2020--2022年三年全国高考物理真题汇编:电磁感应

文档属性

名称 2020--2022年三年全国高考物理真题汇编:电磁感应
格式 zip
文件大小 778.4KB
资源类型 试卷
版本资源
科目 物理
更新时间 2022-07-08 16:52:50

文档简介

登录二一教育在线组卷平台 助您教考全无忧
2020--2022年三年全国高考物理真题汇编:电磁感应
一、单选题
1.(2022·河北)将一根绝缘硬质细导线顺次绕成如图所示的线圈,其中大圆面积为 ,小圆面积均为 ,垂直线圈平面方向有一随时间t变化的磁场,磁感应强度大小 , 和 均为常量,则线圈中总的感应电动势大小为(  )
A. B. C. D.
2.(2022·广东)如图是简化的某种旋转磁极式发电机原理图。定子是仅匝数n不同的两线圈, ,二者轴线在同一平面内且相互垂直,两线圈到其轴线交点O的距离相等,且均连接阻值为R的电阻,转子是中心在O点的条形磁铁,绕O点在该平面内匀速转动时,两线圈输出正弦式交变电流。不计线圈电阻、自感及两线圈间的相互影响,下列说法正确的是(  )
A.两线圈产生的电动势的有效值相等
B.两线圈产生的交变电流频率相等
C.两线圈产生的电动势同时达到最大值
D.两电阻消耗的电功率相等
3.(2022·全国甲卷)三个用同样的细导线做成的刚性闭合线框,正方形线框的边长与圆线框的直径相等,圆线框的半径与正六边形线框的边长相等,如图所示。把它们放入磁感应强度随时间线性变化的同一匀强磁场中,线框所在平面均与磁场方向垂直,正方形、圆形和正六边形线框中感应电流的大小分别为 和 。则(  )
A. B. C. D.
4.(2020·新课标Ⅲ)如图,水平放置的圆柱形光滑玻璃棒左边绕有一线圈,右边套有一金属圆环。圆环初始时静止。将图中开关S由断开状态拨至连接状态,电路接通的瞬间,可观察到(  )
A.拨至M端或N端,圆环都向左运动
B.拨至M端或N端,圆环都向右运动
C.拨至M端时圆环向左运动,拨至N端时向右运动
D.拨至M端时圆环向右运动,拨至N端时向左运动
5.(2020·新课标Ⅱ)管道高频焊机可以对由钢板卷成的圆管的接缝实施焊接。焊机的原理如图所示,圆管通过一个接有高频交流电源的线圈,线圈所产生的交变磁场使圆管中产生交变电流,电流产生的热量使接缝处的材料熔化将其焊接。焊接过程中所利用的电磁学规律的发现者为(  )
A.库仑 B.霍尔 C.洛伦兹 D.法拉第
6.(2020·浙江选考)如图所示,固定在水平面上的半径为r的金属圆环内存在方向竖直向上、磁感应强度大小为B的匀强磁场。长为l的金属棒,一端与圆环接触良好,另一端固定在竖直导电转轴 OO' 上,随轴以角速度ω匀速转动。在圆环的A点和电刷间接有阻值为R的电阻和电容为C、板间距为d的平行板电容器,有一带电微粒在电容器极板间处于静止状态。已知重力加速度为g,不计其它电阻和摩擦,下列说法正确的是(  )
A.棒产生的电动势为
B.微粒的电荷量与质量之比为
C.电阻消耗的电功率为
D.电容器所带的电荷量为
7.(2020·江苏)如图所示,两匀强磁场的磁感应强度B1和B2大小相等、方向相反。金属圆环的直径与两磁场的边界重合。下列变化会在环中产生顺时针方向感应电流的是(  )

A.同时增大B1减小B2
B.同时减小B1增大B2
C.同时以相同的变化率增大B1和B2
D.同时以相同的变化率减小B1和B2
二、多选题
8.(2022·山东)如图所示, 平面的第一、三象限内以坐标原点O为圆心、半径为 的扇形区域充满方向垂直纸面向外的匀强磁场.边长为L的正方形金属框绕其始终在O点的顶点、在 平面内以角速度 顺时针匀速转动. 时刻,金属框开始进入第一象限.不考虑自感影响,关于金属框中感应电动势E随时间t变化规律的描述正确的是(  )
A.在 到 的过程中,E一直增大
B.在 到 的过程中,E先增大后减小
C.在 到 的过程中,E的变化率一直增大
D.在 到 的过程中,E的变化率一直减小
9.(2022·湖南)如图,间距 的U形金属导轨,一端接有 的定值电阻 ,固定在高 的绝缘水平桌面上。质量均为 的匀质导体棒a和b静止在导轨上,两导体棒与导轨接触良好且始终与导轨垂直,接入电路的阻值均为 ,与导轨间的动摩擦因数均为0.1(设最大静摩擦力等于滑动摩擦力),导体棒 距离导轨最右端 。整个空间存在竖直向下的匀强磁场(图中未画出),磁感应强度大小为 。用 沿导轨水平向右的恒力拉导体棒a,当导体棒a运动到导轨最右端时,导体棒b刚要滑动,撤去 ,导体棒a离开导轨后落到水平地面上。重力加速度取 ,不计空气阻力,不计其他电阻,下列说法正确的是(  )
A.导体棒a离开导轨至落地过程中,水平位移为
B.导体棒a离开导轨至落地前,其感应电动势不变
C.导体棒a在导轨上运动的过程中,导体棒b有向右运动的趋势
D.导体棒a在导轨上运动的过程中,通过电阻 的电荷量为
10.(2022·广东)如图所示,水平地面( 平面)下有一根平行于y轴且通有恒定电流I的长直导线。P、M和N为地面上的三点,P点位于导线正上方,MN平行于y轴,PN平行于x轴。一闭合的圆形金属线圈,圆心在P点,可沿不同方向以相同的速率做匀速直线运动,运动过程中线圈平面始终与地面平行。下列说法正确的有(  )
A.N点与M点的磁感应强度大小相等,方向相同
B.线圈沿PN方向运动时,穿过线圈的磁通量不变
C.线圈从P点开始竖直向上运动时,线圈中无感应电流
D.线圈从P到M过程的感应电动势与从P到N过程的感应电动势相等
11.(2022·全国甲卷)如图,两根相互平行的光滑长直金属导轨固定在水平绝缘桌面上,在导轨的左端接入电容为C的电容器和阻值为R的电阻。质量为m、阻值也为R的导体棒MN静止于导轨上,与导轨垂直,且接触良好,导轨电阻忽略不计,整个系统处于方向竖直向下的匀强磁场中。开始时,电容器所带的电荷量为Q,合上开关S后,(  )
A.通过导体棒 电流的最大值为
B.导体棒MN向右先加速、后匀速运动
C.导体棒 速度最大时所受的安培力也最大
D.电阻R上产生的焦耳热大于导体棒 上产生的焦耳热
12.(2021·辽宁)如图(a)所示,两根间距为L、足够长的光滑平行金属导轨竖直放置并固定,顶端接有阻值为R的电阻,垂直导轨平面存在变化规律如图(b)所示的匀强磁场,t=0时磁场方向垂直纸面向里。在t=0到t=2t0的时间内,金属棒水平固定在距导轨顶端L处;t=2t0时,释放金属棒。整个过程中金属棒与导轨接触良好,导轨与金属棒的电阻不计,则(  )
A.在 时,金属棒受到安培力的大小为
B.在t=t0时,金属棒中电流的大小为
C.在 时,金属棒受到安培力的方向竖直向上
D.在t=3t0时,金属棒中电流的方向向右
13.(2020·新课标Ⅰ)如图,U形光滑金属框abcd置于水平绝缘平台上,ab和dc边平行,和bc边垂直。ab、dc足够长,整个金属框电阻可忽略。一根具有一定电阻的导体棒MN置于金属框上,用水平恒力F向右拉动金属框,运动过程中,装置始终处于竖直向下的匀强磁场中,MN与金属框保持良好接触,且与bc边保持平行。经过一段时间后(  )
A.金属框的速度大小趋于恒定值
B.金属框的加速度大小趋于恒定值
C.导体棒所受安培力的大小趋于恒定值
D.导体棒到金属框bc边的距离趋于恒定值
14.(2020·天津)手机无线充电是比较新颖的充电方式。如图所示,电磁感应式无线充电的原理与变压器类似,通过分别安装在充电基座和接收能量装置上的线圈,利用产生的磁场传递能量。当充电基座上的送电线圈通入正弦式交变电流后,就会在邻近的受电线圈中感应出电流,最终实现为手机电池充电。在充电过程中(  )
A.送电线圈中电流产生的磁场呈周期性变化
B.受电线圈中感应电流产生的磁场恒定不变
C.送电线圈和受电线圈通过互感现象实现能量传递
D.手机和基座无需导线连接,这样传递能量没有损失
15.(2020·新高考Ⅰ)如图所示,平面直角坐标系的第一和第二象限分别存在磁感应强度大小相等、方向相反且垂直于坐标平面的匀强磁场,图中虚线方格为等大正方形。一位于Oxy平面内的刚性导体框abcde在外力作用下以恒定速度沿y轴正方向运动(不发生转动)。从图示位置开始计时,4s末bc边刚好进入磁场。在此过程中,导体框内感应电流的大小为I, ab边所受安培力的大小为Fab,二者与时间t的关系图像,可能正确的是(  )
A. B.
C. D.
三、综合题
16.(2022·辽宁)如图所示,两平行光滑长直金属导轨水平放置,间距为L。 区域有匀强磁场,磁感应强度大小为B,方向竖直向上。初始时刻,磁场外的细金属杆M以初速度 向右运动,磁场内的细金属杆N处于静止状态。两金属杆与导轨接触良好且运动过程中始终与导轨垂直。两杆的质量均为m,在导轨间的电阻均为R,感应电流产生的磁场及导轨的电阻忽略不计。
(1)求M刚进入磁场时受到的安培力F的大小和方向;
(2)若两杆在磁场内未相撞且N出磁场时的速度为 ,求:①N在磁场内运动过程中通过回路的电荷量q;②初始时刻N到 的最小距离x;
(3)初始时刻,若N到 的距离与第(2)问初始时刻的相同、到 的距离为 ,求M出磁场后不与N相撞条件下k的取值范围。
17.(2021·天津)如图所示,两根足够长的平行光滑金属导轨 、 间距 ,其电阻不计,两导轨及其构成的平面均与水平面成 角,N、Q两端接有 的电阻。一金属棒 垂直导轨放置, 两端与导轨始终有良好接触,已知 的质量 ,电阻 ,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度大小 。 在平行于导轨向上的拉力作用下,以初速度 沿导轨向上开始运动,可达到最大速度 。运动过程中拉力的功率恒定不变,重力加速度 。
(1)求拉力的功率P;
(2) 开始运动后,经 速度达到 ,此过程中 克服安培力做功 ,求该过程中 沿导轨的位移大小x。
18.(2021·湖北)如图(a)所示,两根不计电阻、间距为L的足够长平行光滑金属导轨,竖直固定在匀强磁场中,磁场方向垂直于导轨平面向里,磁感应强度大小为B。导轨上端串联非线性电子元件Z和阻值为R的电阻。元件Z的 图像如图(b)所示,当流过元件Z的电流大于或等于 时,电压稳定为Um。质量为m、不计电阻的金属棒可沿导轨运动,运动中金属棒始终水平且与导轨保持良好接触。忽略空气阻力及回路中的电流对原磁场的影响,重力加速度大小为g。为了方便计算,取 , 。以下计算结果只能选用m、g、B、L、R表示。
(1)闭合开关S,由静止释放金属棒,求金属棒下落的最大速度v1;
(2)断开开关S,由静止释放金属棒,求金属棒下落的最大速度v2;
(3)先闭合开关S,由静止释放金属棒,金属棒达到最大速度后,再断开开关S。忽略回路中电流突变的时间,求S断开瞬间金属棒的加速度大小a。
19.(2021·海南)如图,间距为l的光滑平行金属导轨,水平放置在方向竖直向下的匀强磁场中,磁场的磁感应强度大小为B,导轨左端接有阻值为R的定值电阻,一质量为m的金属杆放在导轨上。金属杆在水平外力作用下以速度v0向右做匀速直线运动,此时金属杆内自由电子沿杆定向移动的速率为u0。设金属杆内做定向移动的自由电子总量保持不变,金属杆始终与导轨垂直且接触良好,除了电阻R以外不计其它电阻。
(1)求金属杆中的电流和水平外力的功率;
(2)某时刻撤去外力,经过一段时间,自由电子沿金属杆定向移动的速率变为 ,求:
(i)这段时间内电阻R上产生的焦耳热;
(ii)这段时间内一直在金属杆内的自由电子沿杆定向移动的距离。
20.(2020·浙江选考)如图1所示,在绝缘光滑水平桌面上,以O为原点、水平向右为正方向建立x轴,在 区域内存在方向竖直向上的匀强磁场。桌面上有一边长 、电阻 的正方形线框 ,当平行于磁场边界的 边进入磁场时,在沿x方向的外力F作用下以 的速度做匀速运动,直到 边进入磁场时撤去外力。若以 边进入磁场时作为计时起点,在 内磁感应强度B的大小与时间t的关系如图2所示,在 内线框始终做匀速运动。
(1)求外力F的大小;
(2)在 内存在连续变化的磁场,求磁感应强度B的大小与时间t的关系;
(3)求在 内流过导线横截面的电荷量q。
21.(2020·天津)如图所示,垂直于纸面向里的匀强磁场,磁感应强度B随时间t均匀变化。正方形硬质金属框abcd放置在磁场中,金属框平面与磁场方向垂直,电阻 ,边长 。求
(1)在 到 时间内,金属框中的感应电动势E;
(2) 时,金属框ab边受到的安培力F的大小和方向;
(3)在 到 时间内,金属框中电流的电功率P。
22.(2020·江苏)如图所示,电阻为 的正方形单匝线圈 的边长为 , 边与匀强磁场边缘重合。磁场的宽度等于线圈的边长,磁感应强度大小为 。在水平拉力作用下,线圈以 的速度向右穿过磁场区域。求线圈在上述过程中:
(1)感应电动势的大小E;
(2)所受拉力的大小F;
(3)感应电流产生的热量Q。
23.(2020·北京)如图甲所示, 匝的线圈(图中只画了2匝),电阻 ,其两端与一个 的电阻相连,线圈内有指向纸内方向的磁场。线圈中的磁通量按图乙所示规律变化。
(1)判断通过电阻 的电流方向;
(2)求线圈产生的感应电动势 ;
(3)求电阻 两端的电压 。
24.(2020·北京)某试验列车按照设定的直线运动模式,利用计算机控制制动装置,实现安全准确地进站停车。制动装置包括电气制动和机械制动两部分。图1所示为该列车在进站停车过程中设定的加速度大小 随速度 的变化曲线。
(1)求列车速度从 降至 经过的时间t及行进的距离x。
(2)有关列车电气制动,可以借助图2模型来理解。图中水平平行金属导轨处于竖直方向的匀强磁场中,回路中的电阻阻值为 ,不计金属棒 及导轨的电阻。 沿导轨向右运动的过程,对应列车的电气制动过程,可假设 棒运动的速度与列车的速度、棒的加速度与列车电气制动产生的加速度成正比。列车开始制动时,其速度和电气制动产生的加速度大小对应图1中的 点。论证电气制动产生的加速度大小随列车速度变化的关系,并在图1中画出图线。
(3)制动过程中,除机械制动和电气制动外,列车还会受到随车速减小而减小的空气阻力。分析说明列车从 减到 的过程中,在哪个速度附近所需机械制动最强
(注意:解题过程中需要用到、但题目没有给出的物理量,要在解题时做必要的说明)
四、解答题
25.(2020·新课标Ⅲ)如图,一边长为l0的正方形金属框abcd固定在水平面内,空间存在方向垂直于水平面、磁感应强度大小为B的匀强磁场。一长度大于 的均匀导体棒以速率v自左向右在金属框上匀速滑过,滑动过程中导体棒始终与ac垂直且中点位于ac上,导体棒与金属框接触良好。已知导体棒单位长度的电阻为r,金属框电阻可忽略。将导体棒与a点之间的距离记为x,求导体棒所受安培力的大小随x( )变化的关系式。
答案解析部分
1.【答案】D
【知识点】法拉第电磁感应定律
【解析】【解答】大圆产生感应电动势为,同理5个小圆产生电动势为,
由线圈的绕线方式和楞次定律可得大、小圆线圈产生的感应电流和感应电动势方向相同,故线圈中总的感应电动势大小为.
故选D。
【分析】利用法拉第电磁感应定律和楞次定律求解最终的电动势大小。
2.【答案】B
【知识点】电功率和电功;匀速圆周运动;法拉第电磁感应定律;交变电流的峰值、有效值、平均值与瞬时值
【解析】【解答】 AD、根据运动的周期性可知, 两个线圈位置的磁通量变化率都相等,根据法拉第电磁感应定律 ,因两个线圈的匝数不等,所以产生的感应电动势最大值不相等,有效值也不相等,根据,可知,两电阻的电功率也不相等,选项AD错误;
B、在匀速圆周运动中,磁铁的周期固定,则线圈产生的交流电频率也相等,故B正确;
C、电动势达到最大值时磁通量最小,结合题图可知,两个线圈的磁通量无法同时达到最大(或最小),故产生的电动势无法同时达到最大值,故C错误;
故选:B。
【分析】 ABD、匀速圆周运动的周期和频率恒定,根据法拉第电磁感应定律可定性地分析出感应电动势的大小,结合功率的公式分析出功率的关系;C、根据不同位置的磁通量的变化特点分析出线圈是否能同时达到最大值。
3.【答案】C
【知识点】全电路的功和能;欧姆定律;法拉第电磁感应定律
【解析】【解答】设圆形线框的半径为r,磁场变化情况为,导线的横截面积为,
则正方形的周长为,面积为,
圆形的周长为,面积为,
正六边形的周长为,面积为,
根据法拉第电磁感应定律可得,根据电阻定律可得,
根据欧姆定律可得,所以,,,故,
故选C。
【分析】首先算出各个图像的周长和面积,然后根据法拉第电磁感应定律,电阻定律,欧姆定律等表示出来电流的大小,最后代入面积和周长,求出电流的大小关系。
4.【答案】B
【知识点】楞次定律
【解析】【解答】无论开关S拨至哪一端,当把电路接通一瞬间,左边线圈中的电流从无到有,电流在线圈轴线上的磁场从无到有,从而引起穿过圆环的磁通量突然增大,根据楞次定律(增反减同),右边圆环中产生了与左边线圈中方向相反的电流,异向电流相互排斥,所以无论哪种情况,圆环均向右运动。
故答案为:B。
【分析】结合电流的方向判断通电螺线管产生的磁场,进而判断出圆环磁通量的变化,再利用楞次定律判断的运动方向。
5.【答案】D
【知识点】感应电动势及其产生条件
【解析】【解答】由题意可知,圆管为金属导体,导体内部自成闭合回路,且有电阻,当周围的线圈中产生出交变磁场时,就会在导体内部感应出涡电流,电流通过电阻要发热。该过程利用原理的是电磁感应现象,其发现者为法拉第。
故答案为:D。
【分析】产生感应电流的条件是,对于闭合回路中的某一部分,磁通量发生改变,磁通量变化越快,产生的感应电动势就越大,回路中产生电流,通过导体产生热量。
6.【答案】B
【知识点】法拉第电磁感应定律
【解析】【解答】A.如图所示,金属棒绕 轴切割磁感线转动,棒产生的电动势 ,A不符合题意;
B.电容器两极板间电压等于电源电动势 ,带电微粒在两极板间处于静止状态,则
即 ,B符合题意;
C.电阻消耗的功率 ,C不符合题意;
D.电容器所带的电荷量 ,D不符合题意。
故答案为:B。
【分析】闭合电路中的磁通量发生改变,回路中就会产生感应电流,利用楞次定律判断电流的流向,利用法拉第电磁感应定律求解电压的大小,再利用欧姆定律求解回路中电流的大小,通过的电荷量利用法拉第电磁感应定律和电流的定义式求解即可。
7.【答案】B
【知识点】楞次定律
【解析】【解答】AB.产生顺时针方向的感应电流则感应磁场的方向垂直纸面向里。由楞次定律可知,圆环中的净磁通量变化为向里磁通量减少或者向外的磁通量增多,A不符合题意,B符合题意。
CD.同时以相同的变化率增大B1和B2,或同时以相同的变化率较小B1和B2,两个磁场的磁通量总保持大小相同,所以总磁通量为0,不会产生感应电流,CD不符合题意。
故答案为:B。
【分析】闭合电路中的磁通量发生改变,回路中就会产生感应电流,结合电流的方向,利用楞次定律判断磁场的变化。
8.【答案】B,C
【知识点】电磁感应的发现及产生感应电流的条件;磁通量;导体切割磁感线时的感应电动势;电磁感应中的图像类问题
【解析】【解答】根据题意作出图像如图所示
在 到 的过程中,线圈转过90°,切割的有效长度先增大后减小,根据,故E先增大后减小,故A错误,B正确;
在 到 的过程中,,切割长度为,
感应电动势为,故E的变化率一直在增大,故C正确,D错误;
故选BC。
【分析】首先根据题意作出线框运动图像,然后根据图像即可判断感应电动势的变化情况。
9.【答案】B,D
【知识点】法拉第电磁感应定律
【解析】【解答】A 导体棒b与电阻R并联,根据闭合电路欧姆定律,导体棒a运动到导轨最右端时,b刚好要发生滑动,由平衡条件可知,联立解得v=3m/s,a棒离开桌面后做平抛运动,则,解得x=1.2m。故A错误。
B 导体棒做平抛运动过程中水平方向切割磁感线,且水平方向速度保持不变,所以产生的感应电动势不变,故B正确。
C a向右运动,产生的电流向里,通过导体棒b的电流方向向里,根据左手定则判断安培力方向向左,所以有向左运动的趋势,故C错误。
D 导体棒a运动过程中电路中通过的电荷量为 解得,则通过电阻R的电荷量为0.58C,故D正确。
故答案为:BD。
【分析】根据法拉第电磁感应定律导体棒切割磁感线产生感应电动势的计算方法和闭合电路欧姆定律计算求解。
10.【答案】A,C
【知识点】安培定则;楞次定律;法拉第电磁感应定律
【解析】【解答】A、依题意,M、N两点连线与长直导线平行、两点与长直导线的距离相同,根据安培定则可知,通电长直导线在M、N两点产生的磁感应强度大小相等,方向相同,故A正确;
B、根据安培定则,线圈在P点时,磁感线穿进与穿出在线圈中对称,磁通量为零;在向N点平移过程中,磁感线穿进与穿出线圈不再对称,线圈磁通量会发生变化,故B错误;
C、根据安培定则,线圈从P点竖直向上运动过程中,磁感线穿进与穿出线圈对称,线圈的磁通量始终为零,没有发生变化,线圈无感应电流,故C正确;
D、线圈从P点到M点与从P点到N点,线圈的磁通量变化量相同,依题意P点到M点所用时间较从P点到N点时间长,根据法拉第电磁感应定律,则两次的感应电动势不相等,故D错误。
故选AC。
【分析】 本题主要考查了法拉第电磁感应定律,根据磁场的分布特点结合对称性分析出不同位置的磁场特点和磁通量是否变化;分析出线圈的磁通量的变化特点,结合楞次定律判断是否产生感应电流;根据法拉第电磁感应定律分析出不同过程中产生的感应电动势的特点。
11.【答案】A,D
【知识点】法拉第电磁感应定律;导体切割磁感线时的感应电动势;电磁感应中的动力学问题
【解析】【解答】电容器相当于一个储电器,闭合开关瞬间,流过MN的电流最大,,故A正确;
开关闭合后,与R构成闭合回路,所有能量都转化为电阻中的焦耳热,根据能量守恒定律可知,最终导体棒的速度减为零,故B错误;
根据题意分析可知,导体棒先加速后减速,最终速度为零,所以当导体棒速度最大的时候,所受合力为零,即所受安培力为零,故C错误;
导体棒MN加速度阶段,由于MN反电动势存在,故MN上电流小于电阻R 上的电流,电阻R消耗电能大于MN上消耗的电能,MN减速为零的过程中,电容器的电流和导体棒的电流都流经电阻R形成各自的回路,因此可知此时也是电阻R的电流大,所以整个过程中流过R的电流都大于流过MN的电流,
故电阻R上产生的焦耳热大于导体棒MN上产生的焦耳热,故D正确;
故选AD。
【分析】首先对闭合开关后进行分析,算出流过MN电流的最大值,然后分析MN的运动情况,最后根据运动情况分析电流的关系,从而分析产生焦耳热的大小。
12.【答案】B,C
【知识点】安培力;左手定则;欧姆定律;楞次定律;法拉第电磁感应定律
【解析】【解答】AB.由图可知在0~t0时间段内产生的感应电动势为
根据闭合电路欧姆定律有此时间段的电流为
在 时磁感应强度为 ,此时安培力为
A不符合题意,B符合题意;
C.由图可知在 时,磁场方向垂直纸面向里并逐渐增大,根据楞次定律可知产生顺时针方向的电流,再由左手定则可知金属棒受到的安培力方向竖直向上,C符合题意;
D.由图可知在 时,磁场方向垂直纸面向外,金属棒向下掉的过程中磁通量增加,根据楞次定律可知金属棒中的感应电流方向向左,D不符合题意。
故答案为:BC。
【分析】根据法拉第电磁感应定律得出电动势的大小,结合闭合电路欧姆定律以及安培力的表达式得出金属棒受到的安培力大小;结合楞次定律以及左手定则判断安培力的方向。
13.【答案】B,C
【知识点】安培力;法拉第电磁感应定律
【解析】【解答】由bc边切割磁感线产生电动势,形成电流,使得导体棒MN受到向右的安培力,做加速运动,bc边受到向左的安培力,向右做加速运动。当MN运动时,金属框的bc边和导体棒MN一起切割磁感线,设导体棒MN和金属框的速度分别为 、 ,则电路中的电动势
电流中的电流
金属框和导体棒MN受到的安培力 ,与运动方向相反
,与运动方向相同
设导体棒MN和金属框的质量分别为 、 ,则对导体棒MN
对金属框
初始速度均为零,则a1从零开始逐渐增加,a2从 开始逐渐减小。当a1=a2时,相对速度
大小恒定。整个运动过程用速度时间图象描述如下。
综上可得,金属框的加速度趋于恒定值,安培力也趋于恒定值,BC选项正确;
金属框的速度会一直增大,导体棒到金属框bc边的距离也会一直增大,AD选项错误。
故答案为:BC。
【分析】产生感应电流的条件是,对于闭合回路中的某一部分,磁通量发生改变,磁通量变化越快,产生的感应电动势就越大,随着导线框速度的增加,安培力也增加,最终安培力与拉力相等,系统处于平衡状态,速度恒定,加速度为零。
14.【答案】A,C
【知识点】自感与互感
【解析】【解答】AB.由于送电线圈输入的是正弦式交变电流,是周期性变化的,因此产生的磁场也是周期性变化的,A符合题意,B不符合题意;
C.根据变压器原理,原、副线圈是通过互感现象实现能量传递,因此送电线圈和受电线圈也是通过互感现象实现能量传递,C符合题意;
D.手机与机座无需导线连接就能实现充电,但磁场能有一部分以电磁波辐射的形式损失掉,因此这样传递能量是有能量损失的,D不符合题意。
故答案为:AC。
【分析】一个圆环中电流的变化导致自身的磁通量变化,从而导致另一个圆环磁通量的变化,闭合电路中的磁通量发生改变,回路中就会产生感应电流,从而实现了能量的传递。
15.【答案】B,C
【知识点】安培力;楞次定律;法拉第电磁感应定律
【解析】【解答】AB.因为4s末bc边刚好进入磁场,可知线框的速度每秒运动一个方格,故在0~1s内只有ae边切割磁场,设方格边长为L,根据
可知电流恒定;2s末时线框在第二象限长度最长,此时有
可知
2~4s线框有一部分进入第一象限,电流减小,在4s末同理可得
综上分析可知A不符合题意,B符合题意;
CD.根据
可知在0~1s内ab边所受的安培力线性增加;1s末安培力为
在2s末可得安培力为
所以有 ;由图像可知C符合题意,D不符合题意。
故答案为:BC。
【分析】闭合电路中的磁通量发生改变,回路中就会产生感应电流,利用楞次定律判断电流的流向,利用法拉第电磁感应定律求解电压的大小,再利用欧姆定律求解回路中电流的大小;利用左手定则和公式求解安培力的方向,再结合安培力公式求解导体棒受到的安培力大小。
16.【答案】(1)M刚进入磁场时产生的感应电动势为:,
电流大小 ,
(2)① 对N由动量定理得:,,
②设两杆在磁场中相对位移为x,则,所以
两杆在磁场内刚好相撞,N到ab的最小距离为
(3)设N出磁场M速度为v1,在磁场中由动量守恒定律得,
因为两杆在磁场中相对位移为x,此时M 到cd边的距离为
若要保证M出磁场后不与N相撞,则有两种临界情况:
①M减速到时出磁场,速度刚好等于N的速度,一定不与N相撞,
对M 根据动量定理有:,,,
,此时k=2
②M运动到cd边时,恰好减速到零,则对M由动量定理有:,
,,此时k=3。
综上:M出磁场后不与N相撞条件下k的取值范围为
【知识点】法拉第电磁感应定律
【解析】【分析】(1)结合法拉第电磁感应定律和安培力公式求解。
(2)动量定理也可以求电荷量,利用法拉第电磁感应定律也可以求电荷量。
(3) 对M出磁场后不与N相撞条件进行分类讨论。
17.【答案】(1)解:在 运动过程中,由于拉力功率恒定, 做加速度逐渐减小的加速运动,速度达到最大时,加速度为零,设此时拉力的大小为F,安培力大小为 ,有
设此时回路中的感应电动势为E,由法拉第电磁感应定律,有
设回路中的感应电流为I,由闭合电路欧姆定律,有
受到的安培力
由功率表达式,有
联立上述各式,代入数据解得
(2)解: 从速度 到 的过程中,由动能定理,有
代入数据解得
【知识点】动能定理的综合应用;安培力;法拉第电磁感应定律
【解析】【分析】(1)对ab棒进行受力分析,根据正交分解和共点力平衡列方程;结合法拉第电磁感应定律以及闭合电路欧姆定律和安培力的表达式得出拉力F;结合功率的表达式得出拉力的功率;
(2)ab运动过程中根据动能定理得出 沿导轨的位移大小x。
18.【答案】(1)解:闭合开关S,金属棒下落的过程中受竖直向下的重力、竖直向上的安培力作用,当重力与安培力大小相等时,金属棒的加速度为零,速度最大,则
由法拉第电磁感应定律得
由欧姆定律得
解得
(2)解:由第(1)问得
由于
断开开关S后,当金属棒的速度达到最大时,元件Z两端的电压恒为
此时定值电阻两端的电压为
回路中的电流为
又由欧姆定律得
解得
(3)解:开关S闭合,当金属棒的速度最大时,金属棒产生的感应电动势为
断开开关S的瞬间,元件Z两端的电压为
则定值电阻两端的电压为
电路中的电流为
金属棒受到的安培力为
对金属棒由牛顿第二定律得
解得
【知识点】电路动态分析;法拉第电磁感应定律
【解析】【分析】(1)属棒在下落的过程中根据平衡以及法拉点电磁感应定律和欧姆定律得出金属棒下落的最大速度;
(2)根据(1)得出金属棒速度最大时的I,结合欧姆定律得出原件Z两端的电压,同时得出定值电阻两端的电压;根据回路中的电流并利用欧姆定律得出金属棒下落的最大速度;
(3)利用(2)可知回路中电流的表达式以及原件、定值电阻两端的电压,利用安培力表达式以及牛顿第二定律得出金属棒的加速度。
19.【答案】(1)解:金属棒切割磁感线产生的感应电动势E = Blv0
则金属杆中的电流I = =
由题知,金属杆在水平外力作用下以速度v0向右做匀速直线运动则有F = F安 = BIl = 根据功率的计算公式有P = Fv0 =
(2)解:(i)设金属杆内单位体积的自由电子数为n,金属杆的横截面积为S,则金属杆在水平外力作用下以速度v0向右做匀速直线运动时的电流由微观表示为I = nSeu0 =
则解得nSe =
此时电子沿金属杆定向移动的速率变为 ,则I′ = nSe =
解得v′ =
则能量守恒有 mv′ = mv02 - Q
解得Q = mv02
(ii)由(i)可知在这段时间内金属杆的速度由v0变到 ,则根据动量定理有 - Bql×Dt = m - mv0 = - BlnSe = - BlnSe×d(取向右为正)
由于nSe =
化简得d =
【知识点】动量定理;安培力;电功率和电功;法拉第电磁感应定律
【解析】【分析】(1)根据法拉第电磁感应定律以及闭合电路欧姆定律得出金属杆中的电流,根据安培力的表达式以及瞬时功率的计算得出水平外力的功率;
(2)根据电流的微观表达式以及能量守恒得出电阻R上产生的焦耳热;金属杆速度变化的过程中根据动量定理得出金属杆内的自由电子沿杆定向移动的距离。
20.【答案】(1)解:由图2可知 ,则回路电流
安培力
所以外力
(2)解:匀速出磁场,电流为0,磁通量不变 , 时, ,磁通量 ,则t时刻,磁通量
解得
(3)解: 电荷量
电荷量
总电荷量
【知识点】安培力;法拉第电磁感应定律
【解析】【分析】(1)利用法拉第电磁感应定律求解电压的大小,再利用欧姆定律求解回路中电流的大小;利用左手定则和公式求解安培力的方向,再结合安培力公式求解导体棒受到的安培力大小;
(2)闭合回路中的磁通量不变,回路就不会有电流,结合导线框的速度求解磁场强度的变化;
(3)通过的电荷量利用法拉第电磁感应定律和电流的定义式求解即可。
21.【答案】(1)解:设金属框中的电流为I,由闭合电路欧姆定律,有 ④
由图可知, 时,磁感应强度为 ,金属框ab边受到的安培力 ⑤
联立①②④⑤式,代入数据,解得 ⑥
方向垂直于ab向左。⑦
(2)解:
(3)解:在 到 时间内,金属框中电流的电功率

联立①②④⑧式,代入数据,解得 ⑨
【知识点】法拉第电磁感应定律
【解析】【分析】(1)利用法拉第电磁感应定律求解电压的大小,再利用欧姆定律求解回路中电流的大小;
(2)利用左手定则和公式求解安培力的方向,再结合安培力公式求解导体棒受到的安培力大小;
(3)结合电路中的电流和导线框的电阻,利用功率公式求解功率即可。
22.【答案】(1)解:由题意可知当线框切割磁感线是产生的电动势为
(2)解:因为线框匀速运动故所受拉力等于安培力,有
根据闭合电路欧姆定律有
结合(1)联立各式代入数据可得F=0.8N
(3)解:线框穿过磁场所用的时间为
故线框穿越过程产生的热量为
【知识点】法拉第电磁感应定律
【解析】【分析】(1)闭合电路中的磁通量发生改变,回路中就会产生感应电流,利用楞次定律判断电流的流向,利用法拉第电磁感应定律求解电压的大小;
(2)利用左手定则和公式求解安培力的方向,再结合安培力公式求解导体棒受到的安培力大小;
(3)结合电流大小和导线框的电阻,利用焦耳定律求解焦耳热即可。
23.【答案】(1)解:根据图像可知,线圈中垂直于纸面向里的磁场增大,为了阻碍线圈中磁通量的增大,根据楞次定律可知线圈中感应电流产生的磁场垂直于纸面向外,根据安培定则可知线圈中的感应电流为逆时针方向,所通过电阻 的电流方向为 。
(2)解:根据法拉第电磁感应定律
(3)解:电阻 两端的电压为路端电压,根据分压规律可知
【知识点】欧姆定律;法拉第电磁感应定律
【解析】【分析】(1)闭合电路中的磁通量发生改变,回路中就会产生感应电流,利用楞次定律判断电流的流向
(2)利用法拉第电磁感应定律求解电压的大小;
(3)利用欧姆定律求解回路中电流的大小,再利用部分电路欧姆定律求解外电路电压。
24.【答案】(1)解:由图1可知,列车速度从 降至 的过程加速度为0.7m/s2的匀减速直线运动,由加速度的定义式

由速度位移公式

(2)解:由MN沿导轨向右运动切割磁场线产生感应电动势
回路中感应电流
MN受到的安培力
加速度为
结合上面几式得
所以棒的加速度与棒的速度为正比例函数。又因为列车的电气制动过程,可假设MN棒运动的速度与列车的速度、棒的加速度与列车电气制动产生的加速度成正比,所以列车电气制动产生的加速度与列车的速度成正比,为过P点的正比例函数。画出的图线如下图所示。
(3)解:由(2)可知,列车速度越小,电气制动的加速度越小。由题设可知列车还会受到随车速减小而减小的空气阻力。所以电气制动和空气阻力产生的加速度都随速度的减小而减小。由图1 中,列车速度从 降至 的过程中加速度大小 随速度v减小而增大,所以列车速度从 降至 的过程中所需的机械制动逐渐变强,所以列车速度为 附近所需机械制动最强。
【知识点】安培力;匀变速直线运动导出公式应用;法拉第电磁感应定律
【解析】【分析】(1)结合物体的速度变化量以及对应的时间,利用加速度的定义式求解物体的加速度,结合物体的初末速度求解物体移动的距离;
(2)利用法拉第电磁感应定律求解电压的大小,再利用欧姆定律求解回路中电流的大小。利用左手定则和公式求解安培力的方向,再结合安培力公式求解导体棒受到的安培力大小,结合牛顿第二定律求解加速度;
(3)列车速度越小,受到的安培力越小,故列车的速度越小,机械制动应该越大。
25.【答案】解:当导体棒与金属框接触的两点间棒的长度为l时,由法第电磁感应定律可知导体棒上感应电动势的大小为
由欧姆定律可知流过导体棒的感应电流为
式中R为这一段导体棒的电阻。按题意有
此时导体棒所受安培力大小为
由题设和几何关系有
联立各式得
【知识点】安培力;法拉第电磁感应定律
【解析】【分析】利用法拉第电磁感应定律求解电压的大小,再利用欧姆定律求解回路中电流的大小;利用左手定则和公式求解安培力的方向,再结合安培力公式求解导体棒受到的安培力大小。
二一教育在线组卷平台(zujuan.21cnjy.com)自动生成 1 / 1登录二一教育在线组卷平台 助您教考全无忧
2020--2022年三年全国高考物理真题汇编:电磁感应
一、单选题
1.(2022·河北)将一根绝缘硬质细导线顺次绕成如图所示的线圈,其中大圆面积为 ,小圆面积均为 ,垂直线圈平面方向有一随时间t变化的磁场,磁感应强度大小 , 和 均为常量,则线圈中总的感应电动势大小为(  )
A. B. C. D.
【答案】D
【知识点】法拉第电磁感应定律
【解析】【解答】大圆产生感应电动势为,同理5个小圆产生电动势为,
由线圈的绕线方式和楞次定律可得大、小圆线圈产生的感应电流和感应电动势方向相同,故线圈中总的感应电动势大小为.
故选D。
【分析】利用法拉第电磁感应定律和楞次定律求解最终的电动势大小。
2.(2022·广东)如图是简化的某种旋转磁极式发电机原理图。定子是仅匝数n不同的两线圈, ,二者轴线在同一平面内且相互垂直,两线圈到其轴线交点O的距离相等,且均连接阻值为R的电阻,转子是中心在O点的条形磁铁,绕O点在该平面内匀速转动时,两线圈输出正弦式交变电流。不计线圈电阻、自感及两线圈间的相互影响,下列说法正确的是(  )
A.两线圈产生的电动势的有效值相等
B.两线圈产生的交变电流频率相等
C.两线圈产生的电动势同时达到最大值
D.两电阻消耗的电功率相等
【答案】B
【知识点】电功率和电功;匀速圆周运动;法拉第电磁感应定律;交变电流的峰值、有效值、平均值与瞬时值
【解析】【解答】 AD、根据运动的周期性可知, 两个线圈位置的磁通量变化率都相等,根据法拉第电磁感应定律 ,因两个线圈的匝数不等,所以产生的感应电动势最大值不相等,有效值也不相等,根据,可知,两电阻的电功率也不相等,选项AD错误;
B、在匀速圆周运动中,磁铁的周期固定,则线圈产生的交流电频率也相等,故B正确;
C、电动势达到最大值时磁通量最小,结合题图可知,两个线圈的磁通量无法同时达到最大(或最小),故产生的电动势无法同时达到最大值,故C错误;
故选:B。
【分析】 ABD、匀速圆周运动的周期和频率恒定,根据法拉第电磁感应定律可定性地分析出感应电动势的大小,结合功率的公式分析出功率的关系;C、根据不同位置的磁通量的变化特点分析出线圈是否能同时达到最大值。
3.(2022·全国甲卷)三个用同样的细导线做成的刚性闭合线框,正方形线框的边长与圆线框的直径相等,圆线框的半径与正六边形线框的边长相等,如图所示。把它们放入磁感应强度随时间线性变化的同一匀强磁场中,线框所在平面均与磁场方向垂直,正方形、圆形和正六边形线框中感应电流的大小分别为 和 。则(  )
A. B. C. D.
【答案】C
【知识点】全电路的功和能;欧姆定律;法拉第电磁感应定律
【解析】【解答】设圆形线框的半径为r,磁场变化情况为,导线的横截面积为,
则正方形的周长为,面积为,
圆形的周长为,面积为,
正六边形的周长为,面积为,
根据法拉第电磁感应定律可得,根据电阻定律可得,
根据欧姆定律可得,所以,,,故,
故选C。
【分析】首先算出各个图像的周长和面积,然后根据法拉第电磁感应定律,电阻定律,欧姆定律等表示出来电流的大小,最后代入面积和周长,求出电流的大小关系。
4.(2020·新课标Ⅲ)如图,水平放置的圆柱形光滑玻璃棒左边绕有一线圈,右边套有一金属圆环。圆环初始时静止。将图中开关S由断开状态拨至连接状态,电路接通的瞬间,可观察到(  )
A.拨至M端或N端,圆环都向左运动
B.拨至M端或N端,圆环都向右运动
C.拨至M端时圆环向左运动,拨至N端时向右运动
D.拨至M端时圆环向右运动,拨至N端时向左运动
【答案】B
【知识点】楞次定律
【解析】【解答】无论开关S拨至哪一端,当把电路接通一瞬间,左边线圈中的电流从无到有,电流在线圈轴线上的磁场从无到有,从而引起穿过圆环的磁通量突然增大,根据楞次定律(增反减同),右边圆环中产生了与左边线圈中方向相反的电流,异向电流相互排斥,所以无论哪种情况,圆环均向右运动。
故答案为:B。
【分析】结合电流的方向判断通电螺线管产生的磁场,进而判断出圆环磁通量的变化,再利用楞次定律判断的运动方向。
5.(2020·新课标Ⅱ)管道高频焊机可以对由钢板卷成的圆管的接缝实施焊接。焊机的原理如图所示,圆管通过一个接有高频交流电源的线圈,线圈所产生的交变磁场使圆管中产生交变电流,电流产生的热量使接缝处的材料熔化将其焊接。焊接过程中所利用的电磁学规律的发现者为(  )
A.库仑 B.霍尔 C.洛伦兹 D.法拉第
【答案】D
【知识点】感应电动势及其产生条件
【解析】【解答】由题意可知,圆管为金属导体,导体内部自成闭合回路,且有电阻,当周围的线圈中产生出交变磁场时,就会在导体内部感应出涡电流,电流通过电阻要发热。该过程利用原理的是电磁感应现象,其发现者为法拉第。
故答案为:D。
【分析】产生感应电流的条件是,对于闭合回路中的某一部分,磁通量发生改变,磁通量变化越快,产生的感应电动势就越大,回路中产生电流,通过导体产生热量。
6.(2020·浙江选考)如图所示,固定在水平面上的半径为r的金属圆环内存在方向竖直向上、磁感应强度大小为B的匀强磁场。长为l的金属棒,一端与圆环接触良好,另一端固定在竖直导电转轴 OO' 上,随轴以角速度ω匀速转动。在圆环的A点和电刷间接有阻值为R的电阻和电容为C、板间距为d的平行板电容器,有一带电微粒在电容器极板间处于静止状态。已知重力加速度为g,不计其它电阻和摩擦,下列说法正确的是(  )
A.棒产生的电动势为
B.微粒的电荷量与质量之比为
C.电阻消耗的电功率为
D.电容器所带的电荷量为
【答案】B
【知识点】法拉第电磁感应定律
【解析】【解答】A.如图所示,金属棒绕 轴切割磁感线转动,棒产生的电动势 ,A不符合题意;
B.电容器两极板间电压等于电源电动势 ,带电微粒在两极板间处于静止状态,则
即 ,B符合题意;
C.电阻消耗的功率 ,C不符合题意;
D.电容器所带的电荷量 ,D不符合题意。
故答案为:B。
【分析】闭合电路中的磁通量发生改变,回路中就会产生感应电流,利用楞次定律判断电流的流向,利用法拉第电磁感应定律求解电压的大小,再利用欧姆定律求解回路中电流的大小,通过的电荷量利用法拉第电磁感应定律和电流的定义式求解即可。
7.(2020·江苏)如图所示,两匀强磁场的磁感应强度B1和B2大小相等、方向相反。金属圆环的直径与两磁场的边界重合。下列变化会在环中产生顺时针方向感应电流的是(  )

A.同时增大B1减小B2
B.同时减小B1增大B2
C.同时以相同的变化率增大B1和B2
D.同时以相同的变化率减小B1和B2
【答案】B
【知识点】楞次定律
【解析】【解答】AB.产生顺时针方向的感应电流则感应磁场的方向垂直纸面向里。由楞次定律可知,圆环中的净磁通量变化为向里磁通量减少或者向外的磁通量增多,A不符合题意,B符合题意。
CD.同时以相同的变化率增大B1和B2,或同时以相同的变化率较小B1和B2,两个磁场的磁通量总保持大小相同,所以总磁通量为0,不会产生感应电流,CD不符合题意。
故答案为:B。
【分析】闭合电路中的磁通量发生改变,回路中就会产生感应电流,结合电流的方向,利用楞次定律判断磁场的变化。
二、多选题
8.(2022·山东)如图所示, 平面的第一、三象限内以坐标原点O为圆心、半径为 的扇形区域充满方向垂直纸面向外的匀强磁场.边长为L的正方形金属框绕其始终在O点的顶点、在 平面内以角速度 顺时针匀速转动. 时刻,金属框开始进入第一象限.不考虑自感影响,关于金属框中感应电动势E随时间t变化规律的描述正确的是(  )
A.在 到 的过程中,E一直增大
B.在 到 的过程中,E先增大后减小
C.在 到 的过程中,E的变化率一直增大
D.在 到 的过程中,E的变化率一直减小
【答案】B,C
【知识点】电磁感应的发现及产生感应电流的条件;磁通量;导体切割磁感线时的感应电动势;电磁感应中的图像类问题
【解析】【解答】根据题意作出图像如图所示
在 到 的过程中,线圈转过90°,切割的有效长度先增大后减小,根据,故E先增大后减小,故A错误,B正确;
在 到 的过程中,,切割长度为,
感应电动势为,故E的变化率一直在增大,故C正确,D错误;
故选BC。
【分析】首先根据题意作出线框运动图像,然后根据图像即可判断感应电动势的变化情况。
9.(2022·湖南)如图,间距 的U形金属导轨,一端接有 的定值电阻 ,固定在高 的绝缘水平桌面上。质量均为 的匀质导体棒a和b静止在导轨上,两导体棒与导轨接触良好且始终与导轨垂直,接入电路的阻值均为 ,与导轨间的动摩擦因数均为0.1(设最大静摩擦力等于滑动摩擦力),导体棒 距离导轨最右端 。整个空间存在竖直向下的匀强磁场(图中未画出),磁感应强度大小为 。用 沿导轨水平向右的恒力拉导体棒a,当导体棒a运动到导轨最右端时,导体棒b刚要滑动,撤去 ,导体棒a离开导轨后落到水平地面上。重力加速度取 ,不计空气阻力,不计其他电阻,下列说法正确的是(  )
A.导体棒a离开导轨至落地过程中,水平位移为
B.导体棒a离开导轨至落地前,其感应电动势不变
C.导体棒a在导轨上运动的过程中,导体棒b有向右运动的趋势
D.导体棒a在导轨上运动的过程中,通过电阻 的电荷量为
【答案】B,D
【知识点】法拉第电磁感应定律
【解析】【解答】A 导体棒b与电阻R并联,根据闭合电路欧姆定律,导体棒a运动到导轨最右端时,b刚好要发生滑动,由平衡条件可知,联立解得v=3m/s,a棒离开桌面后做平抛运动,则,解得x=1.2m。故A错误。
B 导体棒做平抛运动过程中水平方向切割磁感线,且水平方向速度保持不变,所以产生的感应电动势不变,故B正确。
C a向右运动,产生的电流向里,通过导体棒b的电流方向向里,根据左手定则判断安培力方向向左,所以有向左运动的趋势,故C错误。
D 导体棒a运动过程中电路中通过的电荷量为 解得,则通过电阻R的电荷量为0.58C,故D正确。
故答案为:BD。
【分析】根据法拉第电磁感应定律导体棒切割磁感线产生感应电动势的计算方法和闭合电路欧姆定律计算求解。
10.(2022·广东)如图所示,水平地面( 平面)下有一根平行于y轴且通有恒定电流I的长直导线。P、M和N为地面上的三点,P点位于导线正上方,MN平行于y轴,PN平行于x轴。一闭合的圆形金属线圈,圆心在P点,可沿不同方向以相同的速率做匀速直线运动,运动过程中线圈平面始终与地面平行。下列说法正确的有(  )
A.N点与M点的磁感应强度大小相等,方向相同
B.线圈沿PN方向运动时,穿过线圈的磁通量不变
C.线圈从P点开始竖直向上运动时,线圈中无感应电流
D.线圈从P到M过程的感应电动势与从P到N过程的感应电动势相等
【答案】A,C
【知识点】安培定则;楞次定律;法拉第电磁感应定律
【解析】【解答】A、依题意,M、N两点连线与长直导线平行、两点与长直导线的距离相同,根据安培定则可知,通电长直导线在M、N两点产生的磁感应强度大小相等,方向相同,故A正确;
B、根据安培定则,线圈在P点时,磁感线穿进与穿出在线圈中对称,磁通量为零;在向N点平移过程中,磁感线穿进与穿出线圈不再对称,线圈磁通量会发生变化,故B错误;
C、根据安培定则,线圈从P点竖直向上运动过程中,磁感线穿进与穿出线圈对称,线圈的磁通量始终为零,没有发生变化,线圈无感应电流,故C正确;
D、线圈从P点到M点与从P点到N点,线圈的磁通量变化量相同,依题意P点到M点所用时间较从P点到N点时间长,根据法拉第电磁感应定律,则两次的感应电动势不相等,故D错误。
故选AC。
【分析】 本题主要考查了法拉第电磁感应定律,根据磁场的分布特点结合对称性分析出不同位置的磁场特点和磁通量是否变化;分析出线圈的磁通量的变化特点,结合楞次定律判断是否产生感应电流;根据法拉第电磁感应定律分析出不同过程中产生的感应电动势的特点。
11.(2022·全国甲卷)如图,两根相互平行的光滑长直金属导轨固定在水平绝缘桌面上,在导轨的左端接入电容为C的电容器和阻值为R的电阻。质量为m、阻值也为R的导体棒MN静止于导轨上,与导轨垂直,且接触良好,导轨电阻忽略不计,整个系统处于方向竖直向下的匀强磁场中。开始时,电容器所带的电荷量为Q,合上开关S后,(  )
A.通过导体棒 电流的最大值为
B.导体棒MN向右先加速、后匀速运动
C.导体棒 速度最大时所受的安培力也最大
D.电阻R上产生的焦耳热大于导体棒 上产生的焦耳热
【答案】A,D
【知识点】法拉第电磁感应定律;导体切割磁感线时的感应电动势;电磁感应中的动力学问题
【解析】【解答】电容器相当于一个储电器,闭合开关瞬间,流过MN的电流最大,,故A正确;
开关闭合后,与R构成闭合回路,所有能量都转化为电阻中的焦耳热,根据能量守恒定律可知,最终导体棒的速度减为零,故B错误;
根据题意分析可知,导体棒先加速后减速,最终速度为零,所以当导体棒速度最大的时候,所受合力为零,即所受安培力为零,故C错误;
导体棒MN加速度阶段,由于MN反电动势存在,故MN上电流小于电阻R 上的电流,电阻R消耗电能大于MN上消耗的电能,MN减速为零的过程中,电容器的电流和导体棒的电流都流经电阻R形成各自的回路,因此可知此时也是电阻R的电流大,所以整个过程中流过R的电流都大于流过MN的电流,
故电阻R上产生的焦耳热大于导体棒MN上产生的焦耳热,故D正确;
故选AD。
【分析】首先对闭合开关后进行分析,算出流过MN电流的最大值,然后分析MN的运动情况,最后根据运动情况分析电流的关系,从而分析产生焦耳热的大小。
12.(2021·辽宁)如图(a)所示,两根间距为L、足够长的光滑平行金属导轨竖直放置并固定,顶端接有阻值为R的电阻,垂直导轨平面存在变化规律如图(b)所示的匀强磁场,t=0时磁场方向垂直纸面向里。在t=0到t=2t0的时间内,金属棒水平固定在距导轨顶端L处;t=2t0时,释放金属棒。整个过程中金属棒与导轨接触良好,导轨与金属棒的电阻不计,则(  )
A.在 时,金属棒受到安培力的大小为
B.在t=t0时,金属棒中电流的大小为
C.在 时,金属棒受到安培力的方向竖直向上
D.在t=3t0时,金属棒中电流的方向向右
【答案】B,C
【知识点】安培力;左手定则;欧姆定律;楞次定律;法拉第电磁感应定律
【解析】【解答】AB.由图可知在0~t0时间段内产生的感应电动势为
根据闭合电路欧姆定律有此时间段的电流为
在 时磁感应强度为 ,此时安培力为
A不符合题意,B符合题意;
C.由图可知在 时,磁场方向垂直纸面向里并逐渐增大,根据楞次定律可知产生顺时针方向的电流,再由左手定则可知金属棒受到的安培力方向竖直向上,C符合题意;
D.由图可知在 时,磁场方向垂直纸面向外,金属棒向下掉的过程中磁通量增加,根据楞次定律可知金属棒中的感应电流方向向左,D不符合题意。
故答案为:BC。
【分析】根据法拉第电磁感应定律得出电动势的大小,结合闭合电路欧姆定律以及安培力的表达式得出金属棒受到的安培力大小;结合楞次定律以及左手定则判断安培力的方向。
13.(2020·新课标Ⅰ)如图,U形光滑金属框abcd置于水平绝缘平台上,ab和dc边平行,和bc边垂直。ab、dc足够长,整个金属框电阻可忽略。一根具有一定电阻的导体棒MN置于金属框上,用水平恒力F向右拉动金属框,运动过程中,装置始终处于竖直向下的匀强磁场中,MN与金属框保持良好接触,且与bc边保持平行。经过一段时间后(  )
A.金属框的速度大小趋于恒定值
B.金属框的加速度大小趋于恒定值
C.导体棒所受安培力的大小趋于恒定值
D.导体棒到金属框bc边的距离趋于恒定值
【答案】B,C
【知识点】安培力;法拉第电磁感应定律
【解析】【解答】由bc边切割磁感线产生电动势,形成电流,使得导体棒MN受到向右的安培力,做加速运动,bc边受到向左的安培力,向右做加速运动。当MN运动时,金属框的bc边和导体棒MN一起切割磁感线,设导体棒MN和金属框的速度分别为 、 ,则电路中的电动势
电流中的电流
金属框和导体棒MN受到的安培力 ,与运动方向相反
,与运动方向相同
设导体棒MN和金属框的质量分别为 、 ,则对导体棒MN
对金属框
初始速度均为零,则a1从零开始逐渐增加,a2从 开始逐渐减小。当a1=a2时,相对速度
大小恒定。整个运动过程用速度时间图象描述如下。
综上可得,金属框的加速度趋于恒定值,安培力也趋于恒定值,BC选项正确;
金属框的速度会一直增大,导体棒到金属框bc边的距离也会一直增大,AD选项错误。
故答案为:BC。
【分析】产生感应电流的条件是,对于闭合回路中的某一部分,磁通量发生改变,磁通量变化越快,产生的感应电动势就越大,随着导线框速度的增加,安培力也增加,最终安培力与拉力相等,系统处于平衡状态,速度恒定,加速度为零。
14.(2020·天津)手机无线充电是比较新颖的充电方式。如图所示,电磁感应式无线充电的原理与变压器类似,通过分别安装在充电基座和接收能量装置上的线圈,利用产生的磁场传递能量。当充电基座上的送电线圈通入正弦式交变电流后,就会在邻近的受电线圈中感应出电流,最终实现为手机电池充电。在充电过程中(  )
A.送电线圈中电流产生的磁场呈周期性变化
B.受电线圈中感应电流产生的磁场恒定不变
C.送电线圈和受电线圈通过互感现象实现能量传递
D.手机和基座无需导线连接,这样传递能量没有损失
【答案】A,C
【知识点】自感与互感
【解析】【解答】AB.由于送电线圈输入的是正弦式交变电流,是周期性变化的,因此产生的磁场也是周期性变化的,A符合题意,B不符合题意;
C.根据变压器原理,原、副线圈是通过互感现象实现能量传递,因此送电线圈和受电线圈也是通过互感现象实现能量传递,C符合题意;
D.手机与机座无需导线连接就能实现充电,但磁场能有一部分以电磁波辐射的形式损失掉,因此这样传递能量是有能量损失的,D不符合题意。
故答案为:AC。
【分析】一个圆环中电流的变化导致自身的磁通量变化,从而导致另一个圆环磁通量的变化,闭合电路中的磁通量发生改变,回路中就会产生感应电流,从而实现了能量的传递。
15.(2020·新高考Ⅰ)如图所示,平面直角坐标系的第一和第二象限分别存在磁感应强度大小相等、方向相反且垂直于坐标平面的匀强磁场,图中虚线方格为等大正方形。一位于Oxy平面内的刚性导体框abcde在外力作用下以恒定速度沿y轴正方向运动(不发生转动)。从图示位置开始计时,4s末bc边刚好进入磁场。在此过程中,导体框内感应电流的大小为I, ab边所受安培力的大小为Fab,二者与时间t的关系图像,可能正确的是(  )
A. B.
C. D.
【答案】B,C
【知识点】安培力;楞次定律;法拉第电磁感应定律
【解析】【解答】AB.因为4s末bc边刚好进入磁场,可知线框的速度每秒运动一个方格,故在0~1s内只有ae边切割磁场,设方格边长为L,根据
可知电流恒定;2s末时线框在第二象限长度最长,此时有
可知
2~4s线框有一部分进入第一象限,电流减小,在4s末同理可得
综上分析可知A不符合题意,B符合题意;
CD.根据
可知在0~1s内ab边所受的安培力线性增加;1s末安培力为
在2s末可得安培力为
所以有 ;由图像可知C符合题意,D不符合题意。
故答案为:BC。
【分析】闭合电路中的磁通量发生改变,回路中就会产生感应电流,利用楞次定律判断电流的流向,利用法拉第电磁感应定律求解电压的大小,再利用欧姆定律求解回路中电流的大小;利用左手定则和公式求解安培力的方向,再结合安培力公式求解导体棒受到的安培力大小。
三、综合题
16.(2022·辽宁)如图所示,两平行光滑长直金属导轨水平放置,间距为L。 区域有匀强磁场,磁感应强度大小为B,方向竖直向上。初始时刻,磁场外的细金属杆M以初速度 向右运动,磁场内的细金属杆N处于静止状态。两金属杆与导轨接触良好且运动过程中始终与导轨垂直。两杆的质量均为m,在导轨间的电阻均为R,感应电流产生的磁场及导轨的电阻忽略不计。
(1)求M刚进入磁场时受到的安培力F的大小和方向;
(2)若两杆在磁场内未相撞且N出磁场时的速度为 ,求:①N在磁场内运动过程中通过回路的电荷量q;②初始时刻N到 的最小距离x;
(3)初始时刻,若N到 的距离与第(2)问初始时刻的相同、到 的距离为 ,求M出磁场后不与N相撞条件下k的取值范围。
【答案】(1)M刚进入磁场时产生的感应电动势为:,
电流大小 ,
(2)① 对N由动量定理得:,,
②设两杆在磁场中相对位移为x,则,所以
两杆在磁场内刚好相撞,N到ab的最小距离为
(3)设N出磁场M速度为v1,在磁场中由动量守恒定律得,
因为两杆在磁场中相对位移为x,此时M 到cd边的距离为
若要保证M出磁场后不与N相撞,则有两种临界情况:
①M减速到时出磁场,速度刚好等于N的速度,一定不与N相撞,
对M 根据动量定理有:,,,
,此时k=2
②M运动到cd边时,恰好减速到零,则对M由动量定理有:,
,,此时k=3。
综上:M出磁场后不与N相撞条件下k的取值范围为
【知识点】法拉第电磁感应定律
【解析】【分析】(1)结合法拉第电磁感应定律和安培力公式求解。
(2)动量定理也可以求电荷量,利用法拉第电磁感应定律也可以求电荷量。
(3) 对M出磁场后不与N相撞条件进行分类讨论。
17.(2021·天津)如图所示,两根足够长的平行光滑金属导轨 、 间距 ,其电阻不计,两导轨及其构成的平面均与水平面成 角,N、Q两端接有 的电阻。一金属棒 垂直导轨放置, 两端与导轨始终有良好接触,已知 的质量 ,电阻 ,整个装置处在垂直于导轨平面向上的匀强磁场中,磁感应强度大小 。 在平行于导轨向上的拉力作用下,以初速度 沿导轨向上开始运动,可达到最大速度 。运动过程中拉力的功率恒定不变,重力加速度 。
(1)求拉力的功率P;
(2) 开始运动后,经 速度达到 ,此过程中 克服安培力做功 ,求该过程中 沿导轨的位移大小x。
【答案】(1)解:在 运动过程中,由于拉力功率恒定, 做加速度逐渐减小的加速运动,速度达到最大时,加速度为零,设此时拉力的大小为F,安培力大小为 ,有
设此时回路中的感应电动势为E,由法拉第电磁感应定律,有
设回路中的感应电流为I,由闭合电路欧姆定律,有
受到的安培力
由功率表达式,有
联立上述各式,代入数据解得
(2)解: 从速度 到 的过程中,由动能定理,有
代入数据解得
【知识点】动能定理的综合应用;安培力;法拉第电磁感应定律
【解析】【分析】(1)对ab棒进行受力分析,根据正交分解和共点力平衡列方程;结合法拉第电磁感应定律以及闭合电路欧姆定律和安培力的表达式得出拉力F;结合功率的表达式得出拉力的功率;
(2)ab运动过程中根据动能定理得出 沿导轨的位移大小x。
18.(2021·湖北)如图(a)所示,两根不计电阻、间距为L的足够长平行光滑金属导轨,竖直固定在匀强磁场中,磁场方向垂直于导轨平面向里,磁感应强度大小为B。导轨上端串联非线性电子元件Z和阻值为R的电阻。元件Z的 图像如图(b)所示,当流过元件Z的电流大于或等于 时,电压稳定为Um。质量为m、不计电阻的金属棒可沿导轨运动,运动中金属棒始终水平且与导轨保持良好接触。忽略空气阻力及回路中的电流对原磁场的影响,重力加速度大小为g。为了方便计算,取 , 。以下计算结果只能选用m、g、B、L、R表示。
(1)闭合开关S,由静止释放金属棒,求金属棒下落的最大速度v1;
(2)断开开关S,由静止释放金属棒,求金属棒下落的最大速度v2;
(3)先闭合开关S,由静止释放金属棒,金属棒达到最大速度后,再断开开关S。忽略回路中电流突变的时间,求S断开瞬间金属棒的加速度大小a。
【答案】(1)解:闭合开关S,金属棒下落的过程中受竖直向下的重力、竖直向上的安培力作用,当重力与安培力大小相等时,金属棒的加速度为零,速度最大,则
由法拉第电磁感应定律得
由欧姆定律得
解得
(2)解:由第(1)问得
由于
断开开关S后,当金属棒的速度达到最大时,元件Z两端的电压恒为
此时定值电阻两端的电压为
回路中的电流为
又由欧姆定律得
解得
(3)解:开关S闭合,当金属棒的速度最大时,金属棒产生的感应电动势为
断开开关S的瞬间,元件Z两端的电压为
则定值电阻两端的电压为
电路中的电流为
金属棒受到的安培力为
对金属棒由牛顿第二定律得
解得
【知识点】电路动态分析;法拉第电磁感应定律
【解析】【分析】(1)属棒在下落的过程中根据平衡以及法拉点电磁感应定律和欧姆定律得出金属棒下落的最大速度;
(2)根据(1)得出金属棒速度最大时的I,结合欧姆定律得出原件Z两端的电压,同时得出定值电阻两端的电压;根据回路中的电流并利用欧姆定律得出金属棒下落的最大速度;
(3)利用(2)可知回路中电流的表达式以及原件、定值电阻两端的电压,利用安培力表达式以及牛顿第二定律得出金属棒的加速度。
19.(2021·海南)如图,间距为l的光滑平行金属导轨,水平放置在方向竖直向下的匀强磁场中,磁场的磁感应强度大小为B,导轨左端接有阻值为R的定值电阻,一质量为m的金属杆放在导轨上。金属杆在水平外力作用下以速度v0向右做匀速直线运动,此时金属杆内自由电子沿杆定向移动的速率为u0。设金属杆内做定向移动的自由电子总量保持不变,金属杆始终与导轨垂直且接触良好,除了电阻R以外不计其它电阻。
(1)求金属杆中的电流和水平外力的功率;
(2)某时刻撤去外力,经过一段时间,自由电子沿金属杆定向移动的速率变为 ,求:
(i)这段时间内电阻R上产生的焦耳热;
(ii)这段时间内一直在金属杆内的自由电子沿杆定向移动的距离。
【答案】(1)解:金属棒切割磁感线产生的感应电动势E = Blv0
则金属杆中的电流I = =
由题知,金属杆在水平外力作用下以速度v0向右做匀速直线运动则有F = F安 = BIl = 根据功率的计算公式有P = Fv0 =
(2)解:(i)设金属杆内单位体积的自由电子数为n,金属杆的横截面积为S,则金属杆在水平外力作用下以速度v0向右做匀速直线运动时的电流由微观表示为I = nSeu0 =
则解得nSe =
此时电子沿金属杆定向移动的速率变为 ,则I′ = nSe =
解得v′ =
则能量守恒有 mv′ = mv02 - Q
解得Q = mv02
(ii)由(i)可知在这段时间内金属杆的速度由v0变到 ,则根据动量定理有 - Bql×Dt = m - mv0 = - BlnSe = - BlnSe×d(取向右为正)
由于nSe =
化简得d =
【知识点】动量定理;安培力;电功率和电功;法拉第电磁感应定律
【解析】【分析】(1)根据法拉第电磁感应定律以及闭合电路欧姆定律得出金属杆中的电流,根据安培力的表达式以及瞬时功率的计算得出水平外力的功率;
(2)根据电流的微观表达式以及能量守恒得出电阻R上产生的焦耳热;金属杆速度变化的过程中根据动量定理得出金属杆内的自由电子沿杆定向移动的距离。
20.(2020·浙江选考)如图1所示,在绝缘光滑水平桌面上,以O为原点、水平向右为正方向建立x轴,在 区域内存在方向竖直向上的匀强磁场。桌面上有一边长 、电阻 的正方形线框 ,当平行于磁场边界的 边进入磁场时,在沿x方向的外力F作用下以 的速度做匀速运动,直到 边进入磁场时撤去外力。若以 边进入磁场时作为计时起点,在 内磁感应强度B的大小与时间t的关系如图2所示,在 内线框始终做匀速运动。
(1)求外力F的大小;
(2)在 内存在连续变化的磁场,求磁感应强度B的大小与时间t的关系;
(3)求在 内流过导线横截面的电荷量q。
【答案】(1)解:由图2可知 ,则回路电流
安培力
所以外力
(2)解:匀速出磁场,电流为0,磁通量不变 , 时, ,磁通量 ,则t时刻,磁通量
解得
(3)解: 电荷量
电荷量
总电荷量
【知识点】安培力;法拉第电磁感应定律
【解析】【分析】(1)利用法拉第电磁感应定律求解电压的大小,再利用欧姆定律求解回路中电流的大小;利用左手定则和公式求解安培力的方向,再结合安培力公式求解导体棒受到的安培力大小;
(2)闭合回路中的磁通量不变,回路就不会有电流,结合导线框的速度求解磁场强度的变化;
(3)通过的电荷量利用法拉第电磁感应定律和电流的定义式求解即可。
21.(2020·天津)如图所示,垂直于纸面向里的匀强磁场,磁感应强度B随时间t均匀变化。正方形硬质金属框abcd放置在磁场中,金属框平面与磁场方向垂直,电阻 ,边长 。求
(1)在 到 时间内,金属框中的感应电动势E;
(2) 时,金属框ab边受到的安培力F的大小和方向;
(3)在 到 时间内,金属框中电流的电功率P。
【答案】(1)解:设金属框中的电流为I,由闭合电路欧姆定律,有 ④
由图可知, 时,磁感应强度为 ,金属框ab边受到的安培力 ⑤
联立①②④⑤式,代入数据,解得 ⑥
方向垂直于ab向左。⑦
(2)解:
(3)解:在 到 时间内,金属框中电流的电功率

联立①②④⑧式,代入数据,解得 ⑨
【知识点】法拉第电磁感应定律
【解析】【分析】(1)利用法拉第电磁感应定律求解电压的大小,再利用欧姆定律求解回路中电流的大小;
(2)利用左手定则和公式求解安培力的方向,再结合安培力公式求解导体棒受到的安培力大小;
(3)结合电路中的电流和导线框的电阻,利用功率公式求解功率即可。
22.(2020·江苏)如图所示,电阻为 的正方形单匝线圈 的边长为 , 边与匀强磁场边缘重合。磁场的宽度等于线圈的边长,磁感应强度大小为 。在水平拉力作用下,线圈以 的速度向右穿过磁场区域。求线圈在上述过程中:
(1)感应电动势的大小E;
(2)所受拉力的大小F;
(3)感应电流产生的热量Q。
【答案】(1)解:由题意可知当线框切割磁感线是产生的电动势为
(2)解:因为线框匀速运动故所受拉力等于安培力,有
根据闭合电路欧姆定律有
结合(1)联立各式代入数据可得F=0.8N
(3)解:线框穿过磁场所用的时间为
故线框穿越过程产生的热量为
【知识点】法拉第电磁感应定律
【解析】【分析】(1)闭合电路中的磁通量发生改变,回路中就会产生感应电流,利用楞次定律判断电流的流向,利用法拉第电磁感应定律求解电压的大小;
(2)利用左手定则和公式求解安培力的方向,再结合安培力公式求解导体棒受到的安培力大小;
(3)结合电流大小和导线框的电阻,利用焦耳定律求解焦耳热即可。
23.(2020·北京)如图甲所示, 匝的线圈(图中只画了2匝),电阻 ,其两端与一个 的电阻相连,线圈内有指向纸内方向的磁场。线圈中的磁通量按图乙所示规律变化。
(1)判断通过电阻 的电流方向;
(2)求线圈产生的感应电动势 ;
(3)求电阻 两端的电压 。
【答案】(1)解:根据图像可知,线圈中垂直于纸面向里的磁场增大,为了阻碍线圈中磁通量的增大,根据楞次定律可知线圈中感应电流产生的磁场垂直于纸面向外,根据安培定则可知线圈中的感应电流为逆时针方向,所通过电阻 的电流方向为 。
(2)解:根据法拉第电磁感应定律
(3)解:电阻 两端的电压为路端电压,根据分压规律可知
【知识点】欧姆定律;法拉第电磁感应定律
【解析】【分析】(1)闭合电路中的磁通量发生改变,回路中就会产生感应电流,利用楞次定律判断电流的流向
(2)利用法拉第电磁感应定律求解电压的大小;
(3)利用欧姆定律求解回路中电流的大小,再利用部分电路欧姆定律求解外电路电压。
24.(2020·北京)某试验列车按照设定的直线运动模式,利用计算机控制制动装置,实现安全准确地进站停车。制动装置包括电气制动和机械制动两部分。图1所示为该列车在进站停车过程中设定的加速度大小 随速度 的变化曲线。
(1)求列车速度从 降至 经过的时间t及行进的距离x。
(2)有关列车电气制动,可以借助图2模型来理解。图中水平平行金属导轨处于竖直方向的匀强磁场中,回路中的电阻阻值为 ,不计金属棒 及导轨的电阻。 沿导轨向右运动的过程,对应列车的电气制动过程,可假设 棒运动的速度与列车的速度、棒的加速度与列车电气制动产生的加速度成正比。列车开始制动时,其速度和电气制动产生的加速度大小对应图1中的 点。论证电气制动产生的加速度大小随列车速度变化的关系,并在图1中画出图线。
(3)制动过程中,除机械制动和电气制动外,列车还会受到随车速减小而减小的空气阻力。分析说明列车从 减到 的过程中,在哪个速度附近所需机械制动最强
(注意:解题过程中需要用到、但题目没有给出的物理量,要在解题时做必要的说明)
【答案】(1)解:由图1可知,列车速度从 降至 的过程加速度为0.7m/s2的匀减速直线运动,由加速度的定义式

由速度位移公式

(2)解:由MN沿导轨向右运动切割磁场线产生感应电动势
回路中感应电流
MN受到的安培力
加速度为
结合上面几式得
所以棒的加速度与棒的速度为正比例函数。又因为列车的电气制动过程,可假设MN棒运动的速度与列车的速度、棒的加速度与列车电气制动产生的加速度成正比,所以列车电气制动产生的加速度与列车的速度成正比,为过P点的正比例函数。画出的图线如下图所示。
(3)解:由(2)可知,列车速度越小,电气制动的加速度越小。由题设可知列车还会受到随车速减小而减小的空气阻力。所以电气制动和空气阻力产生的加速度都随速度的减小而减小。由图1 中,列车速度从 降至 的过程中加速度大小 随速度v减小而增大,所以列车速度从 降至 的过程中所需的机械制动逐渐变强,所以列车速度为 附近所需机械制动最强。
【知识点】安培力;匀变速直线运动导出公式应用;法拉第电磁感应定律
【解析】【分析】(1)结合物体的速度变化量以及对应的时间,利用加速度的定义式求解物体的加速度,结合物体的初末速度求解物体移动的距离;
(2)利用法拉第电磁感应定律求解电压的大小,再利用欧姆定律求解回路中电流的大小。利用左手定则和公式求解安培力的方向,再结合安培力公式求解导体棒受到的安培力大小,结合牛顿第二定律求解加速度;
(3)列车速度越小,受到的安培力越小,故列车的速度越小,机械制动应该越大。
四、解答题
25.(2020·新课标Ⅲ)如图,一边长为l0的正方形金属框abcd固定在水平面内,空间存在方向垂直于水平面、磁感应强度大小为B的匀强磁场。一长度大于 的均匀导体棒以速率v自左向右在金属框上匀速滑过,滑动过程中导体棒始终与ac垂直且中点位于ac上,导体棒与金属框接触良好。已知导体棒单位长度的电阻为r,金属框电阻可忽略。将导体棒与a点之间的距离记为x,求导体棒所受安培力的大小随x( )变化的关系式。
【答案】解:当导体棒与金属框接触的两点间棒的长度为l时,由法第电磁感应定律可知导体棒上感应电动势的大小为
由欧姆定律可知流过导体棒的感应电流为
式中R为这一段导体棒的电阻。按题意有
此时导体棒所受安培力大小为
由题设和几何关系有
联立各式得
【知识点】安培力;法拉第电磁感应定律
【解析】【分析】利用法拉第电磁感应定律求解电压的大小,再利用欧姆定律求解回路中电流的大小;利用左手定则和公式求解安培力的方向,再结合安培力公式求解导体棒受到的安培力大小。
二一教育在线组卷平台(zujuan.21cnjy.com)自动生成 1 / 1
同课章节目录