人教新课标A版选修4-4 直线的参数方程 教学设计

文档属性

名称 人教新课标A版选修4-4 直线的参数方程 教学设计
格式 doc
文件大小 201.8KB
资源类型 教案
版本资源 人教新课标A版
科目 数学
更新时间 2022-07-25 08:25:47

图片预览

文档简介

直线的参数方程
教学目标:
1. 联系向量等知识,推导出直线的参数方程,并进行简单应用
2.通过直线参数方程的推导与应用,培养综合运用所学知识分析问题和解决问题的能力,进一步体会运动与变化、数形结合、转化、从特殊到一般的推理等数学思想.
3. 通过建立直线参数方程的过程,激发求知欲,培养积极探索、勇于钻研的科学精神、严谨的科学态度、合作学习的习惯.
教学重点:联系向量等知识,写出直线的参数方程.
教学难点:参数t的几何意义的推导与理解.
教学过程:
预备知识
1.已知直线经过点 ,倾斜角为()的直线方程为
2.向量与非零向量共线的充要条件是存在唯一实数λ,使得.
3.直线l的方向向量是指与直线l平行的非零向量
4.单位向量:长度为1的向量.
5.倾斜角为α的直线的单位方向向量为:
探究一:建立直线的参数方程
已知直线上一点,直线的倾斜角为,直线上的的动点,设为直线的单位方向向量(单位长度与坐标轴的单位长度相同),那么我们能写出直线的参数方程吗?
探究过程:
,所以存在实数,使即
直线的标准参数方程为
思考:(1)直线的参数方程中哪些是常量?哪些是变量?
参数t的取值范围是什么?
(3)该参数方程形式上有什么特点?
当堂检测:
1.写出下列直线的倾斜角
2.(1)求过点(1,1),倾斜角为135o的直线的参数方程.
(2)求过(-3,2),倾斜角为的直线的参数方程.
探究二:直线参数方程参数的几何意义
由,你能得到直线的参数方程(为参数)中参数的几何意义吗?
探究过程:,
参数的绝对值等于直线上动点到定点的距离.
若则方向向上;若则方向向下;若则点与重合;
例题讲练:
例1:已知直线与抛物线交于A,B两点,求线段AB的长度和点到A,B两点的距离之积.
思考:(1)如何写出直线l的参数方程呢?
(2)如何写出交点A,B所对应的参数t1, t2呢?
(3)| MA|, | MB|与t1, t2有什么关系?
(4)怎样求线段|AB|的长?
解析:直线过定点且倾斜角为,所以它的参数方程为, 把它代入抛物线的方程,得

由参数的几何意义得: ,
课堂练习:
已知抛物线的焦点为,直线的参数方程为
且与抛物线交于A, B两点.
(1)求; (2)求的中点的坐标及.
课堂小结:
直线参数方程的标准式
直线参数方程的应用
课后作业:
1.经过点M(1,5)且倾斜角为的直线,以定点M到动 点P的位移t为参数的参数方程是( )
A. B. C. D.
2、直线上与点距离等于的点的坐标是 .
3、直线与圆相切,则______
4、经过点P( 1,2),倾斜角为 的直线 l与圆 x2 +y2 = 9相交于A,B两点,求PA +PB和的值。
PAGE
3