高中数学人教新课标B版必修2--《1.2.3 空间中的垂直关系》教学设计2

文档属性

名称 高中数学人教新课标B版必修2--《1.2.3 空间中的垂直关系》教学设计2
格式 doc
文件大小 131.2KB
资源类型 教案
版本资源 人教新课标B版
科目 数学
更新时间 2022-07-24 22:17:48

图片预览

文档简介

《直线与平面垂直的判定》教学设计
使用教材:人教社B版教材必修2
【教学目标】
1.学生能借助直线与平面垂直的具体实例,解释“直线与平面垂直”的含义;
2.学生能通过参与折纸试验,归纳和确认直线与平面垂直的判定定理;
3.在对定义和判定定理的探究和运用的过程中,体会线线垂直与线面垂直相互转化的数学思想;
【教学重点】
1.直线与平面垂直的定义;
2.直线与平面垂直的判定定理.
【教学难点】
1.直线与平面垂直的判定定理的探究;
2.定义和定理中转化思想的挖掘.
【教学方式】 启发探究式
【教学手段】 计算机、自制课件、实物模型
【教学过程】
一、创设情境,引出新知
1.复习空间直线与平面的位置关系,学生通过举例感知生活中直线与平面相交的位置关系,在此基础上提出本节课将重点研究线面的垂直关系.
设计意图:从已有知识中引出新的学习问题,激发学生学习数学的兴趣.
2.给出学生熟悉的图片,引导他们观察国旗旗杆与地面的位置关系,广播塔与地面的位置关系,火箭与地面的位置关系等。然后引出:
问题1:将国旗旗杆与地面上的影子抽象为几何图形,再用数学语言对几何图形进行精确描述,从而引出——
直线与平面垂直的定义:如果直线与平面内的任意一条直线都垂直,我们就说直线与平面互相垂直.
设计意图:通过“具体形象——几何图形——数学语言”的学习过程,引导学生体会定义的合理性.
3.线面垂直定义的辨析
(1)说明直线与平面垂直的画法;介绍相关概念:垂面,垂线,垂足。
(2)提出辨析问题:能否将定义中的“任意一条直线”换成“一条直线或有限条直线或无数条直线”,并举例说明。
(3)如何说明一条直线与一个平面不垂直?只需找到这条直线与这个平面内一条直线不垂直即可,即“一票否决”.
设计意图:通过定义辨析,加强对定义中“任意一条直线”的正确认识.
二、群策群力,探知循规
任意一个定义既可用作性质,即如果已知一条直线与一个平面垂直,那么这条直线垂直于平面内任意一条直线;又可用作判定,即要证一条直线与一个平面垂直,需要满足平面内的每一条直线都与该直线垂直,由于平面内有无数条直线,所以若用定义来判断直线与平面垂直,有时是困难的,甚至是无法完成的,是否有更简洁的判断方法呢?引出课题:2.2.3直线与平面垂直的判定.
试验:准备一个三角形纸片,三个顶点分别记作A,,.如图,过△的顶点折叠纸片,得到折痕,将折叠后的纸片打开竖起放置在桌面上.(使、边与桌面接触)
问题:2:折痕与桌面一定垂直吗?
追问:为什么图2中折痕不一定与桌面垂直?(引导学生根据定义进行回答)
设计意图:从另一个角度理解定义:如果想说明一条直线与平面不垂直,只需要在平面内找到一条直线与它不垂直就够了,实际上就是举反例.
问题3:如何翻折才能使折痕与桌面所在的平面垂直?
追问:为什么图1中折痕AD与桌面是垂直的?(引导学生根据定义进行确认)
(1)组织学生以小组的形式探究讨论:折叠图形1不论在桌面上如何平移和转动,折痕AD与桌面的垂直关系为什么始终不变?
(2)在学生讨论的基础上教师用课件进行动画演示(如右图),以折痕为轴转动纸片,来说明与平面内过点的所有直线都垂直,平面内不过点的直线,可以通过平移到点,说明它们与都垂直,于是符合直线与平面垂直的定义.
在学生感知直线与平面垂直的判定定理的基础上,进一步引导学生对判定定理中两个关键条件“双垂直”和“相交”进行理解和确认.
(3)引导学生从文字语言、符号语言、图形语言三个方面表述直线和平面垂直的判定定理.
文字语言:一条直线与一个平面内的两条相交直线都垂直,则该直线与此平面垂直.
强调:两条相交直线,必须满足,不可忽略.
图形语言:
符号语言:,,,,.
设计意图:通过折纸试验,让学生在发现定理的过程中,先通过直观感知, 再操作确认并理性说明,以提高几何直观能力和理性说理能力.
三、迁移拓展,学以致用
1.基础练习,规范格式
(1)正方体中,棱是什么位置关系,它们和底面垂直吗?
(2)变式:已知:,, 求证:.
分析:(1)教师引导学生完成说理过程,注意规范语言. (2)欲证线面垂直,需证线与面内两条相交直线垂直;而已知线面垂直,可得线线垂直,所以,在平面内可作两条相交直线为辅助线,命题可证.
证明:在平面内作两条相交直线.因为直线,
根据直线与平面垂直的定义知.
又因为,所以 ,.
又因为,,,是两条相交直线,所以 .
方法二:引导学生用定义证明,并全班集体共同整理思路.
设计意图:此题两问都是对判定定理的直接应用,第一个问题中通过观察即可得到定理的条件,目的是进一步强化定理的条件以及定理在应用过程中的准确表述;第二个问题中强调线面垂直与线线垂直的相互转化.此题重视对学生思维策略的引导和启发,培养学生的逻辑推理能力;同时规范证明题的书写.
2.深化认识,提升能力
如图,在直四棱柱ABCD—A B C D 中,已知底面ABCD为正方形,
(1)试判断直线BD与平面A AC是否垂直?
(2)试判断直线BD与A C是否垂直?
解析:
(2)由(1)的结论知:BD与A C垂直.
变式:如图,直四棱柱(侧棱与底面垂直的棱柱称为直棱柱)中,
(1)底面四边形ABCD满足什么条件时,
(2)底面四边形ABCD满足什么条件时,
分析:要证线线垂直,只需满足线面垂直,而要满足线面垂直,还需线线直,体现数学中线线垂直与线面垂直相互转化的思想.
设计意图:本题为课本第66页的探究题,本题思路跳跃性较大,如果直接让学生去做就会有一部分学生比较困难,产生畏难情绪,所以在探究之前先搭建两个台阶,这样学生思维活动就比较平缓,大部分学生都能顺利探究出问题答案,从而树立学生学习数学的自信心。
四、自我总结,系统梳理
1.学习小结:从知识和方法两个方面进行.
知识方面:线面垂直的定义(1∞1)、线面垂直的判定定理(121).方法方面:转化思想.概括为:1-1-1
2.布置作业:
(1)阅读课本相关内容进行复习;
(2)做课本79页复习参考题A组第10题,B组第1题;
(3)完成课本66页课后探究题并写出规范步骤.