人教A版(2019)选择性必修第三册6.1 分类加法计数原理与分步乘法计数原理 课件(共21张PPT)

文档属性

名称 人教A版(2019)选择性必修第三册6.1 分类加法计数原理与分步乘法计数原理 课件(共21张PPT)
格式 zip
文件大小 1.6MB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2022-07-14 03:56:09

图片预览

文档简介

(共21张PPT)
5.3.1 函数的单调性
第六章 计 数 原 理
6.1分类加法计数原理与分步乘法计数原理
本节目标
1.通过实例能归纳总结出分类加法计数原理与分步 乘法计数原理;
2.正确理解“完成一件事情”的含义,能根据具体问题的特征,选择“分类”或“分步”.
3.能利用两个原理解决一些简单的实际问题.
阅读课本P2-5页,回答下列问题?
1.什么是分类加法计数原理?
2.什么是分步乘法计数原理?
自主学习
思考1:用一个大写的英文字母或一个阿拉伯数字给教室里的一个座位编号,总共能编出多少种不同的号码?
问题与思考
探究1:你能说说这个问题的特征吗?
上述计数过程的基本环节是:
(1)确定分类标准,根据问题条件分为字母号码和数字号码两类;
(2)分别计算各类号码的个数;
(3)各类号码的个数相加,得出所有号码的个数.
一般地,有如下分类加法计数原理:完成一件事,有两类办法. 在第1类办法中有m种不同的方法,在第2类方法中有n种不同的方法,则完成这件事共有:N= m+n 种不同的方法.
概念解析
如果完成一件事有N类不同方案,在每一类中都有若干种不同的方法,那么应该如何计数呢?
分类加法计数原理:完成一件事,如果有n类办法,且:第一类办法中有m1种不同的方法,第二类办法中有m2种不同的方法……第n类办法中有mn种不同的方法,那么完成这件事共有N=m1+m2+…+mn种不同的方法.
例1.在填写高考志愿时,一名高中毕业生了解到,A,B两所大学各有一些自己感兴趣的强项专业,如表,
如果这名同学只能选一个专业,那么他共有多少种选择?
A大学 B大学
生物学 数学
化学 会计学
医学 信息技术学
物理学 法学
工程学
典例解析
变式训练
课本第5页练习1(1)、3(1)、4(1)题
利用分类加法计数原理解题的一般思路
(1)分类:将完成这件事的办法分成若干类;
(2)计数:求出每一类中的方法数;
(3)结论:将每一类中的方法数相加得最终结果.
方法归纳
思考2:用前6个大写的英文字母和1~9个阿拉伯数字,以A1, A1,…A9,B1,B2,…的方式给教室里的一个座位编号,总共能编出多少种不同的号码?
问题与思考
探究2:你能说说这个问题的特征吗?
上述计数过程的基本环节是:
(1)由问题条件中的“和”,可确定完成编号要分两步;
(2)分别计算各步号码的个数;
(3)将各步号码的个数相乘,得出所有号码的个数.
一般地,有如下分步乘法计数原理:完成一件事需要两个步骤, 做第1步有m种不同的方法,做第2步有n种不同的方法,那么完成这件事共有:N= m×n 种不同的方法.
概念解析
如果完成一件事需要有n个步骤,做每一步中都有若干种不同方法,那么应当如何计数呢
分步乘法计数原理:如果完成一件事需要n个步骤,做第1步有m1种不同的方法,做第2步有m2种不同的方法,…,做第n步有mn种不同的方法,那么完成这件事共有N=m1×m2×…×mn种不同的方法.
例2.设某班有男生30名,女生24名。现要从中选出男、女生各一名代表班级参加比赛,共有多少种不同的选法?
典例解析
例3.书架上第1层放有4本不同的计算机书,第 2层放有3本不同的文艺书,第3层放有2本不同的体育杂志.
(1)从书架上任取1本书,有多少种不同的取法
(2)从书架的第1、 2、 3层各取1本书,有多少种不同取法
(3)从书架上取2本不同学科的书,有多少种不同的取法
典例解析
方法归纳
变式训练
课本第5页练习1(2)、3(2)、4(2)题
当堂检测
课本第11页习题6.1第1、2、3、4题
2.区别
分类加法计数原理 分步乘法计数原理
区别一 完成一件事共有n类办法,关键词是“分类” 完成一件事共有n个步骤,关键词是“分步”
区别二 每类办法中的每种方法都能独立地完成这件事,它是独立的、一次的且每种方法得到的都是最后结果,只需一种方法就可完成这件事 除最后一步外,其他每步得到的只是中间结果,任何一步都不能独立完成这件事,缺少任何一步也不能完成这件事,只有各个步骤都完成了,才能完成这件事
区别三 各类办法之间是互斥的、并列的、独立的 各步之间是关联的、独立的,“关联”确保不遗漏,“独立”确保不重复
两个原理的联系与区别
1.联系:分类加法计数原理和分步乘法计数原理都是解决计数问题最基本、最重要的方法.
课堂小结
课堂小结
典例解析
例4. 要从甲、乙、丙3幅不同的画中选出2幅,分别挂在左、右两边墙上的指定位置,
问共有多少种不同的挂法?
分析:要完成的一件事是“从3幅画中选出2幅,并分别挂在左、右两边墙上”,可以分步完成.
解:从3幅画中选出2幅分别挂在左、右两边墙上,
可以分两个步骤完成:
第1步,从3幅画中选1幅挂在左边墙上,有3种选法,
第2步,从剩下的2幅画中选1幅挂在右边墙上,有2种选法,
根据分步乘法计数原理,不同挂法的种数是
N=3×2=6.
分析:要完成一件事是“给一个程序模块命名” ,可以分三个步骤完成:第1步,首选字符,第2步,选中间字符;第3步,选最后一个字符,还有首字符又可以分为两类。
典例解析
典例解析
例6. 电子元件很容易实现电路的通与断、电位的高与低等两种状态,而这也是最容易控制的两种状态.因此计算机内部就采用了每一位只有0或1两种数字的记数法,即二进制.为了使计算机能够识别字符,需要对字符进行编码,每个字符可以用一个或多个字节来表示,其中字节是计算机中数据存储的最小计量单位,每个字节由8个二进制位构成.问:
(1)一个字节(8位)最多可以表示多少个不同的字符?
(2)计算机汉字国标码(GB码)包含了6763个汉字,一个汉字为一个字符,要对这些汉字进行编码,每个汉字至少要用多少个字节表示?
分析: (1)要完成的一件事是“确定1个字节各二进制位上的数字” .由于每个字节有8个二进制位,每一位上的值都是0,1两种选择,而且不同的顺序代表不同的字符,因此可以用分步乘法计数原理来求解;(2)只要计算出多少个字节所能表示的不同字符不少于6763个即可.
课后作业
课本第11页习题6.1第5-10题