【人教版(2019)】高中物理必修3 专题学案 电磁感应——法拉第电磁感应 自感(学生版+教师版)

文档属性

名称 【人教版(2019)】高中物理必修3 专题学案 电磁感应——法拉第电磁感应 自感(学生版+教师版)
格式 zip
文件大小 1.3MB
资源类型 试卷
版本资源 人教版(2019)
科目 物理
更新时间 2022-07-16 12:42:29

文档简介

中小学教育资源及组卷应用平台
(
法拉第电磁感应定律
自感
)
(
小故事
)
楞次(Lenz,Heinrich Friedrich Emil)1804年(甲子年)2月24日诞生于爱沙尼亚.16岁以优异成绩考入家乡的道帕特大学.1828年被挑选为俄国圣彼得堡科学院的初级科学助理,1830年被选为圣彼得堡科学院通讯院士,1834年选为院士。曾长期担任圣彼得堡大学物理数学系主任,后来由教授会选为第一任校长。
楞次在物理学上的主要成就是发现了电磁感应的楞次定律和电热效应的焦耳-楞次定律。
1833年,楞次在圣彼得堡科学院宣读了他的题为“关于用电动力学方法决定感生电流方向”的论文,提出了楞次定律。亥姆霍兹证明楞次定律是电磁现象的能量守恒定律。
在电热方面,1843年楞次在不知道焦耳发现电流热作用定律(1841年)的情况下,独立地发现了这一定律。他用改善实验方法和改用酒精作传热介质,提高了实验的精度。
1831年,楞次基于感应电流的瞬时和类冲击效应,利用冲击法对电磁现象进行了定量研究,确定了线圈中的感应电动势等于每匝线圈中电动势之和,而与所用导线的粗细和种类无关.1838年,楞次还研究了电动机与发电机的转换性,用楞次定律解释了其转换原理。1844年,楞次在研究任意个电动势和电阻的并联时,得出了分路电流的定律,比基尔霍夫发表更普遍的电路定律早了4年。
1865年寒假,楞次在意大利罗马中风去世。
重要贡献 物理学重要贡献——楞次定律
楞次定律是一条电磁学的定律,从电磁感应得出感应电动势的方向。
感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。
注意:“阻碍”不是“相反”,原磁通量增大时方向相反,原磁通量减小时方向相同;“阻碍”也不是阻止,电路中的磁通量还是变化的。
它的公式是:其中 E 是感应电动势,N 是线圈圈数,Φ 是磁通量。
1833年,,楞次 在概括了大量实验事实的基础上,总结出一条判断感应电流方向的规律,称为楞次定律( Lenz law )。
楞次定律可表述为 :
闭合回路中感应电流的方向,总是使得它所激发的磁场来阻碍引起感应电流的磁通量的变化。
楞次定律也可简练地表述为 :
感应电流的效果,总是阻碍引起感应电流的原因
(
课堂探究
)
一、法拉第电磁感应定律
1.感应电动势
(1)概念:在电磁感应现象中产生的电动势.
①感生电动势:由于磁场的变化而激发出感生电场,由感生电场而产生的感应电动势.
②动生电动势:由于导体在磁场中运动而产生的感应电动势.
(2)条件:无论电路是否闭合,只要穿过电路的磁通量发生变化,电路中就一定有感应电动势.
(3)与感应电流的关系:遵守闭合电路欧姆定律,即I=.
2.法拉第电磁感应定律
(1)定律内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.
(2)公式:E=n.其中n为线圈的匝数.
二、导体切割磁感线产生的感应电动势
导体棒切割磁感线时,可有以下三种情况:
切割方式 电动势表达式 说 明
垂直切割 E=BLv ①导体棒与磁场方向垂直 ②磁场为匀强磁场
倾斜切割 E=BLvsin_θ 其中θ为v与B的夹角
旋转切割(以一端为轴) E=BL2ω
(
基础演练
)
穿过闭合回路的磁通量Φ随时间t变化的图像分别如图甲、乙、丙、丁所示,下列关于回路中产生的感应电动势的论述,正确的是( )
A.图甲中回路产生的感应电动势恒定不变 
B.图乙中回路产生的感应电动势一直在变大
C.图丙中回路在0~t0时间内产生的感应电动势大于t0~2t0时间内产生的感应电动势
D.图丁中回路产生的感应电动势可能恒定不变
如图所示,在竖直向下的匀强磁场中,将一水平放置的金属棒以水平速度抛出,设整个过程中棒的取向不变且空气阻力不计,则在金属棒运动的过程中产生的感应电动势的大小变化情况是( )
A.越来越大 B.越来越小
C.保持不变 D.无法判断
某研究小组的同学利用铜芯电缆线和灵敏电流计做摇绳发电的探究实验。如图所示,他们将电缆线和灵敏电流计连成闭合回路,在操场上由两位同学手摇导线,其他同学观察灵敏电流计的指针变化。在下列说法中,你认为正确的研究结果应符合( )
A.摇动绳子时,流过灵敏电流计的电流是大小变化的直流电
B.摇动绳子时,灵敏电流计中电流的大小与两同学的站立方位无关
C.仅增加绳子的长度,灵敏电流计中的电流的最大值增大
D.仅增加摇绳的频率,灵敏电流计中的电流的最大值不变
如图所示,C是一只电容器,先用外力使金属杆ab贴着水平平行金属导轨在匀强磁场中沿垂直磁场方向运动,到有一定速度时突然撤销外力.不计摩擦,则ab以后的运动情况可能是( )
A.减速运动到停止 B.来回往复运动
C.匀速运动 D.加速运动
一个闭合的正方形线圈共有匝,边长,导体每米长的阻值,处于垂直于平面的磁场中。
(1)当磁场以均匀增大时,线圈中的电流多大?
(2)若不变,而令线圈绕其一边以角速度转动,流过导体截面的电荷量多大?
一匀强磁场,磁场方向垂直纸面,规定向里的方向为正.在磁场中有一细金属圆环,线圈平面位于纸面内,如图甲所示.现令磁感应强度B随时间t变化,先按图乙中所示的Oa图线变化,后来又按图线bc和cd变化.令E1、E2、E3分别表示这三段变化过程中感应电动势的大小,I1、I2、I3分别表示对应的感应电流,则( )
A.E1>E2,I1沿逆时针方向,I2沿顺时针方向
B.E1C.E1D.E2=E3,I2沿顺时针方向,I3沿顺时针方向
一矩形线圈位于一随时间t变化的匀强磁场内,磁场方向垂直线圈所在的平面(纸面)向里,如图1所示,磁感应强度B随t的变化规律如图2所示。以I表示线圈中的感应电流,以图1中线圈上箭头所示方向的电流为正,则以下的I—t图中正确的是 ( )
如图所示,为一折线,它所形成的两个角和均为.折线的右边有一匀强磁场,其方向垂直于纸面向里.一边长为的正方形导线框沿垂直于的方向以速度做匀速直线运动,在时刻恰好位于图中所示位置.以逆时针方向为导线框中电流的正方向,在下面四幅图中能够正确表示电流—时间关系的是(时间以为单位)( )
如图甲所示,垂直纸面向里的匀强磁场的区域宽度为2,磁感应强度的大小为B。一边长为a、电阻为4R的正方形均匀导线框ABCD从图示位置沿水平向右方向以速度v匀速穿过两磁场区域,在图乙中线框A、B两端电压UAB与线框移动距离的关系图象正确的是( )
10.用均匀导线做成的正方形线框边长为0.2 m,正方形的一半放在垂直纸面向里的匀强磁场中,如图1所示.当磁场以10 T/s的变化率增强时,线框中a、b两点间的电势差是(  )
A.Uab=0.1 V
B.Uab=-0.1 V
C.Uab=0.2 V
D.Uab=-0.2 V
图2
11.如图2所示,导体AB在做切割磁感线运动时,将产生一个感应电动势,设导体AB的电阻为r,导轨左端接有阻值为R的电阻,磁场磁感应强度为B,导轨宽为d,导体AB匀速运动,速度为v.下列说法正确的是(  )
A.在本题中分析电路时,导体AB相当于电源,且A端为电源正极
B.UCD=Bdv
C.C、D两点电势关系为:φC<φD
D.在AB中电流从B流向A,所以φB>φA
12.穿过闭合回路的磁通量Φ随时间t变化的图象分别如图3所示,下列关于回路中产生的感应电动势的论述,正确的是(  )
图3
A.图①中,回路产生的感应电动势恒定不变
B.图②中,回路产生的感应电动势一直在变大
C.图③中,回路在0~t1时间内产生的感应电动势小于在t1~t2时间内产生的感应电动势
D.图④中,回路产生的感应电动势先变小再变大
13.粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方B向垂直于线框平面,其边界与正方形线框的边平行.现使线框以同样大小的速度沿四个不同方向平移出磁场,如下图所示,则在移出过程中线框的一边a、b两点间电势差绝对值最大的是(  )
14.如图4甲所示,光滑导轨水平放置在斜向下且与水平方向夹角为60°的匀强磁场中,匀强磁场的磁感应强度B随时间t的变化规律如图乙所示(规定斜向下为正方向),导体棒ab垂直导轨放置,除电阻R的阻值外,其余电阻不计,导体棒ab在水平外力作用下始终处于静止状态.规定a→b的方向为电流的正方向,水平向右的方向为外力的正方向,则在0~t时间内,能正确反映流过导体棒ab的电流i和导体棒ab所受水平外力F随时间t变化的图象是(  )
图4
(
课堂探究
)
1.自感现象
(1)概念:由于导体本身的电流变化而产生的电磁感应现象称为自感,由于自感而产生的感应电动势叫做自感电动势.
(2)表达式:E=L.
(3)自感系数L
①相关因素:与线圈的大小、形状、匝数以及是否有铁芯有关.
②单位:亨利(H,1 mH=10-3 H,1 μH=10-6 H).
2.涡流
当线圈中的电流发生变化时,在它附近的任何导体中都会产生感应电流,这种电流像水的旋涡所以叫做涡流.
(1)电磁阻尼:当导体在磁场中运动时,感应电流会使导体受到安培力,安培力的方向总是阻碍导体的运动.
(2)电磁驱动:如果磁场相对于导体运动,在导体中会产生感应电流使导体受到安培力的作用,安培力使导体运动起来.
交流感应电动机就是利用电磁驱动的原理工作的.
(3)电磁阻尼和电磁驱动的原理体现了楞次定律的推广应用.
(
课堂探究
)
【观察与思考】
通电自感 断电自感
电路图
器材要求 A1、A2同规格,R=RL,L较大 L很大(有铁芯)
现象 在S闭合瞬间,A2立即亮起来,A1灯逐渐变亮,最终一样亮 在开关S断开时,A灯渐渐熄灭
原 因 由于开关闭合时,流过电感线圈的电流迅速增大,使线圈产生自感电动势,阻碍了电流的增大,使流过A1灯的电流比流过A2灯的电流增加得慢 断开开关S时,流过线圈L的电流减小,产生自感电动势,阻碍了电流的减小,使电流继续存在一段时间,在S断开后,通过L的电流反向通过灯A,A灯不会立即熄灭,若RL<RA,原来的IL>IA,则A灯熄前要闪亮一下,若RL≥RA,原来的电流IL≤IA,则A灯逐渐熄灭,不再闪亮一下
能量转化情况 电能转化为磁场能 磁场能转化为电能
【讨论与交流】
(1)应用法拉第电磁感应定律解题的一般步骤
①分析穿过闭合电路的磁场方向及磁通量的变化情况;
②利用楞次定律确定感应电流的方向;
③灵活选择法拉第电磁感应定律的不同表达形式列方程求解.
(2)应注意的问题
通过回路的电荷量q仅与n、ΔΦ和回路电阻R有关,与变化过程所用的时间长短无关,推导过程:q=Δt=Δt=.
(
基础演练
)
某同学为了验证断电自感现象,自己找来带铁心的线圈L、小灯泡A 、开关S和电池组E,用导线将它们连接成如图所示的电路。检查电路后,闭合开关s,小灯泡发光;再断开开关S,小灯泡仅有不显著的延时熄灭现象。虽经多次重复,仍未见老师演示时出现的小灯泡闪亮现象,他冥思苦想找不出原因。你认为最有可能造成小灯泡未闪亮的原因是( )
A.电源的内阻较大 B.小灯泡电阻偏大
C.线圈电阻偏大 D.线圈的自感系数较大
在研究自感现象的实验中,用两个完全相同的灯泡、分别与有铁芯的线圈和定值电阻组成如图所示的电路(自感线圈的直流电阻与定值电阻的阻值相等),闭合开关达到稳定后两灯均可以正常发光.关于这个实验,下面说法中正确的是( )
A.闭合开关的瞬间,通过灯的电流大于通过灯的电流
B.闭合开关后,灯先亮,灯后亮
C.闭合开关,待电路稳定后断开开关,通过灯的电流不大于原来的电流
D.闭合开关,待电路稳定后断开开关,通过灯的电流大于原来的电流
如图所示的电路中,电源的电动势为E,内阻为r,电感L的电阻不计,电阻R的阻值大于灯泡D的阻值,在时刻闭合开关S,经过一段时间后,在时刻断开S,下列表示A、B两点间电压随时间t变化的图像中,正确的是( )
著名物理学家弗曼曾设计过一个实验,如图所示.在一块绝缘板上中部安一个线圈,并接有电源,板的四周有许多带负电的小球,整个装置支撑起来.忽略各处的摩擦,当电源接通的瞬间下列关于圆盘的说法中,正确的是( )
A.圆盘将逆时针转动
B.圆盘将顺时针转动
C.圆盘不会转动
D.无法确定圆盘是否会动
如图所示,一闭合金属圆环用绝缘细线挂于O点,将圆环拉离平衡位置并释放,圆环摆动过程中经过有界的水平匀强磁场区域,A、B为该磁场的竖直边界.若不计空气阻力,则( )
A.圆环向右穿过磁场后,还能摆至原来的高度
B.在进入和离开磁场时,圆环中均有感应电流
C.圆环进入磁场后离平衡位置越近速度越大,感应电流也越大
D.圆环最终将静止在平衡位置
【例15】如图,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B0.使该线框从静止开始绕过圆心O、垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流.现使线框保持图中所示位置,磁感应强度大小随时间线性变化.为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间的变化率的大小应为(  )
A.    B. C. D.
【例16】在竖直向上的匀强磁场中,水平放置一个不变形的单匝金属圆线圈,线圈所围的面积为0.1 m2,线圈电阻为1 Ω.规定线圈中感应电流I的正方向从上往下看是顺时针方向,如图甲所示.磁场的磁感应强度B随时间t的变化规律如图乙所示.则下列说法正确的是(  )
A.在时间0~5 s内,I的最大值为0.1 A
B.在第4 s时刻,I的方向为逆时针
C.前2 s内,通过线圈某截面的总电量为0.01 C
D.第3 s内,线圈的发热功率最大
【例17】半径为a右端开小口的导体圆环和长为2a的导体直杆,单位长度电阻均为R0.圆环水平固定放置,整个内部区域分布着竖直向下的匀强磁场,磁感应强度为B.杆在圆环上以速度v平行于直径CD向右做匀速直线运动,杆始终有两点与圆环良好接触,从圆环中心O开始,杆的位置由θ确定,如图所示.则(  )
A.θ=0时,杆产生的电动势为2Bav
B.θ=时,杆产生的电动势为Bav
C.θ=0时,杆受的安培力大小为
D.θ=时,杆受的安培力大小为
【例18】如图所示,水平放置的U形框架上接一个阻值为R0的电阻,放在垂直纸面向里的、场强大小为B的匀强磁场中,一个半径为L、质量为m的半圆形硬导体AC在水平向右的恒定拉力F作用下,由静止开始运动距离d后速度达到v,半圆形硬导体AC的电阻为r,其余电阻不计.下列说法正确的是(  )
A.此时AC两端电压为UAC=2BLv
B.此时AC两端电压为UAC=
C.此过程中电路产生的电热为Q=Fd-mv2
D.此过程中通过电阻R0的电荷量为q=
【例19】如图所示,一对光滑的平行金属导轨固定在同一水平面内,导轨间距l=0.5 m,左端接有阻值R=0.3 Ω的电阻.一质量m=0.1 kg,电阻r=0.1 Ω的金属棒MN放置在导轨上,整个装置置于竖直向上的匀强磁场中,磁场的磁感应强度B=0.4 T.棒在水平向右的外力作用下,由静止开始以a=2 m/s2的加速度做匀加速运动,当棒的位移x=9 m时撤去外力,棒继续运动一段距离后停下来,已知撤去外力前后回路中产生的焦耳热之比Q1∶Q2=2∶1.导轨足够长且电阻不计,棒在运动过程中始终与导轨垂直且两端与导轨保持良好接触.求:
(1)棒在匀加速运动过程中,通过电阻R的电荷量q;
(2)撤去外力后回路中产生的焦耳热Q2;
(3)外力做的功WF.
学生版 1 / 12中小学教育资源及组卷应用平台
(
法拉第电磁感应定律
自感
)
(
小故事
)
楞次(Lenz,Heinrich Friedrich Emil)1804年(甲子年)2月24日诞生于爱沙尼亚.16岁以优异成绩考入家乡的道帕特大学.1828年被挑选为俄国圣彼得堡科学院的初级科学助理,1830年被选为圣彼得堡科学院通讯院士,1834年选为院士。曾长期担任圣彼得堡大学物理数学系主任,后来由教授会选为第一任校长。
楞次在物理学上的主要成就是发现了电磁感应的楞次定律和电热效应的焦耳-楞次定律。
1833年,楞次在圣彼得堡科学院宣读了他的题为“关于用电动力学方法决定感生电流方向”的论文,提出了楞次定律。亥姆霍兹证明楞次定律是电磁现象的能量守恒定律。
在电热方面,1843年楞次在不知道焦耳发现电流热作用定律(1841年)的情况下,独立地发现了这一定律。他用改善实验方法和改用酒精作传热介质,提高了实验的精度。
1831年,楞次基于感应电流的瞬时和类冲击效应,利用冲击法对电磁现象进行了定量研究,确定了线圈中的感应电动势等于每匝线圈中电动势之和,而与所用导线的粗细和种类无关.1838年,楞次还研究了电动机与发电机的转换性,用楞次定律解释了其转换原理。1844年,楞次在研究任意个电动势和电阻的并联时,得出了分路电流的定律,比基尔霍夫发表更普遍的电路定律早了4年。
1865年寒假,楞次在意大利罗马中风去世。
重要贡献 物理学重要贡献——楞次定律
楞次定律是一条电磁学的定律,从电磁感应得出感应电动势的方向。
感应电流的磁场总是要阻碍引起感应电流的磁通量的变化。
注意:“阻碍”不是“相反”,原磁通量增大时方向相反,原磁通量减小时方向相同;“阻碍”也不是阻止,电路中的磁通量还是变化的。
它的公式是:其中 E 是感应电动势,N 是线圈圈数,Φ 是磁通量。
1833年,,楞次 在概括了大量实验事实的基础上,总结出一条判断感应电流方向的规律,称为楞次定律( Lenz law )。
楞次定律可表述为 :
闭合回路中感应电流的方向,总是使得它所激发的磁场来阻碍引起感应电流的磁通量的变化。
楞次定律也可简练地表述为 :
感应电流的效果,总是阻碍引起感应电流的原因
(
课堂探究
)
一、法拉第电磁感应定律
1.感应电动势
(1)概念:在电磁感应现象中产生的电动势.
①感生电动势:由于磁场的变化而激发出感生电场,由感生电场而产生的感应电动势.
②动生电动势:由于导体在磁场中运动而产生的感应电动势.
(2)条件:无论电路是否闭合,只要穿过电路的磁通量发生变化,电路中就一定有感应电动势.
(3)与感应电流的关系:遵守闭合电路欧姆定律,即I=.
2.法拉第电磁感应定律
(1)定律内容:电路中感应电动势的大小,跟穿过这一电路的磁通量的变化率成正比.
(2)公式:E=n.其中n为线圈的匝数.
二、导体切割磁感线产生的感应电动势
导体棒切割磁感线时,可有以下三种情况:
切割方式 电动势表达式 说 明
垂直切割 E=BLv ①导体棒与磁场方向垂直 ②磁场为匀强磁场
倾斜切割 E=BLvsin_θ 其中θ为v与B的夹角
旋转切割(以一端为轴) E=BL2ω
(
基础演练
)
穿过闭合回路的磁通量Φ随时间t变化的图像分别如图甲、乙、丙、丁所示,下列关于回路中产生的感应电动势的论述,正确的是( )
A.图甲中回路产生的感应电动势恒定不变 
B.图乙中回路产生的感应电动势一直在变大
C.图丙中回路在0~t0时间内产生的感应电动势大于t0~2t0时间内产生的感应电动势
D.图丁中回路产生的感应电动势可能恒定不变
【答案】C
如图所示,在竖直向下的匀强磁场中,将一水平放置的金属棒以水平速度抛出,设整个过程中棒的取向不变且空气阻力不计,则在金属棒运动的过程中产生的感应电动势的大小变化情况是( )
A.越来越大 B.越来越小
C.保持不变 D.无法判断
【答案】C
某研究小组的同学利用铜芯电缆线和灵敏电流计做摇绳发电的探究实验。如图所示,他们将电缆线和灵敏电流计连成闭合回路,在操场上由两位同学手摇导线,其他同学观察灵敏电流计的指针变化。在下列说法中,你认为正确的研究结果应符合( )
A.摇动绳子时,流过灵敏电流计的电流是大小变化的直流电
B.摇动绳子时,灵敏电流计中电流的大小与两同学的站立方位无关
C.仅增加绳子的长度,灵敏电流计中的电流的最大值增大
D.仅增加摇绳的频率,灵敏电流计中的电流的最大值不变
【答案】C
如图所示,C是一只电容器,先用外力使金属杆ab贴着水平平行金属导轨在匀强磁场中沿垂直磁场方向运动,到有一定速度时突然撤销外力.不计摩擦,则ab以后的运动情况可能是( )
A.减速运动到停止 B.来回往复运动
C.匀速运动 D.加速运动
【答案】C
一个闭合的正方形线圈共有匝,边长,导体每米长的阻值,处于垂直于平面的磁场中。
(1)当磁场以均匀增大时,线圈中的电流多大?
(2)若不变,而令线圈绕其一边以角速度转动,流过导体截面的电荷量多大?
【解析】(1)回路中产生的电动势,总电阻:,
回路中电流,
(2)线圈转动所用的时间:,
平均电动势:,
平均电流:,
【答案】(1);(2)
一匀强磁场,磁场方向垂直纸面,规定向里的方向为正.在磁场中有一细金属圆环,线圈平面位于纸面内,如图甲所示.现令磁感应强度B随时间t变化,先按图乙中所示的Oa图线变化,后来又按图线bc和cd变化.令E1、E2、E3分别表示这三段变化过程中感应电动势的大小,I1、I2、I3分别表示对应的感应电流,则( )
A.E1>E2,I1沿逆时针方向,I2沿顺时针方向
B.E1C.E1D.E2=E3,I2沿顺时针方向,I3沿顺时针方向
【解析】Oa段中,B为正,表示其方向向里,B逐渐增大,表示穿过线圈的磁通量增大,由楞次定律可知,I1沿逆时针方向;bc段中,磁场方向向里且穿过线圈的磁通量减小,因此I2沿顺时针方向;cd段中,B为负值即向外且增大,磁场方向向外,同样由楞次定律可知I3为顺时针方向.
由B-t图象可以看出,bc与cd为同一段直线,其斜率相同,即磁感应强度的变化率相同,因此,bc与cd段线圈中产生的感应电动势大小相同,即E2=E3.比较Oa图线与bd图线,Oa线的斜率较小,反映出这段时间磁场变化较慢,即穿过线圈的磁通量变化慢,说明E1【答案】BD
一矩形线圈位于一随时间t变化的匀强磁场内,磁场方向垂直线圈所在的平面(纸面)向里,如图1所示,磁感应强度B随t的变化规律如图2所示。以I表示线圈中的感应电流,以图1中线圈上箭头所示方向的电流为正,则以下的I—t图中正确的是 ( )
【答案】A
如图所示,为一折线,它所形成的两个角和均为.折线的右边有一匀强磁场,其方向垂直于纸面向里.一边长为的正方形导线框沿垂直于的方向以速度做匀速直线运动,在时刻恰好位于图中所示位置.以逆时针方向为导线框中电流的正方向,在下面四幅图中能够正确表示电流—时间关系的是(时间以为单位)( )
【解析】双边切割时要注意分析有效电动势.
①时间内,线框在图(1)位置,回路电动势,因为过程中要线性减小,故线性增加,线性增加,方向为正.
②时间内,导线框位置如图(2),回路电动势,因线性减小,故线性增加,也线性增加,方向为负.
③时间内,线框位置如图(3),回路电动势,因线性减小,故线性减小,线性减小,方向为负.
【答案】D
如图甲所示,垂直纸面向里的匀强磁场的区域宽度为2,磁感应强度的大小为B。一边长为a、电阻为4R的正方形均匀导线框ABCD从图示位置沿水平向右方向以速度v匀速穿过两磁场区域,在图乙中线框A、B两端电压UAB与线框移动距离的关系图象正确的是( )
【答案】D
10.用均匀导线做成的正方形线框边长为0.2 m,正方形的一半放在垂直纸面向里的匀强磁场中,如图所示.当磁场以10 T/s的变化率增强时,线框中a、b两点间的电势差是( A )
A.Uab=0.1 V
B.Uab=-0.1 V
C.Uab= 0.2 V
D.Uab=-0.2 V
11.如图所示,导体AB在做切割磁感线运动时,将产生一个感应电动势,设导体AB的电阻为r,导轨左端接有阻值为R的电阻,磁场磁感应强度为B,导轨宽为d,导体AB匀速运动,速度为v.下列说法正确的是( A )
A.在本题中分析电路时,导体AB相当于电源,且A端为电源正极
B.UCD=Bdv
C.C、D两点电势关系为:φC<φD D.在AB中电流从B流向A,所以φB>φA
12.穿过闭合回路的磁通量Φ随时间t变化的图象分别如图3所示,下列关于回路中产生的感应电动势的论述,正确的是( D  )
图3
A.图①中,回路产生的感应电动势恒定不变
B.图②中,回路产生的感应电动势一直在变大
C.图③中,回路在0~t1时间内产生的感应电动势小于在t1~t2时间内产生的感应电动势
D.图④中,回路产生的感应电动势先变小再变大
13.粗细均匀的电阻丝围成的正方形线框置于有界匀强磁场中,磁场方B向垂直于线框平面,其边界与正方形线框的边平行.现使线框以同样大小的速度沿四个不同方向平移出磁场,如下图所示,则在移出过程中线框的一边a、b两点间电势差绝对值最大的是( B )
14.如图4甲所示,光滑导轨水平放置在斜向下且与水平方向夹角为60°的匀强磁场中,匀强磁场的磁感应强度B随时间t的变化规律如图乙所示(规定斜向下为正方向),导体棒ab垂直导轨放置,除电阻R的阻值外,其余电阻不计,导体棒ab在水平外力作用下始终处于静止状态.规定a→b的方向为电流的正方向,水平向右的方向为外力的正方向,则在0~t时间内,能正确反映流过导体棒ab的电流i和导体棒ab所受水平外力F随时间t变化的图象是( D )
图4
(
课堂探究
)
1.自感现象
(1)概念:由于导体本身的电流变化而产生的电磁感应现象称为自感,由于自感而产生的感应电动势叫做自感电动势.
(2)表达式:E=L.
(3)自感系数L
①相关因素:与线圈的大小、形状、匝数以及是否有铁芯有关.
②单位:亨利(H,1 mH=10-3 H,1 μH=10-6 H).
2.涡流
当线圈中的电流发生变化时,在它附近的任何导体中都会产生感应电流,这种电流像水的旋涡所以叫做涡流.
(1)电磁阻尼:当导体在磁场中运动时,感应电流会使导体受到安培力,安培力的方向总是阻碍导体的运动.
(2)电磁驱动:如果磁场相对于导体运动,在导体中会产生感应电流使导体受到安培力的作用,安培力使导体运动起来.
交流感应电动机就是利用电磁驱动的原理工作的.
(3)电磁阻尼和电磁驱动的原理体现了楞次定律的推广应用.
(
课堂探究
)
【观察与思考】
通电自感 断电自感
电路图
器材要求 A1、A2同规格,R=RL,L较大 L很大(有铁芯)
现象 在S闭合瞬间,A2立即亮起来,A1灯逐渐变亮,最终一样亮 在开关S断开时,A灯渐渐熄灭
原 因 由于开关闭合时,流过电感线圈的电流迅速增大,使线圈产生自感电动势,阻碍了电流的增大,使流过A1灯的电流比流过A2灯的电流增加得慢 断开开关S时,流过线圈L的电流减小,产生自感电动势,阻碍了电流的减小,使电流继续存在一段时间,在S断开后,通过L的电流反向通过灯A,A灯不会立即熄灭,若RL<RA,原来的IL>IA,则A灯熄前要闪亮一下,若RL≥RA,原来的电流IL≤IA,则A灯逐渐熄灭,不再闪亮一下
能量转化情况 电能转化为磁场能 磁场能转化为电能
【讨论与交流】
(1)应用法拉第电磁感应定律解题的一般步骤
①分析穿过闭合电路的磁场方向及磁通量的变化情况;
②利用楞次定律确定感应电流的方向;
③灵活选择法拉第电磁感应定律的不同表达形式列方程求解.
(2)应注意的问题
通过回路的电荷量q仅与n、ΔΦ和回路电阻R有关,与变化过程所用的时间长短无关,推导过程:q=Δt=Δt=.
(
基础演练
)
某同学为了验证断电自感现象,自己找来带铁心的线圈L、小灯泡A 、开关S和电池组E,用导线将它们连接成如图所示的电路。检查电路后,闭合开关s,小灯泡发光;再断开开关S,小灯泡仅有不显著的延时熄灭现象。虽经多次重复,仍未见老师演示时出现的小灯泡闪亮现象,他冥思苦想找不出原因。你认为最有可能造成小灯泡未闪亮的原因是( )
A.电源的内阻较大 B.小灯泡电阻偏大
C.线圈电阻偏大 D.线圈的自感系数较大
【答案】C.
在研究自感现象的实验中,用两个完全相同的灯泡、分别与有铁芯的线圈和定值电阻组成如图所示的电路(自感线圈的直流电阻与定值电阻的阻值相等),闭合开关达到稳定后两灯均可以正常发光.关于这个实验,下面说法中正确的是( )
A.闭合开关的瞬间,通过灯的电流大于通过灯的电流
B.闭合开关后,灯先亮,灯后亮
C.闭合开关,待电路稳定后断开开关,通过灯的电流不大于原来的电流
D.闭合开关,待电路稳定后断开开关,通过灯的电流大于原来的电流
【答案】C
如图所示的电路中,电源的电动势为E,内阻为r,电感L的电阻不计,电阻R的阻值大于灯泡D的阻值,在时刻闭合开关S,经过一段时间后,在时刻断开S,下列表示A、B两点间电压随时间t变化的图像中,正确的是( )
【答案】B
著名物理学家弗曼曾设计过一个实验,如图所示.在一块绝缘板上中部安一个线圈,并接有电源,板的四周有许多带负电的小球,整个装置支撑起来.忽略各处的摩擦,当电源接通的瞬间下列关于圆盘的说法中,正确的是( )
A.圆盘将逆时针转动
B.圆盘将顺时针转动
C.圆盘不会转动
D.无法确定圆盘是否会动
【解析】瞬间增强的磁场会在周围产生一个顺时针的旋涡电场,负电荷受到逆时针方向的电场力,带动圆盘逆时针转动,而负电荷的这种定向运动则形成了顺时针的环形电流,故选项A正确.
【答案】A
如图所示,一闭合金属圆环用绝缘细线挂于O点,将圆环拉离平衡位置并释放,圆环摆动过程中经过有界的水平匀强磁场区域,A、B为该磁场的竖直边界.若不计空气阻力,则( )
A.圆环向右穿过磁场后,还能摆至原来的高度
B.在进入和离开磁场时,圆环中均有感应电流
C.圆环进入磁场后离平衡位置越近速度越大,感应电流也越大
D.圆环最终将静止在平衡位置
【解析】如题图所示,当圆环从1位置开始下落,进入和摆出磁场时(即2和3位置), 由于圆环内磁通量发生变化,所以有感应电流产生.同时,金属圆环本身有内阻,必然有能量的转化,即有能量的损失.因此圆环不会摆到4位置.随着圆环进出磁场,其能量逐渐减少,圆环摆动的振幅越来越小.当圆环只在匀强磁场中摆动时,圆环内无磁通量的变化,无感应电流产生,无机械能向电能的转化.题意中不存在空气阻力,摆线的拉力垂直于圆环的速度方向,拉力对圆环不做功,所以系统的能量守恒,所以圆环最终将在A、B间来回摆动.
【答案】B
【例15】如图,均匀磁场中有一由半圆弧及其直径构成的导线框,半圆直径与磁场边缘重合;磁场方向垂直于半圆面(纸面)向里,磁感应强度大小为B0.使该线框从静止开始绕过圆心O、垂直于半圆面的轴以角速度ω匀速转动半周,在线框中产生感应电流.现使线框保持图中所示位置,磁感应强度大小随时间线性变化.为了产生与线框转动半周过程中同样大小的电流,磁感应强度随时间的变化率的大小应为(  )
A.    B. C. D.
解析: 当线框绕过圆心O的转动轴以角速度ω匀速转动时,由于面积的变化产生感应电动势,从而产生感应电流.设半圆的半径为r,导线框的电阻为R,即I1=====.当线圈不动,磁感应强度变化时,I2====,因I1=I2,可得=,C选项正确.
答案: C
【例16】在竖直向上的匀强磁场中,水平放置一个不变形的单匝金属圆线圈,线圈所围的面积为0.1 m2,线圈电阻为1 Ω.规定线圈中感应电流I的正方向从上往下看是顺时针方向,如图甲所示.磁场的磁感应强度B随时间t的变化规律如图乙所示.则下列说法正确的是(  )
A.在时间0~5 s内,I的最大值为0.1 A
B.在第4 s时刻,I的方向为逆时针
C.前2 s内,通过线圈某截面的总电量为0.01 C
D.第3 s内,线圈的发热功率最大
解析: 根据B-t图象的斜率表示,由E==nSk,因此刚开始时,图象的斜率为0.1,代入得电源的电动势为0.01 V.电流为0.01 A,故A项错误;在第4 s时,根据楞次定律,电流为逆时针,故B项正确;由q=,代入得C项正确;第3 s内,B不变,故不产生感应电流,因此发热功率为零,D项错误.
答案: BC
【例17】半径为a右端开小口的导体圆环和长为2a的导体直杆,单位长度电阻均为R0.圆环水平固定放置,整个内部区域分布着竖直向下的匀强磁场,磁感应强度为B.杆在圆环上以速度v平行于直径CD向右做匀速直线运动,杆始终有两点与圆环良好接,从圆环中心O开始,杆的位置由θ确定,如图所示.则(  )
A.θ=0时,杆产生的电动势为2Bav
B.θ=时,杆产生的电动势为Bav
C.θ=0时,杆受的安培力大小为
D.θ=时,杆受的安培力大小为
解析: 当θ=0时,杆切割磁感线的有效长度l1=2a,所以杆产生的电动势E1=Bl1v=2Bav,选项A正确.此时杆上的电流I1==,杆受的安培力大小F1=BI1l1=,选项C错误.
当θ=时,杆切割磁感线的有效长度l2=2acos=a,杆产生的电动势E2=Bl2v=Bav,选项B错误.此时杆上的电流I2==,杆受的安培力大小F2=BI2l2=,选项D正确.
答案: AD
【例18】如图所示,水平放置的U形框架上接一个阻值为R0的电阻,放在垂直纸面向里的、场强大小为B的匀强磁场中,一个半径为L、质量为m的半圆形硬导体AC在水平向右的恒定拉力F作用下,由静止开始运动距离d后速度达到v,半圆形硬导体AC的电阻为r,其余电阻不计.下列说法正确的是(  )
A.此时AC两端电压为UAC=2BLv
B.此时AC两端电压为UAC=
C.此过程中电路产生的电热为Q=Fd-mv2
D.此过程中通过电阻R0的电荷量为q=
解析: AC的感应电动势为:E=2BLv,两端电压为UAC==,A错、B对;由功能关系得Fd=mv2+Q+Wμ,C错;此过程中平均感应电流为=,通过电阻R0的电荷量为q=Δt=,D对.
答案: BD
【例19】如图所示,一对光滑的平行金属导轨固定在同一水平面内,导轨间距l=0.5 m,左端接有阻值R=0.3 Ω的电阻.一质量m=0.1 kg,电阻r=0.1 Ω的金属棒MN放置在导轨上,整个装置置于竖直向上的匀强磁场中,磁场的磁感应强度B=0.4 T.棒在水平向右的外力作用下,由静止开始以a=2 m/s2的加速度做匀加速运动,当棒的位移x=9 m时撤去外力,棒继续运动一段距离后停下来,已知撤去外力前后回路中产生的焦耳热之比Q1∶Q2=2∶1.导轨足够长且电阻不计,棒在运动过程中始终与导轨垂直且两端与导轨保持良好接触.求:
(1)棒在匀加速运动过程中,通过电阻R的电荷量q;
(2)撤去外力后回路中产生的焦耳热Q2;
(3)外力做的功WF.
解析: (1)设棒匀加速运动的时间为Δt,回路的磁通量变化量为ΔΦ,回路中的平均感应电动势为,由法拉第电磁感应定律得
= ①
其中ΔΦ=Blx ②
设回路中的平均电流为,由闭合电路欧姆定律得
= ③
则通过电阻R的电荷量为q=Δt④
联立①②③④式,代入数据得
q=4.5 C. ⑤
(2)设撤去外力时棒的速度为v,对棒的匀加速运动过程,由运动学公式得
v2=2ax ⑥
设棒在撤去外力后的运动过程中安培力所做的功为W,由动能定理得
W=0-mv2 ⑦
撤去外力后回路中产生的焦耳热
Q2=-W ⑧
联立⑥⑦⑧式,代入数据得
Q2=1.8 J. ⑨
(3)由题意知,撤去外力前后回路中产生的焦耳热之比Q1∶Q2=2∶1,可得Q1=3.6 J ⑩
在棒运动的整个过程中,由功能关系可知WF=Q1+Q2
由⑨⑩ 式得WF=5.4 J.
答案: (1)4.5 C (2)1.8 J (3)5.4 J
教师版 3 / 14