中小学教育资源及组卷应用平台
第三讲 几类不同增长的函数模型
一、选择题
1.下面对函数f(x)=logx、g(x)=x,与h(x)=x-在区间(0,+∞)上的衰减情况说法正确的是( )
A.f(x)衰减速度越来越慢,g(x)衰减速度越来越快,h(x)衰减速度越来越慢
B.f(x)衰减速度越来越快,g(x)衰减速度越来越慢,h(x)衰减速度越来越快
C.f(x)衰减速度越来越慢,g(x)衰减速度越来越慢,h(x)衰减速度越来越慢
D.f(x)衰减速度越来越快,g(x)衰减速度越来越快,h(x)衰减速度越来越快
2.y1=2x,y2=x2,y3=log2x,当2A.y1>y2>y3 B.y2>y1>y3
C.y1>y3>y2 D.y2>y3>y1
3.有一组实验数据如下表所示:
t 1 2 3 4 5
s 1.5 5.9 13.4 24.1 37
下列所给函数模型较适合的是( )
A.y=logax(a>1) B.y=ax+b(a>1)
C.y=ax2+b(a>0) D.y=logax+b(a>1)
4.若x∈(0,1),则下列结论正确的是( )
A.2x>x>lg x B.2x>lg x>x
C.x>2x>lg x D.lg x>x>2x
5.某林区的森林蓄积量每年比上一年平均增长10.4%,要增长到原来的x倍,需经过y年,则函数y=f(x)的图象大致为( )21·cn·jy·com
二、填空题
6.以下是三个变量y1,y2,y3随变量x变化的函数值表:
x 1 2 3 4 5 6 7 8 …
y1 2 4 8 16 32 64 128 256 …
y2 1 4 9 16 25 36 49 64 …
y3 0 1 1.585 2 2.322 2.585 2.807 3 …
其中,关于x呈指数函数变化的函数是________.
7.某工厂8年来某种产品的总产量C与时间t(年)的函数关系如图所示.
以下四种说法:
①前三年产量增长的速度越来越快;
②前三年产量增长的速度越来越慢;
③第三年后这种产品停止生产;
④第三年后产量保持不变.
其中说法正确的序号是________.
8.表示一位骑自行车和一位骑摩托车的旅行者在 ( http: / / www.21cnjy.com )相距80 km的甲、乙两城间从甲城到乙城所行驶的路程与时间之间的函数关系,有人根据函数图象,提出了关于这两个旅行者的如下信息:21世纪教育网版权所有
①骑自行车者比骑摩托车者早出发3 h,晚到1 h;
②骑自行车者是变速运动,骑摩托车者是匀速运动;
③骑摩托车者在出发1.5 h后追上了骑自行车者;
④骑摩托车者在出发1.5 h后与骑自行车者速度一样.
其中,正确信息的序号是________.
三、解答题
9.函数f(x)=1.1x,g(x)=ln x+1,h(x)=x的图象如图所示,试分别指出各曲线对应的函数,并比较三个函数的增长差异(以1,a,b,c,d,e为分界点).21教育网
10.某工厂今年1月、2 ( http: / / www.21cnjy.com )月、3月生产某种产品分别为1万件、1.2万件、1.3万件.为了估计以后每个月的产量,以这3个月的产品数量为依据,用一个函数来模拟该产品的月产量y与月份x的关系.模拟函数可以选用二次函数或函数y=a·bx+c(a,b,c为常数).已知4月份该产品的产量为1.37万件,试问用以上哪个函数作为模拟函数较好.并说明理由.21cnjy.com
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
第三讲 几类不同增长的函数模型
一、选择题
1.下面对函数f(x)=logx、g(x)=x,与h(x)=x-在区间(0,+∞)上的衰减情况说法正确的是( )
A.f(x)衰减速度越来越慢,g(x)衰减速度越来越快,h(x)衰减速度越来越慢
B.f(x)衰减速度越来越快,g(x)衰减速度越来越慢,h(x)衰减速度越来越快
C.f(x)衰减速度越来越慢,g(x)衰减速度越来越慢,h(x)衰减速度越来越慢
D.f(x)衰减速度越来越快,g(x)衰减速度越来越快,h(x)衰减速度越来越快
【答案】选C 观察函数f(x)=logx、g(x)=x与h(x)=x在区间(0,+∞)上的图象如图可知:
函数f(x)的图象在区间(0,1)上递减较 ( http: / / www.21cnjy.com )快,但递减速度逐渐变慢;在区间(1,+∞)上,递减较慢,且越来越慢;同样,函数g(x)的图象在区间(0,+∞)上,递减较慢,且递减速度越来越慢;函数h(x)的图象在区间(0,1)上递减较快,但递减速度变慢;在区间(1,+∞)上,递减较慢,且越来越慢.故选C.
2.y1=2x,y2=x2,y3=log2x,当2A.y1>y2>y3 B.y2>y1>y3
C.y1>y3>y2 D.y2>y3>y1
【答案】选B 在同一平面直 ( http: / / www.21cnjy.com )角坐标系内画出这三个函数的图象(图略),在区间(2,4)内,从上到下图象依次对应的函数为y2=x2,y1=2x,y3=log2x,故y2>y1>y3.21·cn·jy·com
3.有一组实验数据如下表所示:
t 1 2 3 4 5
s 1.5 5.9 13.4 24.1 37
下列所给函数模型较适合的是( )
A.y=logax(a>1) B.y=ax+b(a>1)
C.y=ax2+b(a>0) D.y=logax+b(a>1)
【答案】选C 通过所给数据可知s随t增大,其增长速度越来越快,而A,D中的函数增长速度越来越慢,而B中的函数增长速度保持不变,故选C.21cnjy.com
4.若x∈(0,1),则下列结论正确的是( )
A.2x>x>lg x B.2x>lg x>x
C.x>2x>lg x D.lg x>x>2x
【答案】选A 结合y=2x,y=x及y=lg x的图象易知,当x∈(0,1)时,2x>x>lg x.
5.某林区的森林蓄积量每年比上一年平均增长10.4%,要增长到原来的x倍,需经过y年,则函数y=f(x)的图象大致为( )21世纪教育网版权所有
【答案】选D 设该林区的森林原有蓄积 ( http: / / www.21cnjy.com )量为a,由题意可得ax=a(1+0.104)y,故y=log1.104x(x≥1),函数为对数函数,所以函数y=f(x)的图象大致为D中图象,故选D.www.21-cn-jy.com
二、填空题
6.以下是三个变量y1,y2,y3随变量x变化的函数值表:
x 1 2 3 4 5 6 7 8 …
y1 2 4 8 16 32 64 128 256 …
y2 1 4 9 16 25 36 49 64 …
y3 0 1 1.585 2 2.322 2.585 2.807 3 …
其中,关于x呈指数函数变化的函数是________.
解析:从表格可以看出,三 ( http: / / www.21cnjy.com )个变量y1,y2,y3都是越来越大,但是增长速度不同,其中变量y1的增长速度最快,画出它们的图象(图略),可知变量y1呈指数函数变化,故填y1.21世纪教育网21教育网
答案:y1
7.某工厂8年来某种产品的总产量C与时间t(年)的函数关系如图所示.
以下四种说法:
①前三年产量增长的速度越来越快;
②前三年产量增长的速度越来越慢;
③第三年后这种产品停止生产;
④第三年后产量保持不变.
其中说法正确的序号是________.
解析:由t∈[0,3]的图象 ( http: / / www.21cnjy.com )联想到幂函数y=xα(0<α<1),反映了C随时间的变化而逐渐增长但速度越来越慢.由t∈[3,8]的图象可知,总产量C没有变化,即第三年后停产,所以②③正确.
答案:②③
8.表示一位骑自行车和一位骑摩托车的旅行者 ( http: / / www.21cnjy.com )在相距80 km的甲、乙两城间从甲城到乙城所行驶的路程与时间之间的函数关系,有人根据函数图象,提出了关于这两个旅行者的如下信息:2·1·c·n·j·y
①骑自行车者比骑摩托车者早出发3 h,晚到1 h;
②骑自行车者是变速运动,骑摩托车者是匀速运动;
③骑摩托车者在出发1.5 h后追上了骑自行车者;
④骑摩托车者在出发1.5 h后与骑自行车者速度一样.
其中,正确信息的序号是________.
解析:看时间轴易知①正确 ( http: / / www.21cnjy.com );骑摩托车者行驶的路程与时间的函数图象是直线,所以是匀速运动,而骑自行车者行驶的路程与时间的函数图象是折线,所以是变速运动,因此②正确;两条曲线的交点的横坐标对应着4.5,故③正确;④错误.【来源:21·世纪·教育·网】
答案:①②③
三、解答题
9.函数f(x)=1.1x,g(x)=ln x+1,h(x)=x的图象如图所示,试分别指出各曲线对应的函数,并比较三个函数的增长差异(以1,a,b,c,d,e为分界点).21·世纪*教育网
解:由指数爆炸、对数增长、幂函数增长的差异可得曲线C1对应的函数是f(x)=1.1x,曲线C2对应的函数是h(x)=x,曲线C3对应的函数是g(x)=ln x+1.2-1-c-n-j-y
由题图知,当x<1时,f(x)>h(x)>g(x);
当1g(x)>h(x);
当ef(x)>h(x);
当ah(x)>f(x);
当bg(x)>f(x);
当cf(x)>g(x);
当x>d时,f(x)>h(x)>g(x).
10.某工厂今年1月、2月、3月生产某 ( http: / / www.21cnjy.com )种产品分别为1万件、1.2万件、1.3万件.为了估计以后每个月的产量,以这3个月的产品数量为依据,用一个函数来模拟该产品的月产量y与月份x的关系.模拟函数可以选用二次函数或函数y=a·bx+c(a,b,c为常数).已知4月份该产品的产量为1.37万件,试问用以上哪个函数作为模拟函数较好.并说明理由.www-2-1-cnjy-com
解:设两个函数:
y1=f(x)=px2+qx+r(p≠0),
y2=g(x)=a·bx+c.
依题意,
解得
∴y1=f(x)=-0.05x2+0.35x+0.7,
∴f(4)=1.3(万件).
依题意,
解得
∴y2=g(x)=-0.8×0.5x+1.4.
∴g(4)=-0.8×0.54+1.4=1.35(万件).
经比较,g(4)=1.35万件比f(4)=1.3万件更接近于4月份的产量1.37万件.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)