第二十七章 相似
一、单选题(共20分)
1.如图,在中,的平分线交于点交的延长线于点于点,若,则的周长为( )
A. B. C. D.
2.在正方形网格中,每个小正方形的顶点称为格点,以格点为顶点的三角形叫做格点三角形.如图,△ABC是格点三角形,在图中的6×6正方形网格中作出格点三角形△ADE(不含△ABC),使得△ADE∽△ABC(同一位置的格点三角形△ADE只算一个),这样的格点三角形一共有( )
A.4个 B.5个 C.6个 D.7个
3.如图所示,某校数学兴趣小组利用标杆测量建筑物的高度,已知标杆高,测得,,则建筑物的高是( )
A. B. C. D.
4.如图,在平面直角坐标系中,已知点A(﹣3,6),B(﹣9,﹣3),以原点O为位似中心,相似比为,把△ABO缩小,则点B的对应点B′的坐标是( )
A.(﹣1,2) B.(﹣3,1)
C.(﹣3,﹣1)或(3,1) D.(﹣1,2)或(1,﹣2)
5.如图,AD//BC,∠D=90°,AD=3,BC=4,DC=6,若在边 DC上有点P,使△PAD 与△PBC相似,则这样的点 P 有( )
A.1 个 B.2 个 C.3 个 D.4 个
6.如图,ABC是等边三角形,点D、E分别在BC、AC上,且∠ADE=60°,AB=9,BD=3,则CE的长等于( )
A.1 B. C. D.2
7.如图,点D、E分别在△ABC的边BA、CA的延长线上,且DE∥BC,已知AE=3,AC=6,AD=2,则BD的长为( )
A.4 B.6 C.7 D.8
8.在如图所示的网格中,以点为位似中心,四边形的位似图形是( )
A.四边形 B.四边形
C.四边形 D.四边形
9.古希腊数学家欧多克索斯在深入研究比例理论时,提出了分线段的“中末比”问题:点G将一线段分为两线段,,使得其中较长的一段是全长与较短的段的比例中项,即满足,后人把这个数称为“黄金分割”数,把点G称为线段的“黄金分割”点.如图,在中,已知,,若D,E是边的两个“黄金分割”点,则的面积为( )
A. B. C. D.
10.如图,点M、N分别是正方形ABCD的边BC、CD上的两个动点,在运动过程中保持∠MAN=45°,连接EN、FM相交于点O,以下结论:①MN=BM+DN;②BE2+DF2=EF2;③BC2=BF DE;④OM=OF( )
A.①②③ B.①②④ C.②③④ D.①②③④
二、填空题(共40分)
11.在平面直角坐标系中,点O为坐标原点,点A的坐标为(3,4),点B的坐标为(7,0),D,E分别是线段AO,AB上的点,以DE所在直线为对称轴,把△ADE作轴对称变换得△A′DE,点A′恰好在x轴上,若△OA′D与△OAB相似,则OA′的长为________.(结果保留2个有效数字)
12.如图,在△ABC中,∠A=90°,AB=3,AC=4,点M,Q分别是边AB,BC上动点(点M不与A,B重合),且MQ⊥BC,MN∥BC交AC于点N.联结NQ,设BQ=x.则当x=_____.时,四边形BMNQ的面积最大值为_______.
13.如图,在中,,点D是的中点,过点D作,垂足为点E,连接,若,,则________.
14.若,则________.
15.如图是用杠杆撬石头的示意图,是支点,当用力压杠杆的端时,杠杆绕点转动,另一端向上翘起,石头就被撬动.现有一块石头,要使其滚动,杠杆的端必须向上翘起,已知杠杆的动力臂与阻力臂之比为6:1,要使这块石头滚动,至少要将杠杆的端向下压______.
16.两个任意大小的正方形,都可以适当剪开,拼成一个较大的正方形,如用两个边长分别为,的正方形拼成一个大正方形.图中的斜边的长等于________(用,的代数式表示).
三、解答题(共60分)
17.如图,A,B两点被池塘隔开,在AB外取一点C,连接AC,BC,在AC上取点M,使AM=3MC,作MN∥AB交BC于点N,量得MN=38m,求AB的长.
18.已知有三条长度分别为2cm、4cm、8cm的线段,请再添一条线段.使这四条线段成比例,求所添线段的长度.
19.如图,在△ABC中,D,E分别是AC,AB上的点,∠ADE=∠B.△ABC的角平分线AF交DE于点G,交BC于点F.
(1)求证:△ADG∽△ABF;
(2)若,AF=6,求GF的长.
20.如图1,在Rt△ABC中,∠C=90°,AC=BC=2,点D、E分别在边AC、AB上,AD=DE=AB,连接DE.将△ADE绕点A顺时针方向旋转,记旋转角为θ.
(1)[问题发现]
①当θ=0°时,= ; ②当θ=180°时,= ;
(2)[拓展研究]
试判断:当0°≤θ<360°时,的大小有无变化?请仅就图2的情形给出证明;
(3)[问题解决]
在旋转过程中,BE的最大值为 .
21.如图,小明家窗外有一堵围墙AB,由于围墙的遮挡,清晨太阳光恰好从窗户的最高点C射进房间的地板F处,中午太阳光恰好能从窗户的最低点D射进房间的地板E处,小明测得窗子距地面的高度OD=1m,窗高CD=1.5m,并测得OE=1m,OF=5m,求围墙AB的高度.
22.如图,在Rt△ABC中,∠ACB=90°,AB=10,BC=6,点O在射线AC上(点O不与点A重合),垂足为D,以点O为圆心,分别交射线AC于E、F两点,设OD=x.
(1)如图1,当点O为AC边的中点时,求x的值;
(2)如图2,当点O与点C重合时,连接DF;求弦DF的长;
(3)当半圆O与BC无交点时,直接写出x的取值范围.
试卷第1页,共3页
21世纪教育网(www.21cnjy.com)
参考答案:
1.A
【解析】
【分析】
先根据平行四边形的性质说明△ABE是等腰三角形、求得BE、EC,再结合BG⊥AE,运用勾股定理求得AG,进一步求得AE和△ABE的周长,然后再说明△ABE∽△FCE且相似比为,最后根据相似三角形的周长之比等于相似比列方程求解即可.
【详解】
解:∵
∴AD∥BC,AB//DF
∴∠DAE=∠BEA
∵∠DAE=∠BAE
∴∠BAE=∠BEA
∴BE=AB=10,即EC=BC-BE=5
∵BG⊥AE
∴AG=EG=AE
∵在Rt△ABG中,AB=10,BG=8
∴
∴AE=2AG=12
∴△ABE的周长为AB+BE+AE=10+10+12=32
∵AB∥DF
∴△ABE∽△FCE且相似比为
∴ ,解得=16.
故答案为A.
【点睛】
本题考查了平行四边形的性质、等腰三角形的判定与性质、勾股定理、相似三角形的判定与性质等知识点,掌握相似三角形的周长之比等于相似比是解答本题的关键.
2.C
【解析】
【分析】
根据题意,得出ABC的三边之比,并在直角坐标系中找出与ABC各边长成比例的相似三角形,并在直角坐标系中无一遗漏地表示出来.
【详解】
解:ABC的三边之比为,
如图所示,可能出现的相似三角形共有以下六种情况:
所以使得△ADE∽△ABC的格点三角形一共有6个,
故选:C.
【点睛】
本题考察了在直角坐标系中画出与已知三角形相似的图形,解题的关键在于找出与已知三角形各边长成比例的三角形,并在直角坐标系中无一遗漏地表示出来.
3.A
【解析】
【分析】
先求得AC,再说明△ABE∽△ACD,最后根据相似三角形的性质列方程解答即可.
【详解】
解:∵,
∴AC=1.2m+12.8m=14m
∵标杆和建筑物CD均垂直于地面
∴BE//CD
∴△ABE∽△ACD
∴,即,解得CD=17.5m.
故答案为A.
【点睛】
本题考查了相似三角形的应用,正确判定相似三角形并利用相似三角形的性质列方程计算是解答本题的关键.
4.C
【解析】
【分析】
在平面直角坐标系中,如果位似变换是以原点为位似中心,相似比为k,那么位似图形对应点的坐标的比等于k或-k,据此求解即可得.
【详解】
解:以原点O为位似中心,相似比为,把△AOB缩小,点B的坐标为则点B的对应点B'的坐标为或,即或
故选:C.
【点睛】
题目主要考查位似变换的性质,理解运用其性质是解题关键.
5.A
【解析】
【分析】
根据已知分两种情况△PAD∽△PBC或△PAD∽△CBP来进行分析,求得PD的长,从而确定P存在的个数.
【详解】
解:∵AD∥BC,∠D=90°,
∴∠C=∠D=90°,
∵DC=6,AD=3,BC=4,
设PD=x,则PC=6-x.
①若PD:PC=AD:BC,则△PAD∽△PBC,
则,
解得:x=,
经检验:x=是原方程的解;
②若PD:BC=AD:PC,则△PAD∽△BPC,
则,
解得:x无解,
所以这样的点P存在的个数有1个.
故选:A.
【点睛】
此题考查了相似三角形的性质,熟练掌握相似三角形对应边成比例是解本题的关键.
6.D
【解析】
【分析】
通过△ABD∽△DCE,可得,即可求解.
【详解】
解:∵△ABC是等边三角形,
∴AB=BC=9,∠ABC=∠ACB=60°,
∵BD=3,
∴CD=6,
∵∠ADC=∠ABC+∠BAD=∠ADE+∠CDE,
∴∠BAD=∠CDE,
∴△ABD∽△DCE,
∴,
∴
∴CE=2,
故选:D.
【点睛】
本题考查了三角形的相似,做题的关键是△ABD∽△DCE.
7.B
【解析】
【分析】
只需要证明△AED∽△ACB即可求解.
【详解】
解∵DE ∥ BC,
∴∠ABC=∠ADE,∠ACB=∠AED
∴△AED∽△ACB
∴
∴
∴BD=AD+AB=2+4=6.
故选B.
【点睛】
本题主要考查了平行线的性质,相似三角形的性质与判定,解题的关键在于能够熟练掌握相关知识进行求解.
8.A
【解析】
【分析】
以O为位似中心,作四边形ABCD的位似图形,根据图像可判断出答案.
【详解】
解:如图所示,四边形的位似图形是四边形.
故选:A
【点睛】
此题考查了位似图形的作法,画位似图形的一般步骤为:①确定位似中心;②分别连接并延长位似中心和能代表原图的关键点;③根据相似比,确定能代表所作的位似图形的关键点;顺次连接上述各点,确定位似图形.
9.A
【解析】
【分析】
作AF⊥BC,根据等腰三角形ABC的性质求出AF的长,再根据黄金分割点的定义求出BE、CD的长度,得到中DE的长,利用三角形面积公式即可解题.
【详解】
解:过点A作AF⊥BC,
∵AB=AC,
∴BF=BC=2,
在Rt,AF=,
∵D是边的两个“黄金分割”点,
∴即,
解得CD=,
同理BE=,
∵CE=BC-BE=4-(-2)=6-,
∴DE=CD-CE=4-8,
∴S△ABC===,
故选:A.
【点睛】
本题考查了“黄金分割比”的定义、等腰三角形的性质、勾股定理的应用以及三角形的面积公式,求出DE和AF的长是解题的关键。
10.A
【解析】
【分析】
由旋转的性质可得AM'=AM,BM=DM',∠BAM=∠DAM',∠MAM'=90°,∠ABM=∠ADM'=90°,由“SAS”可证△AMN≌△AM′N,可得MN=NM′,可得MN=BM+DN,故①正确;由“SAS”可证△AEF≌△AED',可得EF=D'E,由勾股定理可得BE2+DF2=EF2;故②正确;通过证明△DAE∽△BFA,可得,可证BC2=DE BF,故③正确;通过证明点A,点B,点M,点F四点共圆,∠ABM=∠AFM=90°,∠AMF=∠ABF=45°,∠BAM=∠BFM,可证MO=EO,由∠BAM≠∠DAN,可得OE≠OF,故④错误,即可求解.
【详解】
解:将△ABM绕点A逆时针旋转90°,得到△ADM′,将△ADF绕点A顺时针旋转90°,得到△ABD',
∴AM'=AM,BM=DM',∠BAM=∠DAM',∠MAM'=90°,∠ABM=∠ADM'=90°,
∴∠ADM'+∠ADC=180°,
∴点M'在直线CD上,
∵∠MAN=45°,
∴∠DAN+∠MAB=45°=∠DAN+∠DAM'=∠M'AN,
∴∠M′AN=∠MAN=45°,
又∵AN=AN,AM=AM',
∴△AMN≌△AM′N(SAS),
∴MN=NM′,
∴M′N=M′D+DN=BM+DN,
∴MN=BM+DN;故①正确;
∵将△ADF绕点A顺时针旋转90°,得到△ABD',
∴AF=AD',DF=D'B,∠ADF=∠ABD'=45°,∠DAF=∠BAD',
∴∠D'BE=90°,
∵∠MAN=45°,
∴∠BAE+∠DAF=45°=∠BAD'+∠BAE=∠D'AE,
∴∠D'AE=∠EAF=45°,
又∵AE=AE,AF=AD',
∴△AEF≌△AED'(SAS),
∴EF=D'E,
∵D'E2=BE2+D'B2,
∴BE2+DF2=EF2;故②正确;
∵∠BAF=∠BAE+∠EAF=∠BAE+45°,∠AEF=∠BAE+∠ABE=45°+∠BAE,
∴∠BAF=∠AEF,
又∵∠ABF=∠ADE=45°,
∴△DAE∽△BFA,
∴,
又∵AB=AD=BC,
∴BC2=DE BF,故③正确;
∵∠FBM=∠FAM=45°,
∴点A,点B,点M,点F四点共圆,
∴∠ABM=∠AFM=90°,∠AMF=∠ABF=45°,∠BAM=∠BFM,
同理可求∠AEN=90°,∠DAN=∠DEN,
∴∠EOM=45°=∠EMO,
∴EO=EM,
∴MO=EO,
∵∠BAM≠∠DAN,
∴∠BFM≠∠DEN,
∴EO≠FO,
∴OM≠FO,故④错误,
故选:A.
【点睛】
本题考查了全等三角形的判定和性质,正方形的性质,相似三角形的判定和性质,旋转的性质等知识,添加恰当辅助线构造全等三角形是解题的关键.
11.2.0或3.3
【解析】
【分析】
由点A的坐标为(3,4),点B的坐标为(7,0),可得OA=5,OB=7,AB=4,然后分别由△OA′D∽△OAB与△OA′D∽△OBA,根据相似三角形的对应边成比例,即可得答案.
【详解】
∵点A的坐标为(3,4),点B的坐标为(7,0),
∴OA==5,OB=7,AB==4,
若△OA′D∽△OAB,
则,
设AD=x,
则OD=5﹣x,A′D=x,
即,
解得:x≈2.2,
∴,
∴OA′=2.0;
若△OA′D∽△OBA,
则,
同理:可得:OA′≈3.3.
故答案为2.0或3.3.
【点睛】
此题考查了相似三角形的性质与折叠的知识.注意数形结合与方程思想的应用,小心别漏解是解题关键.
12.
【解析】
【分析】
先由勾股数可得BC的长,再由△QBM∽△ABC列出比例式,用含x的式子表示出QM和BM,然后由平行线的性质得比例式,解出MN,最后由三角形的面积公式得出四边形BMNQ的面积表达式,根据二次函数的性质可得答案.
【详解】
解:∵∠A=90°,AB=3,AC=4,
∴BC=5,
∵△QBM∽△ABC,
∴==,即==,
∴QM=x,BM=x,
∵MN∥BC,
∴=,即=,
∴MN=5﹣x,
∴四边形BMNQ的面积为:,
∴当x=时,四边形BMNQ的面积最大,最大值为.
故答案为:,.
【点睛】
本题主要考查了二次函数的性质、相似三角形及勾股定理,关键是根据勾股定理求出线段的长,然后根据相似三角形得到比例列出函数关系式,最后用二次函数的性质求解即可.
13.3
【解析】
【分析】
根据直角三角形的性质得到AB=10,利用勾股定理求出AC,再说明DE∥AC,得到,即可求出DE.
【详解】
解:∵∠ACB=90°,点D为AB中点,
∴AB=2CD=10,
∵BC=8,
∴AC==6,
∵DE⊥BC,AC⊥BC,
∴DE∥AC,
∴,即,
∴DE=3,
故答案为:3.
【点睛】
本题考查了直角三角形的性质,勾股定理,平行线分线段成比例,解题的关键是通过平行得到比例式.
14.
【解析】
【分析】
根据比例的基本性质进行化简,代入求职即可.
【详解】
由可得,,
代入.
故答案为.
【点睛】
本题主要考查了比例的基本性质化简,准确观察分析是解题的关键.
15.60
【解析】
【分析】
首先根据题意构造出相似三角形,然后根据相似三角形的对应边成比例求得端点A向下压的长度.
【详解】
解:如图;AM、BN都与水平线垂直,即AM∥BN;
易知:△ACM∽△BCN;
∴,
∵AC与BC之比为6:1,
∴,即AM=6BN;
∴当BN≥10cm时,AM≥60cm;
故要使这块石头滚动,至少要将杠杆的端点A向下压60cm.
故答案为:60.
【点睛】
本题考查相似三角形的判定与性质的实际应用,正确的构造相似三角形是解题的关键.
16.
【解析】
【分析】
根据题意及勾股定理可得BC2=;又因Rt△ABC的边BC在斜边AB上的射影为a,根据射影定理可得BC2=a AB,由此即可解答.
【详解】
根据题意及勾股定理可得:BC2=;
由题意可得:Rt△ABC的边BC在斜边AB上的射影为a,
∴BC2=a AB,
即可得AB=.
故答案为.
【点睛】
本题考查射影定理的知识,注意掌握每一条直角边是这条直角边在斜边上的射影和斜边的比例中项.
17..
【解析】
【分析】
先根据可判断出,再根据相似三角形的对应边成比例列出方程解答即可.
【详解】
解:,,
,,
,即,.
的长为.
【点睛】
本题考查相似三角形性质的应用.解题时关键是找出相似的三角形,然后根据对应边成比例列出方程,建立适当的数学模型来解决问题.
18.1或4或16.
【解析】
【分析】
根据成比例线段的性质求解即可.
【详解】
解:设添加的线段长度为x,
当时,解得:;
当时,解得:;
当时,解得:.
∴所添线段的长度为1或4或16.
【点睛】
此题考查了线段成比例,解题的关键是熟练掌握线段成比例性质并分类讨论.
19.(1)见解析;(2)2
【解析】
【分析】
(1)由角平分线的定义可得∠DAG=∠BAF,再由∠ADE=∠B,即可证明△ADG∽△ABF;
(2)由△ADG∽△ABF,可得,即可得到,则GF=AF-AG=2.
【详解】
解:(1)∵AF平分∠BAC,
∴∠DAG=∠BAF,
∵∠ADE=∠B,
∴△ADG∽△ABF;
(2)∵△ADG∽△ABF,
∴,
∵,,
∴,
∴GF=AF-AG=2.
【点睛】
本题主要考查了角平分线的定义,相似三角形的性质与判定,解题的关键在于能够熟练掌握相似三角形的性质与判定条件.
20.(1)①;②;(2)当0°≤θ<360°时,的大小没有变化;证明见解析;(3)4+2.
【解析】
【分析】
(1)①利用等腰三角形的性质判断出∠A=∠B,∠A=∠AED,进而得出∠B=∠DEA,得出DE∥BC,即可得出结论;②同①的方法,即可得出结论;
(2)利用两边成比例,夹角相等,判断出△ADC∽△AEB,即可得出结论;
(3)判断出点E在BA的延长线上时,BE最大,再求出AE,即可得出结论.
【详解】
(1)①在Rt△ABC中,AC=BC,
∴AB=AC,
∵AC=BC,
∴∠A=∠B,
∵AD=DE,
∴∠DEA=∠A,
∴∠DEA=∠B,
∴DE∥BC,
∴,
∴,
故答案为:;
②如图,当θ=180°时,
∵AC=BC,
∴∠BAC=∠B,
∵∠BAC=∠DAE,
∴∠DAE=∠B,
∵AD=DE,
∴∠DEA=∠DAE,
∴∠DEA=∠B,
∴DE∥BC,
∴,
∴,
∴,
故答案为:;
(2)当0°≤θ<360°时,的大小没有变化;
证明:在Rt△ABC中,
∵∠ACB=90°,AC=BC,
∴,∠CAB=45°,
同理,∠DAE=45°,
∴,
∵∠CAB=∠DAE,
∴∠CAD=∠BAE,
∴△ADC∽△AEB,
∴;
(3)如答图,当点E在BA的延长线上时,BE最大,其最大值为AB+AE,
在Rt△ABC中,AC=BC=2,
∴AB=AC=×2=4,
∴AD=DE=AB=2,
由(1)知,DE∥BC,
∴∠ADE=∠C=90°,
∴AE=AD=2,
∴BE最大=AB+AE=4+2,
故答案为:4+2.
【点睛】
此题是几何变换综合题,主要考查了等腰三角形的性质,平行线的性质,相似三角形的判定和性质,判断出两三角形相似是解本题的关键.
21.4m
【解析】
【分析】
首先根据DO=OE=1m,可得∠DEB=45°,然后证明AB=BE,再证明△ABF∽△COF,可得,然后代入数值可得方程,解出方程即可得到答案.
【详解】
解:延长OD,
∵DO⊥BF,
∴∠DOE=90°,
∵OD=1m,OE=1m,
∴∠DEB=45°,
∵AB⊥BF,
∴∠BAE=45°,
∴AB=BE,
设AB=EB=x m,
∵AB⊥BF,CO⊥BF,
∴AB∥CO,
∴△ABF∽△COF,
∴,
,
解得:x=4.
经检验:x=4是原方程的解.
答:围墙AB的高度是4m.
【点睛】
此题主要考查了相似三角形的应用,解决问题的关键是求出AB=BE,根据相似三角形的判定方法证明△ABF∽△COF.
22.(1);(2);(3)满足条件的x取值范围为:0<x<3或x>12.
【解析】
【分析】
(1)先求出OA,再判断出,得出比例式求出x的值,即可得出结论;
(2)先利用等面积求出x知,再判断出,进而求出DH,OH,最后用勾股定理求出DF,即可得出结论;
(3)分两种情况:点O在边AC上和在AC的延长线上,找出分界点,求出x值,即可得出结论.
【详解】
(1)在Rt△ABC中,AB=10,
根据勾股定理得,,
∵点O为AC边的中点,
∴AO=AC=,
∵OD⊥AB,∠ACB=90°,
∴∠ADO=∠ACB,
又∵∠A=∠A,
∴.
∴,
∴,
∴.
(2)如图,过点D作DH⊥AC于H,
∵点O与点C重合,
∴S△ABC=OD AB=,
即10x=8×6,
∴.
∵DH⊥AC于H,
∴∠DHO=∠ACB=90°,
∴∠DOH+∠BOD=∠BOD+∠ABC,
∴∠DOH=∠ABC,
∴.
∴,
∴,
∴,.
∵OF=OD=,
∴FH=OH+OF=.
∴在Rt△DFH中,根据勾股定理得,
∴.
(3)如图,当点O在边AC上,且半圆O与AB,
∴OC=OD=x,
∴AO=AC﹣OC=8﹣x,
∵∠ADO=∠ACB=90°,∠A=∠A,
∴,
∴,
∴,
∴x=3,
∴0<x<3,
如图,当点O在AC的延长线上,且半圆O与AB,
∴OC=OD=x,
∴AO=AC+OC=8+x,
∵∠ADO=∠ACB=90°,∠A=∠A,
∴,
∴,
∴,
∴x=12,
即满足条件的x取值范围为:0<x<3或x>12.
【点睛】
此题是圆的综合题,主要考查了勾股定理,相似三角形的判定和性质,用分类讨论的思想和方程的思想解决问题是解本题的关键.
答案第1页,共2页
21世纪教育网(www.21cnjy.com)