高斯求和
【知识梳理】
若干个数排成一列称为数列。数列中的每一个数称为一项。其中第一项称为首项,最后一项称为末项,数列中项的个数称为项数。
从第二项开始,后项与其相邻的前项之差都相等的数列称为等差数列,后项与前项的差称为公差。
在这一章要用到两个非常重要的公式:“通项公式”和“项数公式”。
通项公式:第n项=首项+(项数-1)×公差
项数公式:项数=(末项-首项)÷公差+1
求和公式:总和=(首项+末项)×项数÷2
【精讲精练】
【例题1】 有一个数列:4,10,16,22.…,52.这个数列共有多少项?
【思路导航】容易看出这是一个等差数列,公差为6,首项是4,末项是52.要求项数,可直接带入项数公式进行计算。
项数=(52-4)÷6+1=9,即这个数列共有9项。
练习1:
等差数列中,首项=1.末项=39,公差=2.这个等差数列共有多少项?
有一个等差数列:2.5,8,11.…,101.这个等差数列共有多少项?
已知等差数列11.16,21.26,…,1001.这个等差数列共有多少项?
【例题2】有一等差数列:3.7,11.15,……,这个等差数列的第100项是多少?
【思路导航】这个等差数列的首项是3.公差是4,项数是100。要求第100项,可根据“末项=首项+公差×(项数-1)”进行计算。
第100项=3+4×(100-1)=399.
练习2:
一等差数列,首项=3.公差=2.项数=10,它的末项是多少?
求1.4,7,10……这个等差数列的第30项。
求等差数列2.6,10,14……的第100项。
【例题3】有这样一个数列:1、2、3、4、…、99、100。请求出这个数列所有项的和。
【思路导航】如果我们把1、2、3、4、…,99、100与列100、99、…、3、2、1相加,则得到(1+100)+(2+99)+(3+98)+…+(99+2)+(100+1),其中每个小括号内的两个数的和都是101.一共有100个101相加,所得的和就是所求数列的和的2倍,再除以2.就是所求数列的和。
1+2+3+…+99+100=(1+100)×100÷2=5050
上面的数列是一个等差数列,经研究发现,所有的等差数列都可以用下面的公式求和:
等差数列总和=(首项+末项)×项数÷2
★这个公式也叫做等差数列求和公式。
练习3:计算下面各题。
(1)1+2+3+…+49+50 (2)6+7+8+…+74+75 (3)100+99+98+…+61+60
(3)2+6+10+14+18+22 (4)5+10+15+20+…+195+200 (5)9+18+27+36+…+261+270
【例题5】计算(2+4+6+…+100)-(1+3+5+…+99)
【思路导航】容易发现,被减数与减数都是等差数列的和,因此,可以先分别求出它们各自的和,然后相减。
★进一步分析还可以发现,这两个数列其实是把1 ~ 100这100个数分成了奇数与偶数两个等差数列,每个数列都有50个项。因此,我们也可以把这两个数列中的每一项分别对应相减,可得到50个差,再求出所有差的和。
★(2+4+6+…+100)-(1+3+5+…+99)
=(2-1)+(4-3)+(6-5)+…+(100-99)
=1+1+1+…+1
=50
练习5:
用简便方法计算下面各题。
(2001+1999+1997+1995)-(2000+1998+1996+1994)
(2+4+6+…+2000)-(1+3+5+…+1999)
(1+3+5+…+1999)-(2+4+6+…+1998)
(4)(100+102+104+…+200)-(1+5+9+13+…+97)
6