中小学教育资源及组卷应用平台
第二十一章《一元二次方程》单元检测题
题号 一 二 三 总分
19 20 21 22 23 24
分数
一.选择题(共10小题,每题3分,共30分)
1.把方程x2+2x=5(x﹣2)化成ax2+bx+c=0的形式,则a,b,c的值分别为( )
A.1,﹣3,2 B.1,7,﹣10 C.1,﹣5,12 D.1,﹣3,10
2.关于x的方程(m﹣2)+x=0是一元二次方程,则m的值是( )
A.﹣2 B.±2 C.3 D.±3
3.若a是关于x的方程3x2﹣x﹣1=0的一个根,则2021﹣6a2+2a的值是( )
A.2023 B.2022 C.2020 D.2019
4.已知一元二次方程x2﹣10x+24=0的两个根是菱形的两条对角线长,则这个菱形的面积为( )
A.6 B.10 C.12 D.24
5.如果关于x的一元二次方程k2x2﹣(2k+1)x+1=0有两个实数根,那么k的取值范围是( )
A.k≥﹣ B.k≥﹣且k≠0 C.k<﹣ D.k>﹣且k≠0
6.已知三角形两边长分别为2和9,第三边的长为二次方程x2﹣14x+48=0的根,则这个三角形的周长为( )
A.11 B.17 C.17或19 D.19
7.下列说法中正确的是( )
A.方程x2﹣8=0有两个相等的实数根
B.方程5x2=﹣2x没有实数根
C.如果一元二次方程ax2+bx+c=0有两个实数根,那么△=0
D.如果a、c异号,那么方程ax2+bx+c=0有两个不相等的实数根
8.若一元二次方程(1﹣2k)x2+12x﹣10=0有实数根,则k的最大整数值为( )
A.1 B.2 C.﹣1 D.0
9.方程2x2﹣3x+1=0化为(x+a)2=b的形式,正确的是( )
A.(x﹣)2=16 B.2(x﹣)2=
C.(x﹣)2= D.以上都不对
10.《生物多样性公约》第十五次缔约方大会(COP15)将于2021年5月17日至30日在云南省昆明市举办、昆明某景观园林公司为迎接大会召开,计划在一个长为32m,宽为20m的矩形场地ABCD(如图所示)上修建三条同样宽的道路,使其中两条与AB平行、另一条与AD平行,其余部分种草坪,若使每一块草坪的面积为95m2,求道路的宽度、若设道路的宽度为xm,则x满足的方程为( )
A.(32﹣x)(20﹣x)=95 B.(32﹣2x)(20﹣x)=95
C.(32﹣x)(20﹣x)=95×6 D.(32﹣2x)(20﹣x)=95×6
二、填空题(每题3分,共24分)
11. 如果一元二次方程x2-6x+8=0可以化成(x-a)2=b的形式,则ab= .
12. 对于实数a,b,定义运算“◎”如下:a◎b=(a+b)2-(a-b)2.若(m+2)◎(m-3)=24,则m= .
13. 如果关于x的一元二次方程ax2-x-=0(a≠0)有两个不相等的实数根,则点P(a+1,-a-3)在第 象限.
14. 关于x的方程a(x+m)2+b=0的解是x1=2,x2=-1(a,b,m均为常数,且a≠0),则a(2x+m-1)2+b=0的解是 .
15. 已知关于x的一元二次方程x2+2x+k+1=0的实数解是x1和x2.如果x1+x2-x1x2<-1,且k为负整数,则k的值为 .
16. 为了宣传环保,小明写了一篇倡议书,决定用微博转发的方式传播,他设计了如下的传播规则:将倡议书发表在自己的微博上,再邀请n个好友转发倡议书,每个好友转发倡议书之后,又邀请n个互不相同的好友转发倡议书,依此类推,已知经过两轮传播后,共有111人参与了传播活动,则n= .
17. 小明在月历的一个竖列上勾出三个相邻的数,这三个数两两相乘后,再求和,得194,则这三个日期分别是 .
18. 你知道吗,对于一元二次方程,我国古代数学家还研究过其几何解法呢!以方程x2+5x-14=0即x(x+5)=14为例加以说明.数学家赵爽(公元3~4世纪)在其所著的《勾股圆方图注》中记载的方法是:构造图(如下面左图)中大正方形的面积是(x+x+5)2,其中它又等于四个矩形的面积加上中间小正方形的面积,即4×14+52,据此易得x=2.那么在下面右边三个构图(矩形的顶点均落在边长为1的小正方形网格格点上)中,能够说明方程x2-4x-12=0的正确构图是 .(只填序号)
三.解答题(共46分,19题6分,20 ---24题8分)
19.解方程:
(1)x2+2x﹣3=0; (2)2(5x﹣1)2=5(5x﹣1);
(3)(x+3)2﹣(2x﹣3)2=0; (4)3x2﹣4x﹣1=0.
20.已知关于x的方程x2+mx﹣6=0的一个根为2,求方程的另一个根.
21.已知关于x的一元二次方程x2﹣(2k﹣2)x+k2=0有两个实数根x1,x2.
(1)求实数k的取值范围;
(2)若方程的两实数根x1,x2满足|x1+x2|=x1x2﹣22,求k的值.
22.已知等腰三角形的三边长分别为a,b,4,且a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,求m的值.
23.如图,一块长5米宽4米的地毯,为了美观设计了两横、两纵的配色条纹(图中阴影部分),已知配色条纹的宽度相同,所占面积是整个地毯面积的.
(1)求配色条纹的宽度;
(2)如果地毯配色条纹部分每平方米造价200元,其余部分每平方米造价100元,求地毯的总造价.
24.“杂交水稻之父”﹣﹣袁隆平先生所率领的科研团队在增产攻坚第一阶段实现水稻亩产量700公斤的目标,第三阶段实现水稻亩产量1008公斤的目标.
(1)如果第二阶段、第三阶段亩产量的增长率相同,求亩产量的平均增长率;
(2)按照(1)中亩产量增长率,科研团队期望第四阶段水稻亩产量达到1200公斤,请通过计算说明他们的目标能否实现.
参考答案与试题解析
1. 选择题(共10小题)
题号 1 2 3 4 5 6 7 8 9 10
答案 D D D C B D D B C C
二.填空题(共8小题)
11. 3
12. -3或4
13. 四
14. x1=,x2=0
15. -1
16. 10
17. 2,9,16
18. ②
三.解答题(共7小题)
19.解:(1)分解因式得:(x+3)(x﹣1)=0,
可得x+3=0或x﹣1=0,
解得:x1=﹣3,x2=1;
(2)方程整理得:2(5x﹣1)2﹣5(5x﹣1)=0,
分解因式得:(5x﹣1)[2(5x﹣1)﹣5]=0,
可得5x﹣1=0或10x﹣7=0,
解得:x1=0.2,x2=0.7;
(3)分解因式得:(x+3+2x﹣3)(x+3﹣2x+3)=0,
可得3x=0或﹣x+6=0,
解得:x1=0,x2=6;
(4)这里a=3,b=﹣4,c=﹣1,
∵△=16+12=28>0,
∴x==,
解得:x1=,x2=.
20.解:设方程另一个根为x1,
根据题意得2x1=﹣6,解得x1=﹣3,
即方程的另一个根是﹣3.
21.解:(1)∵方程有两个实数根x1,x2,
∴△=(2k﹣2)2﹣4k2≥0,
解得k≤;
(2)由根与系数关系知:x1+x2=2k﹣2,x1x2=k2,
∵k≤,
∴2k﹣2<0,
又|x1+x2|=x1x2﹣1,代入得,|2k﹣2|=k2﹣22,可化简为:k2+2k﹣24=0.
解得k=4(不合题意,舍去)或k=﹣6,
∴k=﹣6.
22.解:当a=4时,
∵a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,
∴4+b=12,
∴b=8,
而4+4≠0,不符合题意;
当b=4时,
∵a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,
∴4+a=12,
而4+4=8,不符合题意;
当a=b时,
∵a,b是关于x的一元二次方程x2﹣12x+m+2=0的两根,
∴12=a+b,解得a=b=6,
∴m+2=36,
∴m=34.
23.解:(1)设条纹的宽度为x米.依题意得
2x×5+2x×4﹣4x2=×5×4,
解得:x1=(不符合,舍去),x2=.
答:配色条纹宽度为米.
(2)条纹造价:×5×4×200=850(元)
其余部分造价:(1﹣)×4×5×100=1575(元)
∴总造价为:850+1575=2425(元)
答:地毯的总造价是2425元.
24.解:(1)设亩产量的平均增长率为x,
依题意得:700(1+x)2=1008,
解得:x1=0.2=20%,x2=﹣2.2(不合题意,舍去).
答:亩产量的平均增长率为20%.
(2)1008×(1+20%)=1209.6(公斤).
∵1209.6>1200,
∴他们的目标能实现.