第4讲 旋转
知识点1 旋转
旋转的概念
把一个图形绕着某一点O转动一个角度的图形变换叫做旋转..点O叫做旋转中心,转动的角叫做旋转角(如∠AO A′),如果图形上的点A经过旋转变为点A′,那么,这两个点叫做这个旋转的对应点.
要点诠释:旋转的三个要素:旋转中心、旋转方向和旋转角度.
旋转的性质
(1)对应点到旋转中心的距离相等(OA= OA′);
(2)对应点与旋转中心所连线段的夹角等于旋转角;
(3)旋转前、后的图形全等(△ABC≌△).
要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.
1.(2018 自贡)如图,在边长为a正方形ABCD中,把边BC绕点B逆时针旋转60°,得到线段BM,连接AM并延长交CD于N,连接MC,则△MNC的面积为( )
A. B. C. D.
2.(2018 凤阳县一模)如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+2b2,其中正确结论有( )
A.0个 B.1个 C.2个 D.3个
3.(2018 黔南州一模)已知等边△ABC,顶点B(0,0),C(2,0),规定把△ABC先沿x轴绕着点C顺时针旋转,使点A落在x轴上,称为一次变换,再沿x轴绕着点A顺时针旋转,使点B落在x轴上,称为二次变换,…经过连续2017次变换后,顶点A的坐标是( )
A.(4033,) B.(4033,0) C.(4036,) D.(4036,0)
4.(2018 唐河县四模)如图,在平面直角坐标系xOy中,点A(1,0),B(2,0),正六边形ABCDEF沿x轴正方向无滑动滚动,每旋转60°为滚动1次,那么当正六边形ABCDEF滚动2017次时,点F的坐标是( )
A.(2017,0) B.(2017,) C.(2018,) D.(2018,0)
5.(2018 宝应县三模)在平面直角坐标系中,Rt△AOB的两条直角边OA、OB分别在x轴和y轴上,OA=3,OB=4.把△AOB绕点A顺时针旋转120°,得到△ADC.边OB上的一点M旋转后的对应点为M′,当AM′+DM取得最小值时,点M的坐标为( )
A.(0,) B.(0,) C.(0,) D.(0,3)
6.(2018 焦作一模)如图1,在等边△ABC中,点D,E分别在边AB,AC上,AD=AE,连接BE,CD,点M、N、P分别是BE、CD、BC的中点.
(1)观察猜想:图1中,△PMN的形状是_______;
(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,△PMN的形状是否发生改变?并说明理由;
(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请直接写出△PMN的周长的最大值.
7.(2018 宁河县一模)如图①,将边长为2的正方形OABC如图①放置,O为原点.
(Ⅰ)若将正方形OABC绕点O逆时针旋转60°时,如图②,求点A的坐标;
(Ⅱ)如图③,若将图①中的正方形OABC绕点O逆时针旋转75°时,求点B的坐标.
知识点2中心对称图形
1.中心对称: 把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.
这两个图形中的对应点叫做关于中心的对称点.
要点诠释:(1)有两个图形,能够完全重合,即形状大小都相同;
(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合 (全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的) .
2.中心对称图形: 把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.
要点诠释:(1)中心对称图形指的是一个图形;
(2)线段,平行四边形,圆等等都是中心对称图形.
1.(2018 绍兴一模)如图,在⊙O中,AB为⊙O的直径,AB=4.动点P从A点出发,以每秒π个单位的速度在⊙O上按顺时针方向运动一周.设动点P的运动时间为t秒,点C是圆周上一点,且∠AOC=40°,当t=________秒时,点P与点C中心对称,且对称中心在直径AB上.
2.(2017春 淮安区期中)由16个边长相等的小正方形组成的图形如图所示,请你用一条割线(可以是折线)将它分割成两个图形,使之关于某一点成中心对称,要求给出两种不同的方法.
3.(2017秋 三台县期中)如图,已知A(2,3)和直线y=x.
(1)分别写出点A关于直线y=x的对称点B和关于原点的对称点C的坐标.
(2)若点D是点B关于原点的对称点,判断四边形ABCD的形状,并说明理由.
知识点3图案设计
在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键点沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.
要点诠释:
作图的步骤:
(1)连接图形中的每一个关键点与旋转中心;
(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);
(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;
(4)连接所得到的各对应点.
1.(2018 东坡区模拟)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).
(1)若△ABC关于x轴对称的图形是△A1B1C1,直接写出点A1、B1、C1的坐标;
(2)将△ABC绕着点O按顺时针方向旋转90°得到△A2B2C2,画出△A2B2C2,并写出点A的对称点A2的坐标;
(3)计算△OA1A2的面积.
2.(2018 山西模拟)如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(﹣2,4),B(﹣4,1),C(0,1).
(1)画出与△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;
(2)画出以C1为旋转中心,将△A1B1C1逆时针旋转90°后的△A2B2C2;
(3)尺规作图:连接A1A2,在C1A2边上求作一点P,使得点P到A1A2的距离等于PC1的长(保留作图痕迹,不写作法);
(4)请直接写出∠C1A1P的度数.
3.(2018 哈尔滨模拟)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别是A(﹣3,2),B(﹣1,4),C(0,2).
(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;
(2)平移△ABC,若A的对应点A2的坐标为(﹣5,﹣2),画出平移后的△A2B2C2;
(3)若将△A2B2C2绕某一点旋转可以得到△A1B1C,请直接写出旋转中心的坐标.
4.(2018 昆明一模)如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).
(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;
(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;
(3)求出(2)中C点旋转到C2点所经过的路径长(结果保留根号和π);
(4)求出(2)△A2BC2的面积是多少.
5.(2018 蒙城县一模)如图,在平面直角坐标系中,点O为坐标原点,已知△ABC三个顶点坐标分别为A(﹣4,1),B(﹣3,3),C(﹣1,2).
(1)画出△ABC关于x轴对称的△A1B1C1,点A,B,C的对称点分别是点A1、B1、C1,直接写出点A1,B1,C1的坐标:A1(______ ),B1(_____),C1( _____);
(2)画出△ABC绕原点O顺时针旋转90°后得到的△A2B2C2,连接C1C2,CC2,C1C,并直接写出△CC1C2的面积是____.
6.(2018 埇桥区二模)在边长为1个单位长度的小正方形组成的网格中,建立如图所示的平面直角坐标系△ABC是格点三角形(顶点在网格线的交点上)
(1)先作△ABC关于原点O成中心对称的△A1B1C1,再把△A1B1C1向上平移4个单位长度得到△A2B2C2;
(2)△A2B2C2与△ABC是否关于某点成中心对称?若是,直接写出对称中心的坐标;若不是,请说明理由.
7.(2018 官渡区一模)如图,在平面直角坐标系中,A(﹣2,3),B(﹣5,1),C(﹣1,0).
(1)在图中作出△ABC关于x轴的对称图形△A1B1C1;
(2)在图中作出△ABC关于原点O成中心对称的图形△A2B2C2,并写出A2点的坐标;
(3)在y轴上找一点P,使△PAC的周长最小,请直接写出点P的坐标.
10第4讲 旋转
知识点1 旋转
旋转的概念
把一个图形绕着某一点O转动一个角度的图形变换叫做旋转..点O叫做旋转中心,转动的角叫做旋转角(如∠AO A′),如果图形上的点A经过旋转变为点A′,那么,这两个点叫做这个旋转的对应点.
要点诠释:旋转的三个要素:旋转中心、旋转方向和旋转角度.
旋转的性质
(1)对应点到旋转中心的距离相等(OA= OA′);
(2)对应点与旋转中心所连线段的夹角等于旋转角;
(3)旋转前、后的图形全等(△ABC≌△).
要点诠释:图形绕某一点旋转,既可以按顺时针旋转也可以按逆时针旋转.
1.(2018 自贡)如图,在边长为a正方形ABCD中,把边BC绕点B逆时针旋转60°,得到线段BM,连接AM并延长交CD于N,连接MC,则△MNC的面积为( )
A. B. C. D.
【解答】解:作MG⊥BC于G,MH⊥CD于H,
则BG=GC,AB∥MG∥CD,
∴AM=MN,
∵MH⊥CD,∠D=90°,
∴MH∥AD,
∴NH=HD,
由旋转变换的性质可知,△MBC是等边三角形,
∴MC=BC=a,
由题意得,∠MCD=30°,
∴MH=MC=a,CH=a,
∴DH=a﹣a,
∴CN=CH﹣NH=a﹣(a﹣a)=(﹣1)a,
∴△MNC的面积=××(﹣1)a=a2,
故选:C.
2.(2018 凤阳县一模)如图,正方形ABCD和正方形CEFG边长分别为a和b,正方形CEFG绕点C旋转,给出下列结论:①BE=DG;②BE⊥DG;③DE2+BG2=2a2+2b2,其中正确结论有( )
A.0个 B.1个 C.2个 D.3个
【解答】解:如图,设BE,DG交于O.
∵四边形ABCD和CEFG都为正方形,
∴BC=CD,CE=CG,∠BCD=∠ECG=90°,
∴∠BCE+∠DCE=∠ECG+∠DCE=90°+∠DCE,即∠BCE=∠DCG.
在△BCE和△DCG中,
,
∴△BCE≌△DCG(SAS),
∴BE=DG,
∴∠1=∠2,
∵∠1+∠4=∠3+∠1=90°,
∴∠2+∠3=90°,
∴∠BOG=90°,
∴BE⊥DG;故①②正确;
连接BD,EG,如图所示,
∴DO2+BO2=BD2=BC2+CD2=2a2,EO2+OG2=EG2=CG2+CE2=2b2,
则DE2+BG2=DO2+BO2+EO2+OG2=2a2+2b2,故③正确.
故选:D.
3.(2018 黔南州一模)已知等边△ABC,顶点B(0,0),C(2,0),规定把△ABC先沿x轴绕着点C顺时针旋转,使点A落在x轴上,称为一次变换,再沿x轴绕着点A顺时针旋转,使点B落在x轴上,称为二次变换,…经过连续2017次变换后,顶点A的坐标是( )
A.(4033,) B.(4033,0) C.(4036,) D.(4036,0)
【解答】解:顶点A的坐标分别为(4,0),(4,0),(7,),(10,0),(10,0),(13,),
…,
2017÷3=672…1,
672×6+4=4036,
故顶点A的坐标是(4036,0).
故选:D.
4.(2018 唐河县四模)如图,在平面直角坐标系xOy中,点A(1,0),B(2,0),正六边形ABCDEF沿x轴正方向无滑动滚动,每旋转60°为滚动1次,那么当正六边形ABCDEF滚动2017次时,点F的坐标是( )
A.(2017,0) B.(2017,) C.(2018,) D.(2018,0)
【解答】解:∵正六边形ABCDEF一共有6条边,即6次一循环;
∴2017÷6=336余1,
∴点F滚动1次时的横坐标为2,纵坐标为,点F滚动7次时的横坐标为8,纵坐标为,
∴点F滚动2107次时的纵坐标与相同,横坐标的次数加1,
∴点F滚动2107次时的横坐标为2017+1=2018,纵坐标为,
∴点F滚动2107次时的坐标为(2018,),
故选:C.
5.(2018 宝应县三模)在平面直角坐标系中,Rt△AOB的两条直角边OA、OB分别在x轴和y轴上,OA=3,OB=4.把△AOB绕点A顺时针旋转120°,得到△ADC.边OB上的一点M旋转后的对应点为M′,当AM′+DM取得最小值时,点M的坐标为( )
A.(0,) B.(0,) C.(0,) D.(0,3)
【解答】解:∵把△AOB绕点A顺时针旋转120°,得到△ADC,点M是BO边上的一点,
∴AM=AM′,
∴AM′+DM的最小值=AM+DM的最小值,
作点D关于直线OB的对称点D′,连接AD′交OB于M,
则AD′=AM′+DM的最小值,
过D作DE⊥x轴于E,
∵∠OAD=120°,
∴∠DAE=60°,
∵AD=AO=3,
∴DE=×3=,AE=,
∴D(,),
∴D′(﹣,),
设直线AD′的解析式为y=kx+b,
∴,
∴,
∴直线AD′的解析式为y=﹣x+,
当x=0时,y=,
∴M(0,),
故选:A.
6.(2018 焦作一模)如图1,在等边△ABC中,点D,E分别在边AB,AC上,AD=AE,连接BE,CD,点M、N、P分别是BE、CD、BC的中点.
(1)观察猜想:图1中,△PMN的形状是_______;
(2)探究证明:把△ADE绕点A逆时针方向旋转到图2的位置,△PMN的形状是否发生改变?并说明理由;
(3)拓展延伸:把△ADE绕点A在平面内自由旋转,若AD=1,AB=3,请直接写出△PMN的周长的最大值.
【解答】解:(1)如图1,
∵△ABC为等边三角形,
∴AB=AC,∠ABC=∠ACB=60°,
∵AD=AE,
∴BD=CE,
∵点M、N、P分别是BE、CD、BC的中点.
∴PM∥CE,PM=CE,PN∥AD,PN=BD,
∴PM=PN,∠BPM=∠BCA=60°,∠CPN=∠CBA=60°,
∴∠MPN=60°,
∴△PMN为等边三角形;
故答案为等边三角形;
(2)△PMN的形状不发生改变,仍然为等边三角形.
理由如下:连接CE、BD,如图2,
∵AB=AC,AE=AD,∠BAC=∠DAE=60°,
∴把△ABD绕点A逆时针旋转60°可得到△CAE,
∴BD=CE,∠ABD=∠ACE,
与(1)一样可得PM∥CE,PM=CE,PN∥AD,PN=BD,
∴PM=PN,∠BPM=∠BCE,∠CPN=∠CBD,
∴∠BPM+∠CPN=∠CBD+∠CBD=∠ABC﹣∠ABD+∠ACB+∠ACE=60°+60°=120°,
∴∠MPN=60°,
∴△PMN为等边三角形.
(3)∵PN=BD,
∴当BD的值最大时,PN的值最大,
∵AB﹣AD≤BD≤AB+AD(当且仅当点B、A、D共线时取等号)
∴BD的最大值为1+3=4,
∴PN的最大值为2,
∴△PMN的周长的最大值为6.
7.(2018 宁河县一模)如图①,将边长为2的正方形OABC如图①放置,O为原点.
(Ⅰ)若将正方形OABC绕点O逆时针旋转60°时,如图②,求点A的坐标;
(Ⅱ)如图③,若将图①中的正方形OABC绕点O逆时针旋转75°时,求点B的坐标.
【解答】解:(1)过点A作x轴的垂线,垂足为D,∠ADO=90°,
∵旋转角为60°,
∴∠AOD=90°﹣60°=30°,
∴AD=AO=1,DO=,
∴A(﹣,1);
(2)连接BO,过B作BD⊥y轴于D,
∵旋转角为75°,∠AOB=45°,
∴∠BOD=75°﹣45°=30°,
∵∠A=90°,AB=AO=2,
∴BO=2,
∴Rt△BOD中,BD=,OD=,
∴B(﹣,).
知识点2中心对称图形
1.中心对称: 把一个图形绕着某一个点旋转180°,如果它能够与另一个图形重合,那么就说这两个图形关于这个点对称或中心对称,这个点叫做对称中心.
这两个图形中的对应点叫做关于中心的对称点.
要点诠释:(1)有两个图形,能够完全重合,即形状大小都相同;
(2)位置必须满足一个条件:将其中一个图形绕着某一个点旋转180°能够与另一个图形重合 (全等图形不一定是中心对称的,而中心对称的两个图形一定是全等的) .
2.中心对称图形: 把一个图形绕着某一个点旋转180°,如果旋转后的图形能够与原来的图形重合,那么这个图形叫做中心对称图形,这个点就是它的对称中心.
要点诠释:(1)中心对称图形指的是一个图形;
(2)线段,平行四边形,圆等等都是中心对称图形.
1.(2018 绍兴一模)如图,在⊙O中,AB为⊙O的直径,AB=4.动点P从A点出发,以每秒π个单位的速度在⊙O上按顺时针方向运动一周.设动点P的运动时间为t秒,点C是圆周上一点,且∠AOC=40°,当t=________秒时,点P与点C中心对称,且对称中心在直径AB上.
【解答】解:如图,
当∠AOP1=40°时,P1与C1对称,=4π×=,t=÷π=;
当∠AOP2=140°时,P2与C1对称,=4π×=π,t=÷π=;
当∠AOP3=220°时,P3与C2对称,=4π×=,t=÷π=;
当∠AOP4=320°时,P4与C1对称,=4π×=π,t=÷π=;
故答案为:或或或.
2.(2017春 淮安区期中)由16个边长相等的小正方形组成的图形如图所示,请你用一条割线(可以是折线)将它分割成两个图形,使之关于某一点成中心对称,要求给出两种不同的方法.
【解答】解:如图所示:
.
3.(2017秋 三台县期中)如图,已知A(2,3)和直线y=x.
(1)分别写出点A关于直线y=x的对称点B和关于原点的对称点C的坐标.
(2)若点D是点B关于原点的对称点,判断四边形ABCD的形状,并说明理由.
【解答】解:(1)∵A(2,3),
∴点A关于直线y=x的对称点B和关于原点的对称点C的坐标分别为:B(3,2),C(﹣2,﹣3);
(2)四边形ABCD是矩形.理由如下:
∵B(3,2)关于原点的对称点为D(﹣3,﹣2),
又∵点B点D关于原点对称,
∴BO=DO.
同理AO=DO,
∴四边形ABCD是平行四边形.
∵A关于直线y=x的对称点为B,点A关于原点的对称点C,
∴AC=BD,
∴四边形ABCD是矩形.
知识点3图案设计
在画旋转图形时,首先确定旋转中心,其次确定图形的关键点,再将这些关键点沿指定的方向旋转指定的角度,然后连接对应的部分,形成相应的图形.
要点诠释:
作图的步骤:
(1)连接图形中的每一个关键点与旋转中心;
(2)把连线按要求(顺时针或逆时针)绕旋转中心旋转一定的角度(旋转角);
(3)在角的一边上截取关键点到旋转中心的距离,得到各点的对应点;
(4)连接所得到的各对应点.
1.(2018 东坡区模拟)如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(﹣3,5),B(﹣2,1),C(﹣1,3).
(1)若△ABC关于x轴对称的图形是△A1B1C1,直接写出点A1、B1、C1的坐标;
(2)将△ABC绕着点O按顺时针方向旋转90°得到△A2B2C2,画出△A2B2C2,并写出点A的对称点A2的坐标;
(3)计算△OA1A2的面积.
【解答】解:(1)如图所示,△A1B1C1即为所求,A1(﹣3,﹣5)、B1(﹣2,﹣1)、C1(﹣1,﹣3);
(2)如图所示,△A2B2C2即为所求,点A2的坐标(5,3);
(3)△OA1A2的面积=×8×=8.
2.(2018 山西模拟)如图,在平面直角坐标系中,△ABC三个顶点的坐标分别为A(﹣2,4),B(﹣4,1),C(0,1).
(1)画出与△ABC关于x轴对称的△A1B1C1,并写出点C1的坐标;
(2)画出以C1为旋转中心,将△A1B1C1逆时针旋转90°后的△A2B2C2;
(3)尺规作图:连接A1A2,在C1A2边上求作一点P,使得点P到A1A2的距离等于PC1的长(保留作图痕迹,不写作法);
(4)请直接写出∠C1A1P的度数.
【解答】解:(1)△A1B1C1如图所示,并写出点C1的坐标((0,﹣1));
(2)△A2B2C2如图所示;
(3)点P如图所示;
(4)请直接写出∠C1A1P的度数为22.5°;
3.(2018 哈尔滨模拟)如图,在平面直角坐标系中,△ABC的三个顶点的坐标分别是A(﹣3,2),B(﹣1,4),C(0,2).
(1)将△ABC以点C为旋转中心旋转180°,画出旋转后对应的△A1B1C;
(2)平移△ABC,若A的对应点A2的坐标为(﹣5,﹣2),画出平移后的△A2B2C2;
(3)若将△A2B2C2绕某一点旋转可以得到△A1B1C,请直接写出旋转中心的坐标.
【解答】解:(1)△A1B1C如图所示;
(2)△A2B2C2如图所示;
(3)如图所示,旋转中心为(﹣1,0).
4.(2018 昆明一模)如图,△ABC三个顶点的坐标分别为A(2,4),B(1,1),C(4,3).
(1)请画出△ABC关于x轴对称的△A1B1C1,并写出点A1的坐标;
(2)请画出△ABC绕点B逆时针旋转90°后的△A2BC2;
(3)求出(2)中C点旋转到C2点所经过的路径长(结果保留根号和π);
(4)求出(2)△A2BC2的面积是多少.
【解答】解:(1)如图,△A1B1C1为所作,点A1的坐标为(2,﹣4);
(2)如图,△A2BC2为所作;
(3)BC==,
所以C点旋转到C2点所经过的路径长==π;
(4)△A2BC2的面积=3×3﹣×1×2﹣×1×3﹣×2×3=.
5.(2018 蒙城县一模)如图,在平面直角坐标系中,点O为坐标原点,已知△ABC三个顶点坐标分别为A(﹣4,1),B(﹣3,3),C(﹣1,2).
(1)画出△ABC关于x轴对称的△A1B1C1,点A,B,C的对称点分别是点A1、B1、C1,直接写出点A1,B1,C1的坐标:A1(______ ),B1(_____),C1( _____);
(2)画出△ABC绕原点O顺时针旋转90°后得到的△A2B2C2,连接C1C2,CC2,C1C,并直接写出△CC1C2的面积是____.
【解答】解:(1)△A1B1C1如图所示,:A1(﹣4,﹣1),B1(﹣3,﹣3),C1(﹣1,﹣2);
故答案为(﹣4,﹣1),(﹣3,﹣3),(﹣1,﹣2);
(2)△A2B2C2如图所示;=×4×3=6.
故答案为6.
6.(2018 埇桥区二模)在边长为1个单位长度的小正方形组成的网格中,建立如图所示的平面直角坐标系△ABC是格点三角形(顶点在网格线的交点上)
(1)先作△ABC关于原点O成中心对称的△A1B1C1,再把△A1B1C1向上平移4个单位长度得到△A2B2C2;
(2)△A2B2C2与△ABC是否关于某点成中心对称?若是,直接写出对称中心的坐标;若不是,请说明理由.
【解答】解:(1)如图所示,△A1B1C1和△A2B2C2即为所求;
(2)由图可知,△A2B2C2与△ABC关于点(0,2)成中心对称.
7.(2018 官渡区一模)如图,在平面直角坐标系中,A(﹣2,3),B(﹣5,1),C(﹣1,0).
(1)在图中作出△ABC关于x轴的对称图形△A1B1C1;
(2)在图中作出△ABC关于原点O成中心对称的图形△A2B2C2,并写出A2点的坐标;
(3)在y轴上找一点P,使△PAC的周长最小,请直接写出点P的坐标.
【解答】解:(1)△A1B1C1即为所求;
(2)△A2B2C2即为所求;A2(2,﹣3);
(3)作点C关于y轴的对称点C2(1,0),连接A、C2交y轴于点P,点P即为所求.
∵直线AC2的解析式为y=﹣x+1,
∴P(0,1).
18