【暑期专练】第2讲不等式与不等式组--尖子班(学生版+教师版)

文档属性

名称 【暑期专练】第2讲不等式与不等式组--尖子班(学生版+教师版)
格式 zip
文件大小 274.7KB
资源类型 试卷
版本资源 北师大版
科目 数学
更新时间 2022-07-07 19:43:38

文档简介

第2讲 不等式及不等式组
知识点1 一元一次不等式的概念
像,,, , ,,等,用不等号表示不等关系的式子叫做不等式.
不等式,,,,它们都只含有一个未知数,并且未知数的次数都是1,系数不等于0.像这样的不等式,叫做一元一次不等式.
【典例】
1.下列各式:(1);(2);(3);(4);(5);(6)是一元一次不等式的有_____个
【方法总结】
一元一次不等式必须满足的条件:
(1)只含有一个未知数(2)未知数最高次数是1(3)用不等号连接的式子.
2.已知(m+4)x|m|﹣3+6>0是关于x的一元一次不等式,则m=_____.
【方法总结】
已知一个不等式是一元一次不等式,求解字母参数的值,只需令未知数的次数等于1,且未知项的系数不等于0,求出字母参数的值.
当不等式中未知数的次数高于1次时,只需令高次数项的系数等于0进行求解.
【随堂练习】
1.(2018春 郓城县期末)在数轴上与原点的距离小于8的点对应的x满足(  )
A.﹣8<x<8 B.x<﹣8或x>8 C.x<8 D.x>8
 
2.(2018春 万州区期末)下列各式中,不是不等式的是(  )
A.2x≠1 B.3x2﹣2x+1 C.﹣3<0 D.3x﹣2≥1
知识点2 不等式的性质
不等式的基本性质1 不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.
不等式的基本性质2 不等式的两边都乘(或除以)同一个正数,不等号的方向不变;不等式的两边都乘(或除以)同一个负数,不等号的方向改变.
【典例】
1.设a>b>0,c为常数,给出下列不等式①a﹣b>0;②ac>bc;③<;④b2>ab,其中正确的不等式有_____个
【方法总结】
在利用不等式的基本性质2进行变形时,当不等式的两边都乘以(或除以)同一个字母,需要确定所乘(或除以)字母是正还是负,再确定不等号是否需要改变.
【随堂练习】
1.(2017春 沙河口区期末)若a>b,且c为实数,则ac2和bc2的大小关系正确的是(  )
A.ac2≤bc2 B.ac2≥bc2 C.ac2>bc2 D.不确定
 
2.(2018春 开福区校级期末)我们知道不等式的两边加(或减)同一个数(或式子),不等号的方向不变.不等式组是否也具有类似的性质呢?请解答下列问题.
(1)完成下列填空:
已知 用“<”或“>”填空
5+2____3+1
﹣3﹣1___﹣5﹣2
1﹣2____4+1
(2)一般地,如果那么a+c___b+d(用“<”或“>”填空).请你说明上述性质的正确性.
 
3.(2018春 内乡县期中)有一个两位数,个位上的数字为a,十位上的数字为b,如果把这个两位数的个位与十位上的数字对调,得到的两位数大于原来的两位数,那么a与b哪个大?
知识点3 不等式的解和解集
1.能使不等式成立的未知数的值叫做不等式的解.
2.一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,简称这个不等式的解集.
【典例】
1下列各数中,不是不等式2(x﹣5)<x﹣8的解的是______
A.-4 B.-5 C.-3 D.5
【方法总结】
1.判断一个数是否是一个不等式的解,只需把这个数代入这个不等式中,判断不等式是否依然成立.
2.正确区分不等式的解和解集的区别,它的解是使不等式成立的未知数的值,所有的解构成了它的解集.
3. 不等式的解集在数轴上的表示方法:
2.在数轴上表示下列不等式的解集:
(1);
(2);
(3);
(4).
【方法总结】
用数轴表示不等式的解集,关键是掌握:“>”空心圆圈向右画折线,“≥”实心圆点向右画折线,“<”空心圆圈向左画折线,“≤”实心圆点向左画折线.
【随堂练习】
1.(2018春 襄城区期末)不等式组的解集是3<x<a+2,若a是整数,则a等于____.
 
2.(2017春 赵县期末)对于任意实数m,n定义一种新运算m※n=mn﹣m+3,等式的右边是通常的加减法和乘法运算,例如:3※5=3×5﹣3+3=15.请根据上述定义解决问题:若a<2※x<7,且解集中恰有两个整数解,求a的取值范围.
3.(2017春 薛城区期中)已知不等式组,在同一条数轴上表示不等式①,②的解集如图所示,求b﹣a的值.
知识点4一元一次不等式的解法
1.解一元一次不等式的依据是:不等式的基本性质1和不等式的基本性质2;
2.解一元一次不等式的步骤是:去分母、去括号、移项、合并同类项、系数化为1.
【典例】
1.(1)解不等式x+>﹣,并把解集在数轴上表示出来.
(2)解不等式: ,并写出它的正整数解.
【方法总结】
1.解一元一次不等式的一般步骤与解一元一次方程类似,但是,在不等式的两边都乘(或除以)同一个不等于0的数时,必须根据这个数是正数还是负数,正确运用不等式的基本性质2,特别注意,在不等式两边都乘(或除以)同一个负数时,要改变不等号的方向.
2.求不等式的整数解时,可借助数轴,通过数轴表示的解集直接得到不等式的整数解.
【随堂练习】
1.(2018 广州)友谊商店A型号笔记本电脑的售价是a元/台.最近,该商店对A型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买A型号笔记本电脑x台.
(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?
(2)若该公司采用方案二购买更合算,求x的取值范围.
 
2.(2018 娄底三模)为实现区域教育均衡发展,我市计划对某县A、B两类薄弱学校全部进行改造.根据预算,共需资金1575万元改造一所A类学校和两所B类学校共需资金230万元;改造两所A类学校和一所B类学校共需资金205万元
(1)改造一所A类学校和一所B类学校所需的资金分别是多少万元?
(2)根据我市教育局规划计划今年对该县A、B两类学校进行改造,要求改造的A类学校是B类学校的2倍多2所,在计划投入资金不超过1555万元的条件下,至多能改造多少所A类学校?
知识点5 一元一次不等式组
求不等式组解集的过程叫做解不等式组.
【典例】
1.解下列一元一次不等式组,并把解集在数轴上表示出来.
(1);(2)
【方法总结】
1.解不等式组的方法:先分别求出两个不等式的解集,再把它们的解集都表示在数轴上,并找到解集的公共部分作为不等式的解集.
2.取不等式组的解集时还可以采用非数轴法,即“同大取大,同小取小,大小小大中间找,大大小小解不了”.
解集情况表示如下(假定):
2.解不等式组,将其解集在数轴上表示出来,并写出这个不等式组的最小整数解.
【随堂练习】
1.(2018 马鞍山二模)某校组织360名师生外出活动,计划租用甲、乙两种型号的客车;经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.
(1)已知师生行李打包后共有164件,若租用10辆甲、乙两种型号的客车,请你帮助设计出该校所有可行的租车方案;
(2)若师生行李打包后共有m件,且170<m≤184,如果所租车辆刚好把所有师生和行李载走(每辆车均以最多承载量载满),求m的值.
 
2.(2018 洪山区二模)某社区决定购置一批共享单车,经市场调查得知,购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需1600元.
(1)求男式单车和女式单车每辆分别是多少元?
(2)该社区要求男式单车比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过5000元,问该社区有几种购置方案?怎样的购置才能使所需总费用最低?最低费用是多少?
综合运用
1.不等式的解集是_______
2.在式子:①﹣3<0;②4x+3y>0;③x=3;④x2+xy+y2;⑤x≠5中是不等式的有__________.(填序号)
3.若不等式3(x﹣1)≤mx2+nx﹣3是关于x的一元一次不等式,求m、n的取值.
4.若x<y,比较2﹣3x与2﹣3y的大小,并说明理由.
5.根据“当x为任意正数时,都能使不等式x+3>2成立”,能不能说“不等式x+3>2的解集是x>0”?为什么?
6.解不等式﹣<1,并把解表示在数轴上.
7.求不等式的负整数解
8.解不等式组:,并在数轴上表示不等式组的解集.
9.解不等式组:,并把解集在数轴上表示出来.
10.解不等式组:,并写出它的所有整数解.
10第2讲 不等式及不等式组
知识点1 一元一次不等式的概念
像,,, , ,,等,用不等号表示不等关系的式子叫做不等式.
不等式,,,,它们都只含有一个未知数,并且未知数的次数都是1,系数不等于0.像这样的不等式,叫做一元一次不等式.
【典例】
1.下列各式:(1);(2);(3);(4);(5);(6)是一元一次不等式的有_____个
【答案】3
【解析】解:(1) ,只含一个未知数,且未知数的次数是1,是一元一次不等式;(2),含有两个未知数,不是一元一次不等式;
(3)可化简为,只含一个未知数,且未知数的次数是1,是一元一次不等式;
(4),未知数的次数是2,不是一元一次不等式;
(5),处于分母位置,次数不是1,不是一元一次不等式;
(6)x+2<0,只含一个未知数,且未知数的次数是1,是一元一次不等式.
【方法总结】
一元一次不等式必须满足的条件:
(1)只含有一个未知数(2)未知数最高次数是1(3)用不等号连接的式子.
2.已知(m+4)x|m|﹣3+6>0是关于x的一元一次不等式,则m=_____.
【答案】4
【解析】解:根据题意|m|﹣3=1且m+4≠0.
解得m=±4且m≠﹣4.
所以m=4.
【方法总结】
已知一个不等式是一元一次不等式,求解字母参数的值,只需令未知数的次数等于1,且未知项的系数不等于0,求出字母参数的值.
当不等式中未知数的次数高于1次时,只需令高次数项的系数等于0进行求解.
【随堂练习】
1.(2018春 郓城县期末)在数轴上与原点的距离小于8的点对应的x满足(  )
A.﹣8<x<8 B.x<﹣8或x>8 C.x<8 D.x>8
【解答】解:依题意得:|x|<8
∴﹣8<x<8
故选:A.
 
2.(2018春 万州区期末)下列各式中,不是不等式的是(  )
A.2x≠1 B.3x2﹣2x+1 C.﹣3<0 D.3x﹣2≥1
【解答】解:A、2x≠1是不等式,故A不符合题意;
B、3x2﹣2x+1是代数式,不是不等式,故B符合题意;
C、﹣3<0是不等式,故C不符合题意;
D、3x﹣2≥1是不等式,故D不符合题意;
故选:B.
知识点2 不等式的性质
不等式的基本性质1 不等式的两边都加上(或减去)同一个数或同一个整式,不等号的方向不变.
不等式的基本性质2 不等式的两边都乘(或除以)同一个正数,不等号的方向不变;不等式的两边都乘(或除以)同一个负数,不等号的方向改变.
【典例】
1.设a>b>0,c为常数,给出下列不等式①a﹣b>0;②ac>bc;③<;④b2>ab,其中正确的不等式有_____个
【答案】2
【解析】解:a>b>0.
①根据不等式的基本性质1,在不等式的两边都减去b得,
a﹣b>0.故①正确;
②当c<0时,根据不等式的基本性质2,在不等式两边都乘以c得,ac当c=0时,ac=bc,故②错误;
③∵a>b>0,
∴ab>0.
根据不等式的基本性质2,在不等式两边同时除以ab得,,即.故③正确;
④∵b>0,
根据不等式的基本性质1,在不等式两边都乘以b得,
,即b2<ab,故④错误.
综上所述,正确的不等式是①③,共2个.
【方法总结】
在利用不等式的基本性质2进行变形时,当不等式的两边都乘以(或除以)同一个字母,需要确定所乘(或除以)字母是正还是负,再确定不等号是否需要改变.
【随堂练习】
1.(2017春 沙河口区期末)若a>b,且c为实数,则ac2和bc2的大小关系正确的是(  )
A.ac2≤bc2 B.ac2≥bc2 C.ac2>bc2 D.不确定
【解答】解:∵a>b,且c为实数,
∴ac2﹣bc2=c2(a﹣b)≥0,
∴ac2和bc2的大小关系是ac2≥bc2,
故选:B.
 
2.(2018春 开福区校级期末)我们知道不等式的两边加(或减)同一个数(或式子),不等号的方向不变.不等式组是否也具有类似的性质呢?请解答下列问题.
(1)完成下列填空:
已知 用“<”或“>”填空
5+2____3+1
﹣3﹣1___﹣5﹣2
1﹣2____4+1
(2)一般地,如果那么a+c___b+d(用“<”或“>”填空).请你说明上述性质的正确性.
【解答】解:(1)5+2>3+1,﹣3﹣1>﹣5﹣2,1﹣2<4+1;
故答案为>,>,<;
(2)结论:a+c>b+d.
理由:因为a>b,所以a+c>b+c,
因为c>d,所以b+c>b+d,
所以a+c>b+d.
故答案为>.
 
3.(2018春 内乡县期中)有一个两位数,个位上的数字为a,十位上的数字为b,如果把这个两位数的个位与十位上的数字对调,得到的两位数大于原来的两位数,那么a与b哪个大?
【解答】解:根据题意,得
10b+a<10a+b,
所以,9b<9a,
所以,b<a,即a>b.
知识点3 不等式的解和解集
1.能使不等式成立的未知数的值叫做不等式的解.
2.一个含有未知数的不等式的所有的解,组成这个不等式的解的集合,简称这个不等式的解集.
【典例】
1下列各数中,不是不等式2(x﹣5)<x﹣8的解的是______
A.-4 B.-5 C.-3 D.5
【答案】D
【解析】解:A选项,当x=-4时,不等式的左边=2×(-4-5)=-18,右边=-4-8=-12,
左边<右边,x=-4是不等式的解;
B选项,当x=-5时,不等式的左边=2×(-5-5)=-20,右边=-5-8=-13,
左边<右边,x=-5是不等式的解;
C选项,当x=-3时,不等式的左边=2×(-3-5)=-16,右边=-3-8=-11,
左边<右边,x=-3是不等式的解;
D选项,当x=5时,不等式的左边=2×(5-5)=0,右边=5-8=-3,
左边>右边,x=5不是不等式的解.
故选:D.
【方法总结】
1.判断一个数是否是一个不等式的解,只需把这个数代入这个不等式中,判断不等式是否依然成立.
2.正确区分不等式的解和解集的区别,它的解是使不等式成立的未知数的值,所有的解构成了它的解集.
3. 不等式的解集在数轴上的表示方法:
2.在数轴上表示下列不等式的解集:
(1);
(2);
(3);
(4).
【答案】略
【解析】解:(1)
画好数轴,找到表示-5的点,画一个实心圆点(表示包括-5这个点),则-5和它的左侧部分代表的就是.
(2)
画好数轴,找到表示0的点,画一个实心圆点(表示包括0这个点),则0和它右侧的部分代表的就是.
(3)
画好数轴,找到表示4的点,画一个空心圆圈(表示不包括4这个点),则4的左侧部分代表的就是.
(4)
画好数轴,找到表示的点,画一个空心圆圈(表示不包括这个点),则的右侧部分代表的就是.
【方法总结】
用数轴表示不等式的解集,关键是掌握:“>”空心圆圈向右画折线,“≥”实心圆点向右画折线,“<”空心圆圈向左画折线,“≤”实心圆点向左画折线.
【随堂练习】
1.(2018春 襄城区期末)不等式组的解集是3<x<a+2,若a是整数,则a等于____.
【解答】解:∵不等式组的解集是3<x<a+2,
∴,
解得:1<a≤3,
∵a为整数,
∴a=2或3,
故答案为:2或3.
 
2.(2017春 赵县期末)对于任意实数m,n定义一种新运算m※n=mn﹣m+3,等式的右边是通常的加减法和乘法运算,例如:3※5=3×5﹣3+3=15.请根据上述定义解决问题:若a<2※x<7,且解集中恰有两个整数解,求a的取值范围.
【解答】解:由题意可知:2※x=2x﹣2+3=2x+1,
∵a<2※x<7,
∴a<2x+1<7,
∴<x<3,
∵该不等式的解集有两个整数解,
∴该整数解为1或2,
∴0≤<1,
∴1≤a<3.
 
3.(2017春 薛城区期中)已知不等式组,在同一条数轴上表示不等式①,②的解集如图所示,求b﹣a的值.
【解答】解:,
由①得,x≥﹣a﹣1,
由②得,x≤b,
由数轴可得,原不等式的解集是:﹣2≤x≤3,

∴,
b﹣a=.
知识点4一元一次不等式的解法
1.解一元一次不等式的依据是:不等式的基本性质1和不等式的基本性质2;
2.解一元一次不等式的步骤是:去分母、去括号、移项、合并同类项、系数化为1.
【典例】
1.(1)解不等式x+>﹣,并把解集在数轴上表示出来.
(2)解不等式: ,并写出它的正整数解.
【答案】略
【解析】解:(1)去分母得:14x+15>﹣x,
移项得:14x+x>﹣15,
合并同类项得:15x>﹣15,
系数化为1得:x>﹣1,
把不等式的解集在数轴上表示如下:

(2)解:去分母得:3(x﹣3)≥2(2x﹣5),
去括号得:3x﹣9≥4x﹣10,
移项得:3x﹣4x≥﹣10+9,
合并同类项得:﹣x≥﹣1,
系数化为1得:x≤1,
把不等式的解集在数轴上表示为:
所以不等式的正整数解为x=1.
【方法总结】
1.解一元一次不等式的一般步骤与解一元一次方程类似,但是,在不等式的两边都乘(或除以)同一个不等于0的数时,必须根据这个数是正数还是负数,正确运用不等式的基本性质2,特别注意,在不等式两边都乘(或除以)同一个负数时,要改变不等号的方向.
2.求不等式的整数解时,可借助数轴,通过数轴表示的解集直接得到不等式的整数解.
【随堂练习】
1.(2018 广州)友谊商店A型号笔记本电脑的售价是a元/台.最近,该商店对A型号笔记本电脑举行促销活动,有两种优惠方案.方案一:每台按售价的九折销售;方案二:若购买不超过5台,每台按售价销售;若超过5台,超过的部分每台按售价的八折销售.某公司一次性从友谊商店购买A型号笔记本电脑x台.
(1)当x=8时,应选择哪种方案,该公司购买费用最少?最少费用是多少元?
(2)若该公司采用方案二购买更合算,求x的取值范围.
【解答】解:设购买A型号笔记本电脑x台时的费用为w元,
(1)当x=8时,
方案一:w=90%a×8=7.2a,
方案二:w=5a+(8﹣5)a×80%=7.4a,
∴当x=8时,应选择方案一,该公司购买费用最少,最少费用是7.2a元;
(2)∵若该公司采用方案二购买更合算,
∴x>5,
方案一:w=90%ax=0.9ax,
方案二:当x>5时,w=5a+(x﹣5)a×80%=5a+0.8ax﹣4a=a+0.8ax,
则0.9ax>a+0.8ax,
x>10,
∴x的取值范围是x>10.
 
2.(2018 娄底三模)为实现区域教育均衡发展,我市计划对某县A、B两类薄弱学校全部进行改造.根据预算,共需资金1575万元改造一所A类学校和两所B类学校共需资金230万元;改造两所A类学校和一所B类学校共需资金205万元
(1)改造一所A类学校和一所B类学校所需的资金分别是多少万元?
(2)根据我市教育局规划计划今年对该县A、B两类学校进行改造,要求改造的A类学校是B类学校的2倍多2所,在计划投入资金不超过1555万元的条件下,至多能改造多少所A类学校?
【解答】解:(1)设改造一所A类学校和一所B类学校所需的资金分别是x万元、y万元,根据题意可得:

解得:,
答:改造一所A类学校所需的资金是60万元,改造一所B类学校所需的资金是85万元;
(2)设改造B类学校a所,则改造A类学校2a+2所,根据具体可得:
60(2a+2)+85a≤1555,
解得:a≤7,
答:至多能改造7所A类学校.
知识点5 一元一次不等式组
求不等式组解集的过程叫做解不等式组.
【典例】
1.解下列一元一次不等式组,并把解集在数轴上表示出来.
(1);(2)
【答案】略
【解析】解:(1)
解不等式①,得.
解不等式②,得.
在数轴上表示不等式①、②的解集:
∴不等式的解集为.
(2)
解不等式①,得x≥﹣3,
解不等式②,得:x>2,
在数轴上表示不等式①、②的解集:
所以不等式组的解集为:x>2.
【方法总结】
1.解不等式组的方法:先分别求出两个不等式的解集,再把它们的解集都表示在数轴上,并找到解集的公共部分作为不等式的解集.
2.取不等式组的解集时还可以采用非数轴法,即“同大取大,同小取小,大小小大中间找,大大小小解不了”.
解集情况表示如下(假定):
2.解不等式组,将其解集在数轴上表示出来,并写出这个不等式组的最小整数解.
【答案】略
【解析】解:,
由①解得x≤3
由②解得x>﹣2
不等式组的解集在数轴上表示如图所示
所以,原不等式组的解集为﹣2<x≤3
不等式组的最小整数解为﹣1.
【随堂练习】
1.(2018 马鞍山二模)某校组织360名师生外出活动,计划租用甲、乙两种型号的客车;经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.
(1)已知师生行李打包后共有164件,若租用10辆甲、乙两种型号的客车,请你帮助设计出该校所有可行的租车方案;
(2)若师生行李打包后共有m件,且170<m≤184,如果所租车辆刚好把所有师生和行李载走(每辆车均以最多承载量载满),求m的值.
【解答】解:(1)设租用甲车x辆,则乙车(10﹣x)辆.
根据题意得:,
解得:6≤x≤9.
∵x是整数
∴x=6或7或8或9.
共有四种方案:
①当甲车租6辆,则乙车租4辆;②当甲车租7辆,则乙车租3辆;
③当甲车租8辆,则乙车租2辆;④当甲车租9辆,则乙车租1辆;
(2)设租用甲车y辆,乙车z辆,
根据题意得:40y+30z=360,m=16y+20z,
化简得:4y=36﹣3z,
代入m=16y+20z得:m=144+8z,
∵170<m≤184,
∴170<144+8z≤184,
∴3.25<z≤5,
∵z、y是非负整数,
∴z=4,y=6,
∴m=176.
 
2.(2018 洪山区二模)某社区决定购置一批共享单车,经市场调查得知,购买3辆男式单车与4辆女式单车费用相同,购买5辆男式单车与4辆女式单车共需1600元.
(1)求男式单车和女式单车每辆分别是多少元?
(2)该社区要求男式单车比女式单车多4辆,两种单车至少需要22辆,购置两种单车的费用不超过5000元,问该社区有几种购置方案?怎样的购置才能使所需总费用最低?最低费用是多少?
【解答】解:(1)设男式单车x元/辆,女式单车y元/辆,
根据题意,得:,
解得:,
答:男式单车200元/辆,女式单车150元/辆;
(2)设购置女式单车m辆,则购置男式单车(m+4)辆,
根据题意,得:,
解得:9≤m≤12,
∵m为整数,
∴m的值可以是9、10、11、12,即该社区有四种购置方案;
设购置总费用为W,
则W=200(m+4)+150m=350m+800,
∵W随m的增大而增大,
∴当m=9时,W取得最小值,最小值为3950,
答:该社区共有4种购置方案,其中购置男式单车13辆、女式单车9辆时所需总费用最低,最低费用为3950元.
综合运用
1.不等式的解集是_______
【答案】x<﹣2
【解析】解:﹣x+1>2,
﹣x>1,
x<﹣2,
2.在式子:①﹣3<0;②4x+3y>0;③x=3;④x2+xy+y2;⑤x≠5中是不等式的有__________.(填序号)
【答案】①②⑤
【解析】解:依据不等式的定义用不等号连接表示不相等关系的式子是不等式,
分析可得这5个式子中,①②⑤是不等式,③是等式,④是代数式;
故答案为①②⑤.
3.若不等式3(x﹣1)≤mx2+nx﹣3是关于x的一元一次不等式,求m、n的取值.
【答案】略
【解析】解:化简不等式3(x﹣1)≤mx2+nx﹣3,得
-3≤mx2+(n-3)x﹣3.
∵它是关于x的一元一次不等式,
∴m=0,n﹣3≠0.
解得m=0,n≠3.
4.若x<y,比较2﹣3x与2﹣3y的大小,并说明理由.
【答案】略
【解析】解:∵x<y,
∴﹣x>﹣y,
∴﹣3x>﹣3y,
∴2﹣3x>2﹣3y.
5.根据“当x为任意正数时,都能使不等式x+3>2成立”,能不能说“不等式x+3>2的解集是x>0”?为什么?
【答案】略
【解析】解:不能说不等式x+3>2的解集是x>0.
因为根据不等式性质1,由x+3>2可得x>﹣1.
∴x>﹣1为不等式x+3>2的解集.
6.解不等式﹣<1,并把解表示在数轴上.
【答案】略
【解析】解:去分母,得3(t-1)-5(2-t)<15,
去括号,得3t-3-10+5t<15,
移项,得3t+5t<15+3+10,
合并同类项,得8t<28
系数化为1,得t<,
在数轴上表示为:
7.求不等式的负整数解
【答案】略
【解析】解:去分母,得2x≤6+3(x﹣1),
去括号,得2x≤6+3x﹣3,
移项,得2x﹣3x≤6﹣3,
合并同类项,得﹣x≤3,
系数化为1,得x≥﹣3,
∴不等式的负整数解为﹣3、﹣2、﹣1.
8.解不等式组:,并在数轴上表示不等式组的解集.
【答案】略
【解析】解:,
由①得,x≥,
由②得x≥﹣1,
把①、②的解集在数轴上表示如下:
∴该不等式组的解集为x≥.
9.解不等式组:,并把解集在数轴上表示出来.
【答案】略
【解析】解:解不等式x﹣1≤2﹣2x,得:x≤1,
解不等式>,得:x>﹣3,
将解集表示在数轴上如下:
则不等式组的解集为﹣3<x≤1.
10.解不等式组:,并写出它的所有整数解.
【答案】略
【解析】解:,
解不等式①,得x>﹣3,
解不等式②,得x≤2,
所以不等式组的解集:﹣3<x≤2,
它的整数解为﹣2,﹣1,0,1,2.
 
1
同课章节目录