2)用描点法在同一坐标系中画出下列对数函数的图象
步骤二:观察对数函数、与、的图象特征 ,看看它们有那些异同点。
步骤三:利用计算器或计算机,选取底数,且的若干个不同的值,在同一平面直角坐标系中作出相应对数函数的图象。观察图象,它们有哪些共同特征?
步骤四:规纳出能体现对数函数的代表性图象
步骤五:作指数函数与对数函数图象的比较
2.学生探究成果
(1)如图 4—3、4—4较为熟练地用描点法画出下列对数函数 、、 、的图象
(2)如图4—5学生选取底数=1/4、1/5、1/6、1/10、4、5、6、10,并推荐几位代表上台演示‘几何画板’,得到相应对数函数的图象。由于学生自己动手,加上‘几何画板’的强大作图功能,学生非常清楚地看到了底数是如何影响函数,且图象的变化。
(3)有了这种画图感知的过程以及学习指数函数的经验,学生很明确y = loga x (a>1)、y = loga x (0y = loga x (a>1) y = loga x (0(4)学生相互补充,自主发现了图象的下列特征:①图象都在y轴右侧,向y轴正负方向无限延伸;②都过(1、0)点;③当a>1时,图象沿x轴正向逐步上升;当03.拓展探究:(1)对数函数 与 、 与 的图象有怎样的对称关系?
(2)对数函数y = loga x (a>1),当a值增大,图象的上升“程度”怎样?
说明:这是学生探究中容易忽略的地方,通过补充学生对对数函数图象感性认识就比较全面。
[设计意图:旧教材是通过对称变换直接从指数函数的图象得到对数函数图象,这样处理学生虽然会接受了这个事实,但对图象的感觉是肤浅的;这样处理也存在着函数教学忽视图象、性质的认知过程而注重应用的“功利”思想。因此,本节课的设计注重引导学生用特殊到一般的方法探究对数函数图象的形成过程,加深感性认识。同时,帮助学生确定探究问题、探究方向和探究步骤,确保探究的有效性。这个环节,还要借助计算机辅助教学作用,增强学生的直观感受]
(三)理性认识、发现性质
1.确定探究问题
教师:当我们对对数函数的图象有了直观认识后,就可以进一步研究对数函数的性质,提高我们对对数函数的理性认识。同学们,通常研究函数的性质有哪些途径?
学生:主要研究函数的定义域、值域、单调性、对称性、过定点等性质。
教师:现在,请同学们依照研究函数性质的途径,再次联手合作,根据图象特征探究出对数函数的定义域、值域、单调性、对称性、过定点等性质
2.学生探究成果
在学生自主探究、合作交流的的基础上填写如下表格:
函 数 y = loga x (a>1) y = loga x (0图 像
定义域 R+ R+
值 域 R R
单调性 在(0,+ )上是增函数 在(0,+ )上是减函数
过定点 (1,0)即x=1,y=0 (1,0)即x=1,y=0
取值范围 01时,y>0 00 x>1时,y<0
[设计意图:发现性质、弄清性质的来龙去脉,是为了更好揭示对数函数的本质属性,传统教学往往让学生在解题中领悟。为了扭转这种方式,我先引导学生回顾指数函数的性质,再利用类比的思想,小组合作的形式通过图象主动探索出对数函数的性质。教学实践表明:当学生对对数函数的图象已有感性认识后,得到这些性质必然水到渠成]
(四)探究问题、变式训练
问题一:(幻灯)(教材p79 例8) 比较下列各组数中两个值的大小:
(1) log 23.4 , log 28.5 (2)log 0.31.8 , log 0.32.7
(3)log a5.1 , log a5.9 ( a>0 , 且a≠1 )
独立思考:1。构造怎样的对数函数模型?2。运用怎样的函数性质?
小组交流:(1)是增函数 (2) 是减函数
(3)y = loga x,分 和分类讨论
变式训练:1. 比较下列各题中两个值的大小:
⑴ log106 log108    ⑵ log0.56 log0.54
⑶ log0.10.5 log0.10.6 ⑷ log1.50.6 log1.50.4
2.已知下列不等式,比较正数m,n 的大小:
(1) log 3 m < log 3 n (2) log 0.3 m > log 0.3 n
(3) log a m < loga n (0 log a n (a>1)
问题二:(幻灯)(教材p79 例9)溶液酸碱度的测量。
溶液酸碱度是通过pH刻画的。pH的计算公式为pH= —lg[ ],其中 [ ]表示溶液中氢离子的浓度,单位是摩尔/升。(1)根据对数函数性质及上述pH的计算公式,说明溶液酸碱度与溶液中氢离子的浓度之间的变化关系;(2)已知纯静水中氢离子的浓度为[ ] = - 摩尔/升,计算纯静水的pH
独立思考:解决这个问题是选择怎样的对数函数模型?运用什么函数性质?
小组交流:pH=-lg[ ]=lg[ ]=lg1/[ ], 随着[ ]的增大,pH 减小,即溶液中氢离子浓度越大,溶液的酸碱度就越大
[设计意图:1。这个环节不做为本节课的重头戏,设置探究问题只是从另一层面上提升学生对性质的理解和应用。问题一是比较大小,始终要紧扣对数函数模型,渗透函数的观点(数形结合)解决问题的思想方法;2。旧教材在图象与性质之后,通常操练类似比较大小等技巧性过大的问题,而新教材引出问题二,还是强调“数学建模”的思想,并且关注学科间的联系,这种精神应予领会。当然要预计到,实际教学中学生理解这道应用题题意会遇到一些困难,教师要注意引导]
(五)归纳小结、巩固新知
1.议一议:(1)怎样的函数称为对数函数?
(2)对数函数的图象形状与底数有什么样的关系?
(3)对数函数有怎样的性质?
2.看一看:对数函数的图象特征和相关性质
对数函数的图象特征 对数函数的相关性质
函数图象都在y轴右侧 函数的定义域为(0,+∞)
图象关于原点和y轴不对称 非奇非偶函数
向y轴正负方向无限延伸 函数的值域为R
函数图象都过定点(1,0)
自左向右看,图象逐渐上升 自左向右看,图象逐渐下降 增函数 减函数
第一象限的图象纵坐标都大于0 第一象限的图象纵坐标都大于0
第二象限的图象纵坐标都小于0 第二象限的图象纵坐标都小于0
(六)作业布置、课后自评
必做题:教材P82习题2.2(A组) 第7、8、9、12题.
选做题:教材P83习题2.2(B组) 第2题.
七、教学反思
从教二十多年,每每设计函数的教学,始终存有困惑的感慨,同时也有遇旧如新的喜悦。函数始终是高中数学教学的主线,对数函数始终是高中数学的难点。高中新课改的春风,带来了函数教学设计上的创新,促使我们在学生学习方法上、教学内容的组织上、教学辅助手段上率先尝试,但这只是一个起点,目前教学条件还受到制约,如图形计算器未能普及、课时紧容量大,都影响函数的正常教学,通过这次活动希望能引起大家的广泛关注并深入探讨!
【参考文献】1。普通高中数学课程标准,人教社,2003
2.章建跃,数学课堂教学设计研究。数学通报,2006.7
点评:
本文教学目标的设计定位准确,教学重点、难点明确。从两个实际问题引出对数函数的概念,让学生了解知识产生的背景,初步感受对数函数是刻画现实世界的一个重要数学模型。教学设计注重引导学生用特殊到一般的方法探究对数函数图象的形成过程,加深感性认识。同时,帮助学生确定探究问题、探究方向和探究步骤,确保探究的有效性。同时借助计算机辅助教学,增强学生的直观感受。
教给学生方法比教给学生知识更重要。本设计能在前一节刚学过指数函数的图象与性质的基础上,通过类比,以旧引新,自然过渡到本节的学习,用研究指数函数的图象与性质的方法来研究对数函数的图象与性质。在教学过程中,教师能引导学生确定探究问题、探究方向和探究步骤,确保了探究的有效性;让学生动手画图、观察图象,启发学生思考、实验、分析、归纳,注重探究的过程与方法。在这里,教师成为课堂教学的组织者与学生学习的促进者,而学生成为学习的主人,学会了学习,学到了 “对比联系”、“数形结合”及“分类讨论”的思想方法。
另外,教学情景的设置、教学例题的选用,以及信息技术来动态演示,都令人耳目一新,体现了教师的良好的素养及丰厚的学科功底。
图4—3
图4—4
图4—5
图4—6
图4—7