首页
高中语文
高中数学
高中英语
高中物理
高中化学
高中历史
高中道德与法治(政治)
高中地理
高中生物
高中音乐
高中美术
高中体育
高中信息技术
高中通用技术
资源详情
高中数学
人教新课标A版
必修1
第二章 基本初等函数(Ⅰ)
2.1 指数函数
本节综合
【同步讲义】人教A版必修1 第3讲 指数函数及其性质的应用(解析版)
文档属性
名称
【同步讲义】人教A版必修1 第3讲 指数函数及其性质的应用(解析版)
格式
doc
文件大小
1.2MB
资源类型
试卷
版本资源
人教新课标A版
科目
数学
更新时间
2022-07-19 18:08:29
点击下载
图片预览
1
2
3
文档简介
中小学教育资源及组卷应用平台
第三讲 指数函数及其性质的应用
【学习目标】
1.理解指数函数的单调性与底数的关系(重点).
2.能运用指数函数的单调性解决一些问题(重、难点).
题型一 指数函数单调性的应用
方向1 比较两数的大小
【例1】 (1)下列大小关系正确的是( )
A.0.43<30.4<π0 B.0.43<π0<30.4
C.30.4<0.43<π0 D.π0<30.4<0.43
(2)设a=0.60.6,b=0.61.5,c=1.50.6,则a,b,c的大小关系是( )
A.a
C.b
解析 (1)0.43<0.40=1=π0=30<30.4,故选B.
(2)∵1.50.6>1. ( http: / / www.21cnjy.com )50=1,0.60.6<0.60=1,故1.50.6>0.60.6,又函数y=0.6x在(-∞,+∞)上是减函数,且1.5>0.6,所以0.61.5<0.60.6,故0.61.5<0.60.6<1.50.6,选C.21cnjy.com
答案 (1)B (2)C
方向2 解简单的指数不等式
【例2】 (1)不等式3x-1≤2的解集为________.
(2)已知a-5x>ax+7(a>0,且a≠1),求x的取值范围.
(1)解析 ∵2=-1,∴原不等式可化为3x-1≤-1,∵函数y=x在R上是减函数,∴3x-1≥-1,∴x≥0,故原不等式的解集是{x|x≥0}.www-2-1-cnjy-com
答案 {x|x≥0}
(2)解 当a>1时,∵a-5x>ax+7,∴-5x>x+7,解得x<-;
当0
ax+7,∴-5x
-.
综上所述,x的取值范围是:当a>1时,x<-;当0
-.
方向3 指数型函数的单调性
【例3】 判断f(x)=x2-2x的单调性,并求其值域.
解 令u=x2-2x,则原函数变为y=u.
∵u=x2-2x=(x-1)2-1在(-∞,1]上递减,在[1,+∞)上递增,
又∵y=u在(-∞,+∞)上递减,
∴y=x2-2x在(-∞,1]上递增,在[1,+∞)上递减.
∵u=x2-2x=(x-1)2-1≥-1,
∴y=u,u∈[-1,+∞),
∴0<u≤-1=3,
∴原函数的值域为(0,3].
规律方法 1.比较幂值大小的三种类型及处理方法
2.解指数不等式的类型及应注意的问题
(1)形如ax>ab的不等式,借助于函数y=ax的单调性求解,如果a的取值不确定,要对a分为0
1两种情况分类讨论.21·世纪*教育网
(2)形如ax>b的不等式,注意将b转化为以a为底数的指数幂的形式,再借助于函数y=ax的单调性求解.2-1-c-n-j-y
3.函数y=af(x)(a>0,a≠1)的单调性的处理技巧
当a>1时,y=af(x)与y=f(x)的单调性相同,当0
题型二 指数函数的实际应用
【例2】 某化工厂生产一种溶液,按市场要求,杂质含量不能超过0.1%,若初始溶液含杂质2%,每过滤一次可使杂质含量减少.21世纪教育网版权所有
(1)写出杂质含量y与过滤次数n的函数关系式;
(2)过滤7次后的杂质含量是多少?过滤8次后的杂质含量是多少?至少应过滤几次才能使产品达到市场要求?21·cn·jy·com
解 (1)过滤1次后的杂质含量为×=×;
过滤2次后的杂质含量为×=×2;
过滤3次后的杂质含量为×=×3;
…
过滤n次后的杂质含量为×n(n∈N*).
故y与n的函数关系式为y=×n(n∈N*).
(2)由(1)知当n=7时,y=×7=>,
当n=8时,y=×8=<,
所以至少应过滤8次才能使产品达到市场要求.
规律方法 指数函数在实际问题中的应用
(1)与实际生活有关的问题,求解时应准确读懂题意,从实际问题中提取出模型转化为数学问题.
(2)在实际问题中,经常会遇到指数增 ( http: / / www.21cnjy.com )长模型:设基数为N,平均增长率为p,则对于经过时间x后的总量y可以用y=N(1+p)x来表示,这是非常有用的函数模型.21教育网
【训练1】 春天来了,某池塘 ( http: / / www.21cnjy.com )中的荷花枝繁叶茂,已知每一天新长出荷叶覆盖水面面积是前一天的2倍,若荷叶20天可以完全长满池塘水面,当荷叶刚好覆盖水面面积一半时,荷叶已生长了________天.
解析 假设第一天荷叶覆盖水面面积为1,则荷 ( http: / / www.21cnjy.com )叶覆盖水面面积y与生长时间x的函数关系为y=2x-1,当x=20时,长满水面,所以生长19天时,荷叶布满水面一半.【来源:21·世纪·教育·网】
答案 19
题型三 指数函数性质的综合应用
【例3】 已知定义在R上的函数f(x)=a+是奇函数.
(1)求a的值;
(2)判断f(x)的单调性(不需要写出理由);
(3)若对任意的t∈R,不等式f(t2-2t)+f(2t2-k)<0恒成立,求实数k的取值范围.
解 (1)∵f(x)的定义域为R,且f(x)为奇函数,
∴f(0)=0,
即a+=0,a=-.
(2)由(1)知f(x)=-+,
故f(x)在R上为减函数.
(3)∵f(x)为奇函数,
∴f(t2-2t)+f(2t2-k)<0可化为f(t2-2t)
由(2)知f(x)在R上单调递减,
∴t2-2t>k-2t2,
即3t2-2t-k>0对于一切t∈R恒成立,
∴Δ=4+12k<0,得k<-,
∴k的取值范围是.
规律方法 解决指数函数性质的综合问题的注意点
(1)注意代数式的变形,如分式通分、因式分解、配方法、分母(或分子)有理化等变形技巧.
(2)解答函数问题注意应在函数定义域内进行.
(3)由于指数函数单调性与底数有关,因此要注意是否需要讨论.
【训练2】 已知函数f(x)=·x3.
(1)求f(x)的定义域;
(2)讨论f(x)的奇偶性;
(3)证明:f(x)>0.
(1)解 由题意得2x-1≠0,即x≠0,
∴f(x)的定义域为(-∞,0)∪(0,+∞).
(2)解 令g(x)=+=,φ(x)=x3.
∵g(-x)===-g(x),
∴g(x)为奇函数.
又∵φ(x)=x3为奇函数,
∴f(x)=·x3为偶函数.
(3)证明 当x>0时,2x>1,
∴2x-1>0,∴+>0.
∵x3>0,∴f(x)>0.
由偶函数的图象关于y轴对称,知当x<0时,f(x)>0也成立.故对于x∈(-∞,0)∪(0,+∞),恒有f(x)>0.
课堂小结
1.比较两个指数式值大小的主要方法
(1)比较形如am与an的大小,可运用指数函数y=ax的单调性.
(2)比较形如am与bn的大小,一般找一个“中间值c”,若am<c且c<bn,则am<bn;若am>c且c>bn,则am>bn.www.21-cn-jy.com
2.解简单指数不等式问题的注意点
(1)形如ax>ay的不等式,可借助y=ax的单调性求解.如果a的值不确定,需分0
1两种情况进行讨论.2·1·c·n·j·y
(2)形如ax>b的不等式,注意将b化为以a为底的指数幂的形式,再借助y=ax的单调性求解.
(3)形如ax>bx的不等式,可借助图象求解.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)
点击下载
同课章节目录
第一章 集合与函数概念
1.1 集合
1.2 函数及其表示
1.3 函数的基本性质
第二章 基本初等函数(Ⅰ)
2.1 指数函数
2.2 对数函数
2.3 幂函数
第三章 函数的应用
3.1 函数与方程
3.2 函数模型及其应用
点击下载
VIP下载