2013年高考真题解析——全国卷Ⅰ(理综物理)纯word版

文档属性

名称 2013年高考真题解析——全国卷Ⅰ(理综物理)纯word版
格式 zip
文件大小 3.8MB
资源类型 教案
版本资源 人教版(新课程标准)
科目 物理
更新时间 2013-07-17 16:45:26

图片预览

文档简介

2013·新课标全国Ⅰ(理综物理)
一、选择题:本题共13小题,每小题6分.在每小题给出的四个选项中,只有一项是符合题目要求的.
14. 下图是伽利略1604年做斜面实验时的一页手稿照片,照片左上角的三列数据如下表.表中第二列是时间,第三列是物体沿斜面运动的距离,第一列是伽利略在分析实验数据时添加的.根据表中的数据,伽利略可以得出的结论是(  )
     
1
1
32
4
2
130
9
3
298
16
4
526
25
5
824
36
6
1192
49
7
1600
64
8
2104
A.物体具有惯性
B.斜面倾角一定时,加速度与质量无关
C.物体运动的距离与时间的平方成正比
D.物体运动的加速度与重力加速度成正比
14.C [解析] 通过第三列的数据可看出:130大概是32的4倍,而298大概是32的9倍…….依次类推,可看出物体运动的距离与时间的平方成正比,即C正确.
15. 如图,一半径为R的圆盘上均匀分布着电荷量为Q的电荷,在垂直于圆盘且过圆心c的轴线上有a、b、d三个点,a和b、b和c、c和d间的距离均为R,在a点处有一电荷量为q(q>0)的固定点电荷.已知b点处的场强为零,则d点处场强的大小为(k为静电力常量)(  )
A.k        B.k
C.k D.k
15.B [解析] 考查真空中点电荷的场强公式及场强的叠加.由题意,b点处的场强为零说明点电荷q和圆盘在b点产生的场强等大反向,即圆盘在距离为R的b点产生的场强为EQ=,故圆盘在距离为R的d 点产生的场强也为EQ=,点电荷q在d点产生的场强Eq=,方向与圆盘在d点产生的场强方向相同,d点的合场强为二者之和,即E合=+=,B正确.
16. 一水平放置的平行板电容器的两极板间距为d,极板分别与电池两极相连,上极板中心有一小孔(小孔对电场的影响可忽略不计).小孔正上方处的P点有一带电粒子,该粒子从静止开始下落,经过小孔进入电容器,并在下极板处(未与极板接触)返回.若将下极板向上平移,则从P点开始下落的相同粒子将(  )
A.打到下极板上
B.在下极板处返回
C.在距上极板处返回
D.在距上极板d处返回
16.D [解析] 考查带电粒子在平行板电容器中的直线运动.设电池的电压为U,由于前后两次平行板均与电池相连,则前后两次平行板电容器板间的电压不变.设平移下极板后粒子将在距上极板为h处返回,对前后两次应用动能定理, mg(d+)-qU=0,mg(+h)-qh=0,联立解得h= ,D正确.
17. 如图,在水平面(纸面)内有三根相同的均匀金属棒ab、ac和MN,其中ab、ac在a点接触,构成“V”字型导轨.空间存在垂直于纸面的均匀磁场.用力使MN向右匀速运动,从图示位置开始计时,运动中MN始终与∠bac的平分线垂直且和导轨保持良好接触.下列关于回路中电流i与时间t的关系图线,可能正确的是(  )
 A      B     C     D
17.A [解析] 考查电磁感应中的图像问题,此类问题应设法找纵轴与横轴的函数解析式.设金属棒单位长度电阻为R0,∠bac=2θ,则当MN棒切割磁感线的长度为L时,产生的感应电动势E=BLv,回路的总电阻R=R0(L+),电路中的电流i==,即i与t无关,A正确.
18. 如图,半径为R的圆是一圆柱形匀强磁场区域的横截面(纸面),磁感应强度大小为B,方向垂直于纸面向外.一电荷量为q(q>0)、质量为m的粒子沿平行于直径ab的方向射入磁场区域,射入点与ab的距离为.已知粒子射出磁场与射入磁场时运动方向间的夹角为60°,则粒子的速率为(不计重力)(  )
A. B.
C. D.
18.B [解析] 由Bqv=可得v=,作出粒子运动轨迹如图所示,根据几何知识得半径r=R,故B正确.
19. 如图,直线a和曲线b分别是在平直公路上行驶的汽车a和b的位置-时间(x-t)图线.由图可知(  )
A.在时刻t1,a车追上b车
B.在时刻t2,a、b两车运动方向相反
C.在t1到t2这段时间内,b车的速率先减少后增加
D.在t1到t2这段时间内,b车的速率一直比a车的大
19.BC [解析] 考查x-t图像.由图可知,在t1时刻是b车追上a车,A错误;图线的倾斜方向代表车的运动方向,向上倾斜代表与正方向相同,向下倾斜代表与正方向相反,图像的斜率的绝对值代表速率,B、C正确,D错误.
20. 2012年6月18日,神舟九号飞船与天宫一号目标飞行器在离地面343 km的近圆形轨道上成功进行了我国首次载人空间交会对接.对接轨道所处的空间存在极其稀薄的大气.下列说法正确的是(  )
A.为实现对接,两者运行速度的大小都应介于第一宇宙速度和第二宇宙速度之间
B.如不加干预,在运行一段时间后,天宫一号的动能可能会增加
C.如不加干预,天宫一号的轨道高度将缓慢降低
D.航天员在天宫一号中处于失重状态,说明航天员不受地球引力作用
20.BC [解析] 只要是绕地球运行的天体,其运行速率必定小于第一宇宙速度,故A错误;如不加干预,由于轨道处稀薄大气的阻力,则天宫一号的速率减小而做向心运动,当达到新的轨道而万有引力又重新能提供向心力时,天宫一号在新的轨道做圆周运动,此时轨道高度降低,运行的速率增大,故B、C正确;天宫一号中的航天员不是不受地球引力,而是地球引力全部充当向心力,故D错误.
21. 2012年11月,“歼15”舰载机在“辽宁号”航空母舰上着舰成功.图(a)为利用阻拦系统让舰载机在飞行甲板上快速停止的原理示意图.飞机着舰并成功钩住阻拦索后,飞机的动力系统立即关闭,阻拦系统通过阻拦索对飞机施加一作用力,使飞机在甲板上短距离滑行后停止.某次降落,以飞机着舰为计时零点,飞机在t=0.4 s时恰好钩住阻拦索中间位置,其着舰到停止的速度-时间图线如图(b)所示.假如无阻拦索,飞机从着舰到停止需要的滑行距离约为1000 m.已知航母始终静止,重力加速度的大小为g.则(  )
   图(a)             图(b)
A.从着舰到停止,飞机在甲板上滑行的距离约为无阻拦索时的
B.在0.4 s~2.5 s时间内,阻拦索的张力几乎不随时间变化
C.在滑行过程中,飞行员所承受的加速度大小会超过2.5g
D.在0.4 s~2.5 s时间内,阻拦系统对飞机做功的功率几乎不变
21.AC [解析] 根据图像,由图线所围的面积可计算出飞机从着舰到停止滑行的距离,即x≈70×0.4 m+m+m=114.5 m,A选项正确;由图可计算出0.4 s~2.5 s内的加速度a== m/s2=2.86g,C选项正确;在0.4 s~2.5 s时间内,由牛顿第二定律得2Fcos=ma,其中加速度a不变,阻拦索的张角θ在变小,其张力F在变小,由于速度v在变小,故阻拦系统对飞机做功的功率P=F合v=mav在变小,B、D选项错误.
第Ⅱ卷(非选择题 共174分)
三、非选择题:包括必考题和选考题两部分.第22题~第32题为必考题,每个试题考生都必须作答.第33题~第40题为选考题,考生根据要求作答.
(一)必考题(共129分)
22. 图(a)为测量物块与水平桌面之间动摩擦因数的实验装置示意图.
图(a)
实验步骤如下:
①用天平测量物块和遮光片的总质量M、重物的质量m;用游标卡尺测量遮光片的宽度d;用米尺测量两光电门之间的距离s;
②调整轻滑轮,使细线水平;
③让物块从光电门A的左侧由静止释放,用数字毫秒计分别测出遮光片经过光电门A和光电门B所用的时间ΔtA和ΔtB,求出加速度a;
图(b)
④多次重复步骤③,求a的平均值a;
⑤根据上述实验数据求出动摩擦因数μ.
回答下列问题:
(1)测量d时,某次游标卡尺(主尺的最小分度为1 mm)的示数如图(b)所示,其读数为________cm.
(2)物块的加速度a可用d、s、ΔtA和ΔtB表示为a=__________.
(3)动摩擦因数μ可用M、m、a -和重力加速度g表示为μ=____________________________.
(4)如果细线没有调整到水平,由此引起的误差属于________(填“偶然误差”或“系统误差”).
22.(1)0.960
(2)
(3)
(4)系统误差
[解析] (1)考查游标卡尺的读数规则,此题为20分度,最小分度为0.05 mm,通过数格可看出第12格与主尺对齐,所以读数为9 mm+0.05×12 mm=9.60 mm,即0.960 cm.
(2)根据运动学公式v-v=2as,其中vB=,vA= ,故a=.
(3)对重物由牛顿第二定律:mg-F=ma
对物块由牛顿第二定律:F-μMg=Ma
联立解得μ=
(4)若细线没有调整到水平,物块受到的合力就不是(F一μMg),像这种由于原理上不完善而带来的误差就是系统误差.
23. 某学生实验小组利用图(a)所示电路,测量多用电表内电池的电动势和电阻“×1k”挡内部电路的总电阻.使用的器材有:
图(a)
多用电表;
电压表:量程5 V,内阻十几千欧;
滑动变阻器:最大阻值5 kΩ;
导线若干.
回答下列问题:
(1)将多用电表挡位调到电阻“×1k”挡,再将红表笔和黑表笔________,调零点.
(2)将图(a)中多用电表的红表笔和________(填“1”或“2”)端相连,黑表笔连接另一端.
(3)将滑动变阻器的滑片调到适当位置,使多用电表的示数如图(b)所示,这时电压表的示数如图(c)所示.多用电表和电压表的读数分别为________kΩ和________V.
图(b)             图(c)
(4)调节滑动变阻器的滑片,使其接入电路的阻值为零.此时多用电表和电压表的读数分别为12.0 kΩ和4.00 V.从测量数据可知,电压表的内阻为________kΩ.
图(d)
(5)多用电表电阻挡内部电路可等效为由一个无内阻的电池、一个理想电流表和一个电阻串联而成的电路,如图(d)所示.根据前面的实验数据计算可得,此多用电表内电池的电动势为________V,电阻“×1k”挡内部电路的总电阻为________kΩ.
23.(1)短接
(2)1
(3)15.0 3.60
(4)12.0
(5)9.00 15.0
[解析] (1)多用电表调零时把两表笔短接相当把电路接通.
(2)根据流经电压表的电流是从正极流向负极,可判断出电流的方向;再根据对多用电表来说“红进黑出”即电流从红表笔流入,从黑表笔流出,可判断出红表笔接1.
(3)根据读数原则,最小刻度是1、0.1、0.01的都要估读一位.图b中的指针指在15,而10~20间的最小刻度为1,所以读数为15.0;图c中的电压表的最小刻度为0.1 V,指针指在36格,所以读数为3.60 V.
(4)当把滑动变阻器的电阻调为零时,相当于多用电表测的是电压表的电阻,所以多用电表的读数即为电压表的内阻.
(5)根据多用电表的原理,其中值电阻等于其内阻,即选×1k挡时的内阻为15.0 kΩ,此时滑动变阻器接入电路的阻值调为零,相当于只有多用电表和电压表构成一回路,此时I==,可得E=9.00 V.
24. 水平桌面上有两个玩具车A和B,两者用一轻质细橡皮筋相连,在橡皮筋上有一红色标记R.在初始时橡皮筋处于拉直状态,A、B和R分别位于直角坐标系中的(0,2l)、(0,-l)和(0,0)点.已知A从静止开始沿y轴正向做加速度大小为a的匀加速运动;B平行于x轴朝x轴正向匀速运动.在两车此后运动的过程中,标记R在某时刻通过点(l,l).假定橡皮筋的伸长是均匀的,求B运动速度的大小.
24.[解析]设B车的速度大小为v.如图,标记R在时刻t通过点K(l,l),此时A、B的位置分别为H、G.由运动学公式,H的纵坐标yA、G的横坐标xB分别为
yA=2l+at2①
xB=vt②
在开始运动时,R到A和B的距离之比为2∶1,即
OE∶OF=2∶1
由于橡皮筋的伸长是均匀的,在以后任一时刻R到A和B的距离之比都为2∶1.因此,在时刻t有
HK∶KG=2∶1③
由于△FGH~△IGK,有
HG∶KG=xB∶(xB-l)④
HG∶KG=(yA+l)∶(2l)⑤
由③④⑤式得
xB=l⑥
yA=5l⑦
联立①②⑥⑦式得  v=⑧
25. 如图,两条平行导轨所在平面与水平地面的夹角为θ,间距为L.导轨上端接有一平行板电容器,电容为C.导轨处于匀强磁场中,磁感应强度大小为B,方向垂直于导轨平面.在导轨上放置一质量为m的金属棒,棒可沿导轨下滑,且在下滑过程中保持与导轨垂直并良好接触.已知金属棒与导轨之间的动摩擦因数为μ,重力加速度大小为g.忽略所有电阻.让金属棒从导轨上端由静止开始下滑,求:
(1)电容器极板上积累的电荷量与金属棒速度大小的关系;
(2)金属棒的速度大小随时间变化的关系.
25.[解析](1)设金属棒下滑的速度大小为v,则感应电动势为
E=BLv①
平行板电容器两极板之间的电势差为
U=E②
设此时电容器极板上积累的电荷量为Q,按定义有
C=③
联立①②③式得
Q=CBLv④
(2)设金属棒的速度大小为v时经历的时间为t,通过金属棒的电流为i.金属棒受到的磁场的作用力方向沿导轨向上,大小为
f1=BLi⑤
设在时间间隔(t,t+Δt)内流经金属棒的电荷量为ΔQ,按定义有
i=⑥
ΔQ也是平行板电容器极板在时间间隔(t,t+Δt)内增加的电荷量.由④式得
ΔQ=CBLΔv⑦
式中,Δv为金属棒的速度变化量.按定义有
a=⑧
金属棒所受到的摩擦力方向斜向上,大小为
f2=μN⑨
式中,N是金属棒对于导轨的正压力的大小,有
N=mgcosθ⑩
金属棒在时刻t的加速度方向沿斜面向下,设其大小为a,根据牛顿第二定律有
mgsinθ-f1-f2=ma?
联立⑤至?式得  a=g?
由?式及题设可知,金属棒做初速度为零的匀加速运动.t时刻金属棒的速度大小为
v=gt?
33.[物理——选修3-3]
(1)两个相距较远的分子仅在分子力作用下由静止开始运动,直至不再靠近.在此过程中,下列说法正确的是________.(填正确答案标号.选对1个得3分,选对2个得4分,选对3个得6分.每选错1个扣3分,最低得分为0分)
A.分子力先增大,后一直减小
B.分子力先做正功,后做负功
C.分子动能先增大,后减小
D.分子势能先增大,后减小
E.分子势能和动能之和不变
33.(1)BCE [解析] 分子间作用力随分子间距离减小而先增大后减小再增大,A错误;两分子靠近过程中,分子间先是引力,后是斥力,所以分子间作用力先做正功后做负功,动能先增大后减小,B、C正确;根据能量守恒,动能与势能总和不变,故分子势能先减小后增大,E正确,D错误.
33. (2)(9分)如图,两个侧壁绝热、顶部和底部都导热的相同气缸直立放置,气缸底部和顶部均有细管连通,顶部的细管带有阀门K.两气缸的容积均为V0,气缸中各有一个绝热活塞(质量不同,厚度可忽略).开始时K关闭,两活塞下方和右活塞上方充有气体(可视为理想气体),压强分别为p0和;左活塞在气缸正中间,其上方为真空;右活塞上方气体体积为.现使气缸底与一恒温热源接触,平衡后左活塞升至气缸顶部,且与顶部刚好没有接触;然后打开K,经过一段时间,重新达到平衡.已知外界温度为T0,不计活塞与气缸壁间的摩擦.求:
(ⅰ)恒温热源的温度T;
(ⅱ)重新达到平衡后左气缸中活塞上方气体的体积Vx.
33.(2)[解析] (ⅰ)与恒温热源接触后,在K未打开时,右活塞不动,两活塞下方的气体经历等压过程,由盖·吕萨克定律得
=①
由此得  T=T0②
(ⅱ)由初始状态的力学平衡条件可知,左活塞的质量比右活塞的大.打开K后,左活塞下降至某一位置,右活塞必须升至气缸顶,才能满足力学平衡条件.
气缸顶部与外界接触,底部与恒温热源接触,两部分气体各自经历等温过程,设左活塞上方气体压强为p,由玻意耳定律得
pVx=·③
(p+p0)(2V0-Vx)=p0·V0④
联立③④式得  6V-V0Vx-V=0
其解为  Vx=V0⑤
另一解Vx=-V0,不合题意,舍去.
34.[物理——选修3-4](15分)
(1)(6分)如图,a、b、c、d是均匀媒质中x轴上的四个质点,相邻两点的间距依次为2 m、4 m和6 m.一列简谐横波以2 m/s的波速沿x轴正向传播,在t=0时刻到达质点a处,质点a由平衡位置开始竖直向下运动,t=3 s时a第一次到达最高点.下列说法正确的是________ .(填正确答案标号.选对1个得3分,选对2个得4分,选对3个得6分.每选错1个扣3分,最低得分为0分)
A.在t=6 s时刻波恰好传到质点d处
B.在t=5 s时刻质点c恰好到达最高点
C.质点b开始振动后,其振动周期为4 s
D.在4 sE.当质点d向下运动时,质点b一定向上运动
34.(1)ACD [解析] 6 s内质点传播的距离x=vt=12 m,波恰好传到d点,A正确;由题意知, T=3 s,周期T=4 s,C正确;t=3 s时刻,质点c刚开始向下振动,t=5 s时刻,c刚好振动了2 s,刚好到达平衡位置,B 错误;4~6 s时段内质点c从最低点向最高点运动,D正确;b、d两点相距10 m,而波长λ=vT=8 m,不是半波长奇数倍,b、d两点不是振动的反相点,E错误.
34. (2)(9分)图示为一光导纤维(可简化为一长玻璃丝)的示意图,玻璃丝长为L,折射率为n,AB代表端面.已知光在真空中的传播速度为c.
(ⅰ)为使光线能从玻璃丝的AB端面传播到另一端面,求光线在端面AB上的入射角应满足的条件;
(ⅱ)求光线从玻璃丝的AB端面传播到另一端面所需的最长时间.
34.(2)[解析](ⅰ)设光线在端面AB上C点(见下图)的入射角为i,折射角为r,由折射定律有 sin i=nsin r①
设该光线射向玻璃丝内壁D点的入射角为α,为了使该光线可在此光导纤维中传播,应有  α≥θ②
式中,θ是光线在玻璃丝内发生全反射时的临界角,它满足
nsin θ=1③
由几何关系得  α+r=90°④
由①②③④式得  sin i≤⑤
(ⅱ)光在玻璃丝中传播速度的大小为  v=⑥
光速在玻璃丝轴线方向的分量为  vz=vsin α⑦
光线从玻璃丝端面AB传播到其另一端面所需时间为
T=⑧
光线在玻璃丝中传播,在刚好发生全反射时,光线从端面AB传播到其另一端面所需的时间最长,由②③⑥⑦⑧式得
Tmax=⑨
35.[物理——选修3-5](15分)
(1)一质子束入射到静止靶核Al上,产生如下核反应:
p+Al→X+n
式中p代表质子,n代表中子,X代表核反应产生的新核.由反应式可知,新核X的质子数为________,中子数为 ________.
35.(1)14 13
[解析]由电荷数守恒可知,新核的质子数为1+13=14;根据质量数守恒可知,新核的中子数为1+27-1-14=13.
35. (2)在粗糙的水平桌面上有两个静止的木块A和B,两者相距为d.现给A 一初速度,使A与B发生弹性正碰,碰撞时间极短.当两木块都停止运动后,相距仍然为d.已知两木块与桌面之间的动摩擦因数均为μ,B的质量为A的2倍,重力加速度大小为g.求A的初速度的大小.
35.(2)[解析]设在发生碰撞前的瞬间,木块A的速度大小为v;在碰撞后的瞬间,A和B的速度分别为v1和v2.在碰撞过程中,由能量和动量守恒定律,得
mv2=mv+(2m)v①
mv=mv1+(2m)v2②
式中,以碰撞前木块A的速度方向为正.由①②式得
v1=-③
设碰撞后A和B运动的距离分别为d1和d2,由动能定理得
μmgd1=mv④
μ(2m)gd2=(2m)v⑤
按题意有  d=d1+d2⑥
设A的初速度大小为v0,由动能定理得
μmgd=mv-mv2⑦
联立②至⑦式,得  v0=⑧
同课章节目录