人教版七年级数学上册导学案

文档属性

名称 人教版七年级数学上册导学案
格式 zip
文件大小 1.5MB
资源类型 教案
版本资源 人教版(新课程标准)
科目 数学
更新时间 2013-08-24 09:08:40

图片预览

文档简介

七年级上册数学第一章导学案
第1学时
内容:正数和负数(1)
学习目标:
1、整理前两个学段学过的整数、分数(小数)知识,掌握正数和负数概念.
2、会区分两种不同意义的量,会用符号表示正数和负数.
3、体验数学发展是生活实际的需要,激发学生学习数学的兴趣.
学习重点:两种意义相反的量
学习难点:正确会区分两种不同意义的量
教学方法:引导、探究、归纳与练习相结合
教学过程
一、学前准备
1、小学里学过哪些数请写出来: 、 、 .
2、在生活中,仅有整数和分数够用了吗?有没有比0小的数?如果有,那叫做什么数?
3、阅读课本P1和P2三幅图(重点是三个例子,边阅读边思考)
回答上面提出的问题: .
二、探究新知
1、正数与负数的产生
1)、生活中具有相反意义的量
如:运进5吨与运出3吨;上升7米与下降8米;向东50米与向西47米等都是生活中遇到的具有相反意义的量.
请你也举一个具有相反意义量的例子: .
2)负数的产生同样是生活和生产的需要
2、正数和负数的表示方法
1)一般地,我们把上升、运进、零上、收入、前进、高出等规定为正的,而与它相反的量,如:下降、运出、零下、支出、后退、低于等规定为负的。正的量就用小学里学过的数表示,有时也在它前面放上一个“+”(读作正)号,如前面的5、7、50;负的量用小学学过的数前面放上“—”(读作负)号来表示,如上面的—3、—8、—47。
2)活动 两个同学为一组,一同学任意说意义相反的两个量,另一个同学用正负数表示.
3)阅读P3练习前的内容
3、正数、负数的概念
1)大于0的数叫做 ,小于0的数叫做 。
2)正数是大于0的数,负数是 的数,0既不是正数也不是负数。
3)练习 P3第一题到第四题(直接做在课本上)
三、练习
1、读出下列各数,指出其中哪些是正数,哪些是负数?
—2, 0.6, +, 0, —3.1415, 200, —754200,
2、举出几对(至少两对)具有相反意义的量,并分别用正、负数表示
四、应用迁移,巩固提高(A组为必做题)
A组 1.任意写出5个正数:________________;任意写出5个负数:_______________.
2.小明的姐姐在银行工作,她把存入3万元记作+3万元,那么支取2万元应记作_______,-4万元表示________________.
3.已知下列各数:,,3.14,+3065,0,-239.
则正数有_____________________;负数有____________________.
4.如果向东为正,那么 -50m表示的意义是………………………( )
A.向东行进50m C.向北行进50m
B.向南行进50m D.向西行进50m
5.下列结论中正确的是 …………………………………………( )
A.0既是正数,又是负数 B.O是最小的正数
C.0是最大的负数 D.0既不是正数,也不是负数
6.给出下列各数:-3,0,+5,,+3.1,,2004,+2008.
其中是负数的有 ……………………………………………………( )
A.2个 B.3个 C.4个 D.5个
B组
1.零下15℃,表示为_________,比O℃低4℃的温度是_________.
2.地图上标有甲地海拔高度30米,乙地海拔高度为20米,丙地海拔高度为-5米,其中最高处为_______地,最低处为_______地.
3.“甲比乙大-3岁”表示的意义是______________________.
C组
1.写出比O小4的数,比4小2的数,比-4小2的数.
2.如果海平面的高度为0米,一潜水艇在海水下40米处航行,一条鲨鱼在潜水艇上方10米处游动,试用正负数分别表示潜水艇和鲨鱼的高度.
第2学时
内容:正数和负数(2)
学习目标:
1、会用正、负数表示具有相反意义的量.
2、通过正、负数学习,培养学生应用数学知识的意识.
3、通过探究,渗透对立统一的辨证思想
学习重点:用正、负数表示具有相反意义的量
学习难点:实际问题中的数量关系
教学方法:讲练相结合
教学过程
一、.学前准备
通过上节课的学习,我们知道在实际生产和生活中存在着两种不同意义的量,为了区分它们,我们用正数和负数来分别表示它们.
问题1:“零”为什么即不是正数也不是负数呢
引导学生思考讨论,借助举例说明.
参考例子:温度表示中的零上,零下和零度.
二.探究理解 解决问题
问题2:(教科书第4页例题)
先引导学生分析,再让学生独立完成
例 (1)一个月内,小明体重增加2kg,小华体重减少1kg,小强体重无变化,写出他们这个月的体重增长值;
(2)2009年下列国家的商品进出口总额比上一年的变化情况是:
美国减少6.4%, 德国增长1.3%,
法国减少2.4%, 英国减少3.5%,
意大利增长0.2%, 中国增长7.5%.
写出这些国家2009年商品进出口总额的增长率.
解:(1)这个月小明体重增长2kg,小华体重增长-1kg,小强体重增长0kg.
(2)六个国家2009年商品进出口总额的增长率:
美国-6.4%, 德国1.3%,
法国-2.4%, 英国-3.5%,
意大利0.2%, 中国7.5%.
三、巩固练习
从0表示一个也没有,是正数和负数的分界的角度引导学生理解.
在学生的讨论中简单介绍分类的数学思想先不要给出有理数的概念.
在例题中,让学生通过阅读题中的含义,找出具有相反意义的量,决定哪个用正数表示,哪个用负数表示.
通过问题(2)提醒学生审题时要注意要求,题中求的是增长率,不是增长值.
四、阅读思考
(教科书第8页)用正负数表示加工允许误差.
问题:1.直径为30.032mm和直径为29.97的零件是否合格
2.你知道还有那些事件可以用正负数表示允许误差吗 请举例.
五、小结
1、本节课你有那些收获?
2、还有没解决的问题吗?
六、应用与拓展
必做题:
教科书5页习题4、5、:6、7、8题
选做题
1、甲冷库的温度是-12°C,乙冷库的温度比甲冷酷低5°C,则乙冷库的温度是 .
2、一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9mm,加工要求最大不超过标准尺寸多少 最小不小于标准尺寸多少
3、吐鲁番的海拔是-155m,珠穆朗玛峰的海拔是8848m ,它们之间相差多少米?


4、如果规定向东为正,那么从起点先走+40米,再走-60米到达终点,问终点在起点什么方向多少米?应怎样表示?一共走过的路程是多少米?


5、10筐橘子,以每筐15㎏为标准,超过的千克数记作正数,不足的千克数记作负数。标重的记录情况如下:+1,-0.5,-0.5,-1,+0.5,-0.5,+0.5,+0.5,+0.5,-0.5。问这10筐橘子各重多少千克?总重多少千克?
6.一种零件的内径尺寸在图纸上是9±0.05(单位:mm),表示这种零件的标准尺寸是9mm,加工要求最大不超过标准尺寸多少 最小不小于标准尺寸多少
正数和负数巩固提高练习
第3学时
具有相反意思的量
某市某一天的最高温度是零上5℃,最低温度是零下5℃现实生活中,像这样的相反意义的量还有很多.
例如,珠穆朗玛峰高于海平面8848米,吐鲁番盆地低于海平面155米,“高于”和“低于”其意义是相反的.
“运入”和“运出”,其意义是相反的.同学们能举例子吗?________________________________________
2.正数和负数
数学中采用符号来区分,规定零上5℃记作+5℃(读作正5℃)或5℃,把零下5℃记作-5℃(读作负5℃).
①高于海平面8848米,记作+8848米;低于海平面155米,记作________米。
②如果80m表示向东走80m,那么-60m表示_________。
③如果水位升高3m时水位变化记作+3m,那么水位下降3m时水位变化记作_________m。
④月球表面的白天平均温度是零上126℃,记作________℃,夜间平均温度是零下150℃,记作________℃。
问题1读下列各数,并指出其中哪些是正数,哪些是负数。
正数:__________________________________________________
负数:__________________________________________________
3.有理数
正整数、0、负整数、正分数、负分数都可以写成分数的形式,这样的数称为有理数。(整数和分数统称为有理数)
有理数的分类:
问题2:有理数:,其中:
正数: 正分数:
负数: 负分数:
负整数: 正整数:
巩固A:
如果收入100元记作+100元,那么支出180元记作___________;如果电梯上升了两层记作+2,那么-3表示电梯__________________。
某校初一年级举行乒乓球比赛,一班获胜2局记作+2,二班失败3局记作_________,三班不胜不败记作_______.
下列各数中既不是正数又不是负数的是( )
A.-1 B. -3 C.-0.13 D.0
4. -206不是( )
A.有理数 B.负数 C.整数 D.自然数
5.既是分数,又是正数的是( )
A.+5 B.-5 C.0 D.8
6.下列说法正确的是( )
A.有理数是指整数、分数、正有理数、零、负有理数这五类数
B.有理数不是正数就是负数
C.有理数不是整数就是分数; D.以上说法都正确
7.一潜水艇所在的高度为-100米,如果它再下潜20米,则高度是_______,如果在原来的位置上再上升20米,则高度是________.
巩固B:
1.判断:①所有整数都是正数;( ) ②所有正数都是整数:( )
③奇数都是正数;( ) ④分数是有理数: ( )
2. 把下列各数填入相应的大括号内:-13.5,2,0,0.128,-2.236,3.14,+27,-,-15%,-1,,26.
正数集合{ …}, 负数集合{ …},
整数集合{ …}, 分数集合{ …},
非负整数集合{ …}.
3.北京某一天记录的温度是:早晨-1℃,中午4℃,晚上-3℃,(0℃以上温度记为正数),其中温度最高是______(写度数),最低是________(写度数).
4.某班在班际篮球赛中,第一场赢4分,第二场输3分,第三场赢2分,第四场输2分,结果这个班是赢了还是输了?请用有理数表示各场的得分和最后的总分。
巩固C:
如果用m表示一个有理数,那么-m是( )
A.负数 B.正数 C.零 D.以上答案都有可能对
第4学时
内容:1.2有理数
[教学目标]
正我有理数的概念,会对有理数按照一定的标准进行分类,培养分类能力;
了解分类的标准与分类结果的相关性,初步了解“集合”的含义;
体验分类是数学上的常用的处理问题的方法.
[教学重点与难点]
重点:正确理解有理数的概念.
难点:正确理解分类的标准和按照定的标准进行分类.
一.知识回顾和理解
通过两节课的学习,我们已经将数的范围扩大了,那么你能写出3个不同类的数吗 .(3名学生板书)
[问题1]:我们将这三为同学所写的数做一下分类.
(如果不全,可以补充).
[问题2]:我们是否可以把上述数分为两类 如果可以,应分为哪两类
二.明确概念 探究分类
正整数、0、负整数统称整数,正分数和负分数统称分数.
整数和分数统称有理数
[问题3]:上面的分类标准是什么 我们还可以按其它标准分类吗
三.练一练 熟能生巧
1.任意写出三个数,标出每个数的所属类型,同桌互相验证.
2.把下列各数填入它所属于的集合的圈内:
15,-,-5,,,0.1,-5.32,-80,123,2.333.
正整数集合 负整数集合
正分数集合 负分数集合
[小结]
到现在为止我们学过的数是有理数(圆周率π除),有理数可以按不同的标准进行分类,标准不同时,分类的结果也不同.
[作业]
必做题:教科书第8页练习.P14 T1、2
作业2.把下列给数填在相应的大括号里:
-4,0.001,0,-1.7,15,.
正数集合{ …},负数集合{ …},
正整数集合{ …},分数集合{ …}
[备选题]
1.下列各数,哪些是整数 哪些是分数 哪些是正数 哪些是负数
+7,-5, ,,79,0,0.67,,+5.1
2.0是整数吗 自然数一定是整数吗 0一定是正整数吗 整数一定是自然数吗
3.图中两个圆圈分别表示正整数集合和整数集合,请写并填入两个圆圈的重叠部分.你能说出这个重叠部分表示什么数的集合吗
正数集合 整数集合
第5学时
内容:1.2有理数
[教学目标]
掌握数轴的概念,理解数轴上的点和有理数的对应关系;
会正确地画出数轴,会用数轴上的点表示给定的有理数,会根据数轴上的点读出所表示的有理数;
感受在特定的条件下数与形是可以互相转化的,体验生活中的数学.
[教学重点与难点]
重点:数轴的概念和用数轴上的点表示有理数.
难点:同上.
一.创设情境 引入新知
观察屏幕上的温度计,读出温度..(3个温度分别是零上,零,零下)
[问题1]:在一条东西向的马路上,有一个汽车站,汽车站东3m和7.5m处分别有一棵柳树和一棵杨树,汽车站西3m和4.8m处分别有一棵槐树和一根电线杆,试画图表示这一情境.(分组讨论,交流合作,动手操作)
二.合作交流 探究新知
通过刚才的操作,我们总结一下,用一条直线表示有理数,这条直线必须满足什么条件 (原点,单位长度,正方向,说出含义就可以)
[小游戏]:在一条直线上的同学站起来,我们规定原点,正方向,单位长度,按老师发的数字口令回答“到” 游戏前可先不加任何条件,游戏中发现问题,进行弥补.
总结游戏,明确用直线表示有理数的要求, 提出数轴的概念和要求(教科书第11页).
三.动手动脑 学用新知
1.你能举出生活中用直线表示数的实际例子吗 (温度计,测量尺,电视音量,量杯容量标志,血压计等).
2.画一个数轴,观察原点左侧是什么数,原点右侧是什么数 每个数到原点的距离是多少
四.反复演练 掌握新知
教科书12练习.画出数轴并表示下列有理数:
1.5,-2.2,-2.5,,,0.
2.写出数轴上点A,B,C,D,E所表示的数:
. [小结]
数轴需要满足什么样的条件;
数轴的作用是什么
[作业]
必做题:教科书第15页习题5、6、7
[备选题]
1.在数轴上,表示数-3,2.6,,0,,,-1的点中,在原点左边的点有 个.
2.在数轴上点A表示-4,如果把原点O向负方向移动1.5个单位,那么在新数轴上点A表示的数是( )
A. B.-4 C. D.
3.(1)(请先在头脑中想象点的移动,尝试解决下面问题,然后再画图解答)一个点在数轴上表示的数是-5,这个点先向左边移动3个单位,然后再向右边移动6个单位,这时它表示的数是多少呢 如果按上面的移动规律,最后得到的点是2,则开始时它表示什么数
(2)你觉得数轴上的点表示数的大小与点的位置有关吗 为什么
第6学时
内容:1.2有理数
[教学目标]
借助数轴,使学生了解相反数的概念
会求一个有理数的相反数
激发学生学习数学的兴趣.
[教学重点与难点]
重点: 理解相反数的意义
难点: 理解相反数的意义
提问
数轴的三要素是什么?
填空:
数轴上与原点的距离是2的点有 个,这些点表示的数是 ;与原点的距离是5的点有 个,这些点表示的数是 。
相反数的概念:
只有符号不同的两个数,我们称它们互为相反数,零的相反数是零。
概念的理解:
互为相反数的两个数分别在原点的两旁,且到原点的距离相等。
一般地,数a的相反数是,不一定是负数。
在一个数的前面添上“-”号,就表示这个数的相反数,如:-3是3的相反数,-a是a的相反数,因此,当a是负数时,-a是一个正数
-(-3)是(-3)的相反数,所以-(-3)=3,于是
互为相反数的两个数之和是0
即如果x与y互为相反数,那么x+y=0;反之,若x+y=0, 则x与y互为相反数
相反数是指两个数之间的一种特殊的关系,而不是指一个种类。如:“-3是一个相反数”这句话是不对的。
问题1 求下列各数的相反数:
(1)-5 (2) (3)0 (4) (5)-2b (6) a-b (7) a+2
问题2 判断:
(1)-2是相反数
(2)-3和+3都是相反数
(3)-3是3的相反数
(4)-3与+3互为相反数
(5)+3是-3的相反数
(6)一个数的相反数不可能是它本身
问题3 化简下列各数中的符号:
(1) (2)-(+5)
(3) (4)
问题4 填空:
(1)a-4的相反数是 ,3-x的相反数是 。
(2)是 的相反数。
(3)如果-a=-9,那么-a的相反数是 。
问题5 填空:
(1)若-(a-5)是负数,则a-5 0.
(2) 若是负数,则x+y 0.
问题6 已知a、b在数轴上的位置如图所示。
在数轴上作出它们的相反数;
用“<”按从小到大的顺序将这四个数连接起来。
问题7 如果a-5与a互为相反数,求a.
练习:教材15页 T3、4
第7学时
内容:1.2.有理数
教学目标
掌握相反数的概念,进一步理解数轴上的点与数的对应关系;
通过归纳相反数在数轴上所表示的点的特征,培养归纳能力;
3.体验数形结合的思想。
教学难点
归纳相反数在数轴上表示的点的特征
知识重点
相反数的概念
教学过程(师生活动)
设置情境,引入课题
问题1:请将下列4个数分成两类,并说出为什么要这样分类
-2,-5,+2
允许学生有不同的分法,只要能说出道理,都要难予鼓励,但教师要做适当的引导,逐渐得出5和-5,+2和-2分别归类是具有较特征的分法。
(引导学生观察与原点的距离)
思考结论:教科书第13页的思考
再换2个类似的数试一试。
归纳结论:教科书第13页的归纳
深化主题提炼定义
给出相反数的定义
问题2:你怎样理解相反数定义中的“只有符号不同”和“互为”一词的含义?零的相反数是什么?为什么?
学生思考讨论交流,教师归纳总结。
规律:一般地,数a的相反数可以表示为-a
思考:数轴上表示相反数的两个点和原点有什么关系?
练一练:教科书第14页第一个练习
给出规律解决问题
问题3:-(+5)和-(-5)分别表示什么意思?你能化简它们吗?
学生交流。
分别表示+5和-5的相反数是-5和+5
练一练:教科书第15页T8
课堂小结
相反数的定义
互为相反数的数在数轴上表示的点的特征
怎样求一个数的相反数?怎样表示一个数的相反数?
本课作业
必做题 教科书第15页习题9、10题
选做题 教师自行安排
本课教育评注(课堂设计理念,实际教学效果及改进设想)
2.4绝对值(1)
学习目标
1.借助数轴,理解绝对值的概念,能求一个有理数的绝对值
2.会利用绝对值比较两个有理数的大小
3.经历将实际问题数学化的过程,感受数学与生活的关系,贯彻数形结合的思想
学习难点
绝对值意义的理解
教学过程
【情景创设】
小明的家在学校西边3㎞处,小丽的家在学校东边2km处。他们上学所花的时间与各家到学校的距离有什么关系
数轴上表示一个数的点与原点的距离,叫做这个数的绝对值
绝对值的表示方法如下:-2的绝对值是2,记作| -2|=2;3的绝对值是3 ,记作|3|=3
口答:如图,你能说出数轴上A、B、C、D、E、F各点所表示的数的绝对值
表示0的点(原点)与原点的距离是0,所以0的绝对值是0
总结:从上面的问题中你能找到求一个数的绝对值的方法吗?
【例题精讲】问题1、求4、-3.5的绝对值。
活动一:以某一小组为数轴,一位同学为原点,规定正方向后,请大家思考数轴上的各位同学所代表的数是多少?这些数到原点的距离是多少?绝对值是几?
活动二:请一位同学随便报一个数,然后点名叫另一位同学说出它的绝对值。
思考:正数公司和负数公司招聘职员,要求是经过绝对值符号“︱︱”这扇大门后,结果为正就是正数公司职员,结果为负就是负数公司职员。
(1)负数公司能招到职员吗?
(2)0能找到工作吗?
总结:
问题2、比较-3与-6的绝对值的大小
练一练:求-3、-0.4、-2的绝对值,并用“〈”号把这些绝对值连接起来
计算:① ② ③ ④
【拓展提高】
(1)求绝对值不大于2的整数______
(2)绝对值等于本身的数是___,绝对值大于本身的数是_____.
(3)绝对值不大于2.5的非负整数是____
【知识巩固】
1.判断题
(1)任何一个有理数的绝对值都是正数. ( )
(2)如果一个数的绝对值是5,则这个数是5 ( )
(3)绝对值小于3的整数有2,1,0. ( )
2.填空题
(1) +6的符号是_______,绝对值是_______,的符号是_______,绝对值是_______
在数轴上离原点距离是3的数是________________
绝对值等于本身的数是___________
绝对值小于2的整数是________________________
用”>”、”<”、”=”连接下列两数:
∣∣___∣∣ ∣-3.5∣___-3.5
∣0∣____∣-0.58∣ ∣-5.9∣___∣-6.2∣
(6) 数轴上与表示1的点的距离是2的点所表示的数有___________________.
(7) 计算|4|+|0|-|-3|=______________.
3.选择题
(1)下列说法中,错误的是( )
A +5的绝对值等于5 B 绝对值等于5的数是5
C -5的绝对值是5 D +5、-5的绝对值相等
(2)绝对值最小的有理数是 ( )
A.1 B.0 C.-1 D.不存在
(3)绝对值最小的整数是( )
A.-1 B.1 C.0 D.不存在
(4)绝对值小于3的负数的个数有( )
A.2 B.3 C.4 D.无数
(5)绝对值等于本身的数有( )
A.1个 B.2个 C. 4个 D.无数个
4.解答题. (1)求下列数的绝对值,并用“<”号把这些绝对值连接起来.
-1.5, -3.5, 2, 1.5, -2.75
计算:
小结: 作业:习题1.4 第6、7题
2.3绝对值(2)
第8学时
学习目标
1、理解有理数的绝对值与该数的关系,把握绝对值的代数意义
2、会利用绝对值比较2 个负数的大小,理解其中的转化思想[比较负数→比较正数
学习难点
绝对值与相反数意义的理解,数形结合的思想
教学过程
【情景创设】
1、说出绝对值的几何含义
2、互为相反数的2个数在数轴上有什么位置关系
3、书本第23页,根据绝对值与相反数的意义填空。(做在书上)
二、思考问题:一个数的绝对值与这个数本身、或与它的相反数之间有什么关系
用符号表示为 |a|=
三.问题:求下列各数的绝对值
+6, -3, -2.7, 0, -2/3, 4.3, -8
四.议一议:
互为相反数的两个数的绝对值有什么关系?
五.随堂练习
①一个数的绝对值是它本身,这个数是( )
A、正数 B、0 C、非负数 D、非正数
②一个数的绝对值是它的相反数,这个数是 ( )
A、负数 B、0 C、非负数 D、非正数
③什么数的绝对值比它本身大?什么数的绝对值比它本身小?
④ 绝对值是4的数有几个?各是什么?
绝对值是0的数有几个?各是什么?
有没有绝对值是-1的数?为什么?
六.讨论 :两个数比较大小,绝对值大的那个数一定大吗?
七.做一做
分别找出到原点的距离为3和5的数,并比较它们的大小 。
【知识巩固】
选择题
如果|a|=-a,那么 ( )
A  a 〉0 B a <0 C a 0 D
2、下列各数中,一定互为相反数的是 ( )
A -(-5)和-|-5| B |-5|和|+5| C -(-5)和|-5| D |a|和|-a|
3、若一个数大于它的相反数,则这个数是 ( )
A 正数 B 负数 C 非负数 D 非正数
4、下列判断中:(1)负数没有绝对值;(2)绝对值最小的有理数是0;(3)任何数的绝对值都是非负数;(4)互为相反数的两个数的绝对值相等,其中正确的个数有 ( ) A 1个 B 2个 C 3个 D 4个
二、填空题
1.(1)-3_______-0.5; (2)+(-0.5)_______+|-0.5| (3)-8_______-12
(4)-5/6______-2/3 (5) -|-2.7|______-(-3.32)
2、有理数a、b在数轴上如图,用 > 、= 或 < 填空
(1)a____b , (2) |a|___|b| ,
(3)–a___-b, (4)|a|___a ,
(5) |b|____b
3、如果|x|=|-2.5|,则x=______
4、绝对值小于3的整数有____个,其中最小的一个是____
5、|-3|的相反数是 ;若|x|=8,则x= .
6、 的相反数等于它本身, 的绝对值等于它本身.
7、绝对值小于3的非负整数是             .
8、-3.5的绝对值的相反数是 .-0.5的相反数的绝对值是 .
9、|-3|-|-4|= - = .
10、在-,-0.42,-0.43,-中,最大的一个数是 .
三、解答题
11、比较-与-的大小,并说明理由.
12、用“〈”将-4,12,,-|-3|连接起来,并说明理由.
13、已知a、b、c在数轴上的位置如图所示,试求|a|+|c-3|+|b|的值.
课后反思:
2.4有理数的加法与减法(一)
第9学时
学习目标:1、探索有理数加法法则,理解有理数的加法法则;
2、能运用有理数加法法则,正确进行有理数加法运算;
3、经历探索有理数加法法则的过程,体验数学来源于实践并为实践服务的思想,同时培养学生探究性学习的能力.
学习难点:师生共同合作探索有理数加法法则的过程及和的符号的确定.
课堂活动:
有理数加法的探索
1.汽车在公路上行驶,规定向东为正,向西为负,据下列情况,分别列算式,并回答:汽车两次运动后方向怎样?离出发点多远?
(1)向东行驶5千米后,又向东行驶2千米,
(2)向西行驶5千米后,又向西行驶2千米,
(3)向东行驶5千米后,又向西行驶2千米,
(4)向西行驶5千米后,又向东行驶2千米,
(5)向东行驶5千米后,又向西行驶5千米,
(6)向西行驶5千米后,静止不动,
2. 足球队甲、乙两队比赛,主场甲队4:1胜乙队,赢了3球,客场甲队1:3负乙队,
输了2球,甲队两场比赛累计净胜球1个,你能把这个结果用算式表示出来吗?
议一议:比赛中胜负难料,两场比赛的结果还可能哪些情况呢?动动手填表:
赢球数 净胜球 算式
主场 客场
3 ‐2
‐3 2
3 2
‐3 ‐2
3 0
0 ‐3
你还能举出一些应用有理数加法的实际例子吗?请同学们积极思考.
二、有理数加法的归纳
探索:两个有理数相加,和的符号及绝对值怎样确定?你能找到有理数相加的一般方法吗?
说一说:两个有理数相加有多少种不同的情形?
议一议:在各种情形下,如何进行有理数的加法运算?
归纳:有理数加法法则:
①同号两数相加,取相同的符号,并把绝对值相加.
②异号两数相加,绝对值相等时,和为0;绝对值不等时,取绝对值较大的加数的符号,并用较大的绝对值减去较小的绝对值.
③一个数与0相加,仍得这个数.
三、实践应用
问题1.计算
(1)(+8)+(+5) (2)(-8)+(-5) (3)(+8)+(-5)
(4)(-8)+(+5) (5)(-8)+(+8) (6)(+8)+0;
问题2.某公司三年的盈利情况如下表所示,规定盈利为“+”(单位:万元)
第一年 第二年 第三年
-24 +15.6 +42
该公司前两年盈利了多少万元?(2)该公司三年共盈利多少万元?
问题3.判断(1)两个有理数相加,和一定比加数大. ( )
(2)绝对值相等的两个数的和为0.( )
(3)若两个有理数的和为负数,则这两个数中至少有一个是负数.( )
四、课堂反馈:
1.一个正数与一个负数的和是( )
A、正数 B、负数 C、零 D、以上三种情况都有可能
2.两个有理数的和( )
A、一定大于其中的一个加数 B、一定小于其中的一个加数
C、大小由两个加数符号决定 D、大小由两个加数的符号及绝对值而决定
3.计算 (1)(+10)+(-4) (2)(-15)+(-32) (3)(-9)+ 0
(4)43+(-34) (5)(-10.5)+(+1.3) (6)(-)+
知识巩固
一、选择题
1.若两数的和为负数,则这两个数一定( )
A.两数同负 B.两数一正一负 C.两数中一个为0 D.以上情况都有可能
2.两个有理数相加,若它们的和小于每一个加数,则这两个数( )
A.都是正数 B.都是负数 C.互为相反数 D.符号不同
3.如果两个有理数的和是正数,那么这两个数( )
A.都是正数 B.都是负数 C.都是非负数 D.至少有一个正数
4.使等式成立的有理数是 ( )
A.任意一个整数 B.任意一个非负数 C.任意一个非正数 D.任意一个有理数
5.对于任意的两个有理数,下列结论中成立的是 ( )
A.若则 B.若则
C.若则 D.若则
6.下列说法正确的是 ( )
A.两数之和大于每一个加数 B.两数之和一定大于两数绝对值的和
C.两数之和一定小于两数绝对值的和 D.两数之和一定不大于两数绝对值的和
二、判断
1.若某数比-5大3,则这个数的绝对值为3.( )
2.若a>0,b<0,则a+b>0.( )
3.若a+b<0,则a,b两数可能有一个正数.( )
4.若x+y=0,则︱x︱=︱y︱.( )
5.有理数中所有的奇数之和大于0.( )
三、填空
1.(+5)+(+7)=_______; (-3)+(-8)=________;
(+3)+(-8)=________; (-3)+(-15)=________;
0+(-5)=________; (-7)+(+7)=________.
2.一个数为-5,另一个数比它的相反数大4,这两数的和为________.
3.(-5)+______=-8; ______+(+4)=-9.
_______+(+2)=+11; ______+(+2)=-11;
5. 如果则 ,
四、计算
(1)(+21)+(-31) (2)(-3.125)+(+3) (3)(-)+(+)
(4)(-3)+0.3 (5)(-22 )+0 (6)│-7│+│-9│
五、土星表面夜间的平均气温为-150℃,白天的平均气温比夜间高27℃,那么白天的平均气温是多少?
六、一位同学在一条由东向西的跑道上,先向东走了20米,又向西走了30米,能否确定他现在位于原来的哪个方向,与原来位置相距多少米?
七、潜水员原来在水下15米处,后来上浮了8米,又下潜了20米,这时他在什么位置?要求用加法解答。
八、 已知
(1)求 (2)若又有,求.
2.4有理数的加法与减法(二)
第10学时
学习目标:1.进一步掌握有理数加法运算法则,理解加法运算律在有理数范围内推广的合理性;
2.能运用加法运算律简化加法运算;
3.经历有理数加法运算律的探索,体会观察、实践、归纳等活动在数学中的作用.
学习难点:运用有理数加法法则简化运算.
课堂活动
有理数加法运算律的探索
1.试一试:
(1)任意选择两个有理数(至少有一个是负数),分别填入下列□和○内,并比较两个运算的结果:
□+○ 和 ○+□
(2)任意选择三个有理数(至少有一个是负数),分别填入下列□、○和◇内,并比较两个运算的结果:
(□+○)+◇ 和 □+(○+◇)
2.你能发现什么?请说说自己的猜想.
3.概括:通过实例说明加法的交换律和结合律对于有理数同样适用.
加法的交换律:文字概括: 字母表示
加法的结合律:文字概括: 字母表示
二、有理数加法运算律的应用
问题1.计算
(1) (-23)+(+58)+(-17) (2)(-2.8)+(-3.6)+(-1.5)+3.6
(3) (4)(+4.56)+(-3.45)+(+4.44)+(+2.45)
问题2:计算 (1) (-11)+8+(-14) (2)
(3) 0.35+(-0.6)+0.25+(-5.4) (4)
三、拓展延伸
问题3.10筐苹果,以每筐30千克为准,超过的千克数记作正数,不足的千克数记作负数,记录如下:2,-4,2.5,3,-0.5,1.5,3,-1,0,-2.5.
问(1)10筐苹果共超过(不足)多少千克?
(2)10筐苹果共重多少千克?
课堂反馈:1.从某点O出发,在一直线上来回爬行,假定向右爬行的路程记为正数,向左爬行的路程记为负数,爬过的各段路程依次为(单位:厘米):+5, -3,+10, -8, -6, +12, -10. 试问:小虫最后能否回到出发点O
2.10名学生的某一次数学考试成绩如下(单位:分)87,91,94,88,93,91,89,87,92,86,你能迅速算出总成绩之和吗?
知识巩固
填空
1. 存折中有存款240元,取出125元,又存入100元,存折中还有 元.
2.绝对值小于5的所有负整数的和为
3.已知是最小的正整数,是的相反数,的绝对值为3,则++=
4.某天股票A的开盘价是18元,上午11:30跌1.5元,下午收盘时又涨0.3元,则股票A这天的收盘价是 元.
5.如果a<0,则︱a︱+a=
二、计算
(1) (2)(-9)+4+(-5)+8;
(3)(-36.35)+(-7.25)+26.35+(+7) (4)
(5) (6)(-)+(+)+(+)+(-1)
三、解答题
1. 一天早晨的气温是-7 C,中午上升了11 C,半夜又降了9 C,则半夜的气温是多少
2.仓库内原存某种原料4500千克,一周内存入和领出情况如下(存入为正,单位:千克):
1500,-300,-670,400,-1700,-200,-250.问:第7天末仓库内还存有这种原料多少千克?
3. 某种袋装奶粉标明净含量为400g,检查其中8袋,记录如下表:
编号 1 2 3 4 5 6 7 8
差值/g -4.5 +5 0 +5 0 0 +2 -5
请问这8袋被检奶粉的总净含量是多少?
4.一只电子跳骚从数轴上的原点出发,第一次向右跳1个单位,第二次向左跳2个单位,第三次向右跳3个单位,第四次向左跳4个单位,…,按这样的规律跳100次,跳骚到原点的距离是多少?
5. 某出租车沿公路左右行驶,向左为正,向右为负,某天从A地出发后到收工回家所走的路线如下:(单位:千米)
⑴ 问收工时离出发点A多少千米?
⑵ 若该出租车每千米耗油0.3升,问从A地出发到收工共耗油多少升?
6.已知的相反数为-5,试求++(-)
7.计算:|1-|+|-|+|-|+…+|-|
课后反思:
学习小结:
课后作业:
2.4有理数的加法与减法(3)
第11学时
学习目标:
1.理解有理数减法法则, 能熟练进行减法运算.
2.会将减法转化为加法,进行加减混合运算,体会化归思想.
学习难点
有理数的减法法则的理解,将有理数减法运算转化为加法运算.
自主学习:
一、情境引入:
1.昨天,国际频道的天气预报报道,南半球某一城市的最高气温是5℃,最低气温是-3℃,你能求出这天的日温差吗?(所谓日温差就是这一天的最高气温与最低气温的差)
2.珠穆朗玛峰和吐鲁番盆地的海拔高度分别是8848米和-155米,问珠穆朗玛峰比吐鲁番盆地高多少?
探索新知:
(一) 有理数的减法法则的探索
1.我们不妨看一个简单的问题: (-8)-(-3)=?
也就是求一个数“?”,使 (?)+(-3)=-8
根据有理数加法运算,有 (-5)+(-3)= -8
所以 (-8)-(-3)= -5 ①
2.这样做减法太繁了,让我们再想一想有其他方法吗?
试一试
做一个填空:(-8)+( )= -5
容易得到 (-8)+(+3 )= -5 ②
思考: 比较 ①、②两式,我们有什么发现吗?
3.验证:
(1)如果某天A地气温是3℃,B地气温是-5℃,A地比B地气温高多少?
3-(-5)=3+ ;
(2)如果某天A地气温是-3℃,B地气温是-5℃,A地比B地气温高多少?
(-3)-(-5)=(-3)+ ;
(2)如果某天A地气温是-3℃,B地气温是5℃,A地比B地气温高多少?
(-3)-5=(-3)+ ;
(二)有理数的减法法则归纳
1.说一说:两个有理数减法有多少种不同的情形?
2.议一议:在各种情形下,如何进行有理数的减法计算?
3.试一试:你能归纳出有理数的减法法则吗?
由此可推出如下有理数减法法则:
减去一个数,等于加上这个数的相反数。
字母表示:
由此可见,有理数的减法运算可以转化为加法运算。
【思考】:两个有理数相减,差一定比被减数小吗?
说明:(1)被减数可以小于减数。如: 1-5 ;
(2)差可以大于被减数,如:(+3)-(-2) ;
(3)有理数相减,差仍为有理数;
(4)大数减去小数,差为正数;小数减大数,差为负数;
(三 )问题:
问题1. 计算:
①15-(-7) ②(-8.5)-(-1.5) ③ 0-(-22)
④(+2)-(+8) ⑤(-4)-16 ⑥
问题2.(1)-13.75比少多少? (2)从-1中减去-与-的和,差是多少?
(四)课堂反馈:
1.课本P 32 1、2、3、4
2. 求出数轴上两点之间的距离:
(1)表示数10的点与表示数4的点;
(2)表示数2的点与表示数-4的点;
(3)表示数-1的点与表示数-6的点。
归纳总结:
1.有理数减法法则
2.有理数减法运算实质是一个转化过程
【知识巩固】
1.下列说法中正确的是( )
A减去一个数,等于加上这个数. B零减去一个数,仍得这个数.
C两个相反数相减是零. D在有理数减法中,被减数不一定比减数或差大.
2.下列说法中正确的是( )
A两数之差一定小于被减数.
B减去一个负数,差一定大于被减数.
C减去一个正数,差不一定小于被减数.
D零减去任何数,差都是负数.
3.若两个数的差不为0的是正数,则一定是( )
A被减数与减数均为正数,且被减数大于减数.
B被减数与减数均为负数,且减数的绝对值大.
C被减数为正数,减数为负数.
4.下列计算中正确的是( )
A(—3)-(—3)= —6 B 0-(—5)=5
C(—10)-(+7)= —3 D | 6-4 |= —(6-4)
5.(1)(—2)+________=5; (—5)-________=2.
(2)0-4-(—5)-(—6)=___________.
(3)月球表面的温度中午是1010C,半夜是-153oC,则中午的温度比半夜高____.
(4)已知一个数加—3.6和为—0.36,则这个数为_____________.
(5)已知b < 0,则a,a-b,a+b从大到小排列________________.
(6)0减去a的相反数的差为_______________.
(7)已知| a |=3,| b |=4,且a6.计算
(1) (—2)-(—5) (2)(—9.8)-(+6)
(3) 4.8-(—2.7) (4)(—0.5)-(+)
(5)(—6)-(—6) (6)(3-9)-(21-3)
(7)| —1-(—2)| -(—1)
(8)(—3)-(—1)-(—1.75)-(—2)
7.已知a = 8,b = -5,c = -3,求下列各式的值:
(1)a-b-c; (2)a-(c+b)
8.若a<0 , b>0, 则a, a+b, a-b, b中最大的是( )
A. a B. a+b C. a-b D. b
9.请你编写符合算式(-20)-8的实际生活问题。
2.4有理数的加法与减法(4)
第12学时
学习目标: 1、能把有理数的加、减法混合运算的算式写成几个有理数的和式,并能正确地进行有理数加减混合运算。
2、能体会数学中的转化思想。
学习难点 :有理数加减法的混合运算及其应用。
教学过程
一、情境引入
1.有理数的加法法则,有理数的减法法则。
2.一架飞机做特技表演,它起飞后的高度变化情况为:上升4.5千米,下降3.2千米,上升1.1千米,下降1.4千米,求此时飞机比起飞点高了多少千米?
3.(-8)-(-10)+(-6)-(+4),
这是有理数的加减混合运算题,你会做吗?请同学们思考练习。
根据有理数减法法则,有理数的加减混合运算可以统一为
二、探索新知
1.加法、减法统一成加法
由于减法可以改写成加法进行运算,因此所有加法、减法的运算在有理数范围内都可以统一成加法运算。如:
(-12)+(-5)-(-8)-(+9)可以改写成 (-12)+(-5)+(+8)+(-9)
做一做:(1) (-9)-(+5)-(-15)-(+9)
(2) 2+5-8
(3) 14-(-12)+(-25)-17
2.有理数加法运算中,加号可以省略
如: 12+(-8)=12-8; (-12)+(-8)=(-12)-(+8)=(-12)-8
(-9)+(-5)+(+15)+(-20)= -9-5+15-20
练一练:将(-15)-(+63)-(-35)-(+24)+(-12)先统一成加法,再省略加号。
3.加、减混合运算中“+”“—”号的理解
(1)可以看作是运算符号(第一个数除外)
如:-5-3+8-7可读作负5减去3加上8减去7
(2)可以看作是一个数的本身的符号
如:-5-3+8-7可以看作是(-5)+(-3)+(+8)+(-7),可读作负5、负3、正8、负7的和
4.省略加号的加法算式的运算
练一练: (1)-3-5+4
(2)-26+43-24+13-46
三、 问题
问题1.计算
(1)(-4)+9-(-7)-13
(2)11-39.5+10-2.5-4+19
(3)
练习:课本练一练; 4、5
问题2.寻道员沿东西方向的铁路进行巡视维护。他从住地出发,先向东行走了7km,休息之后继续向东行走了3km;然后折返向西行走了11.5km,此时他在住地的什么方向?与住地的距离是多少?
课堂反馈:在抗洪抢险中,人民解放军的冲锋舟沿东西方向的河流抢救灾民,早晨从A处出发,晚上到达B处,记向东方向为正方向,当天航行路程记录如下:(单位:千米) 14,-9,+8,-7,13,-6,+10,-5
B在A何处?
若冲锋舟每千米耗油0.5升,油箱容量为29升,球途中还需补充多少升油?
四、归纳总结
1.有理数加减法统一成加法运算。
2.解题时要注意解题技巧的应用。
【知识巩固】
1.判断题
(1)运用加法交换律,得-7+3=-3+7. ( )
(2)-5-4=-9.( ) -5-4=-1.( )
(3)两个数相加,和一定大于任一个加数. ( )
(4)两数差一定小于被减数. ( )
(5)零减去一个数,仍得这个数. ( )
2.选择题
(1)把(+5)-(+3)-(-1)+(-5)写成省略括号的和的形式是 ( )
A.-5-3+1-5 B.5-3-1-5
C.5+3+1-5 D.5-3+1-5
(2)算式8-7+3-6正确的读法是 ( )
A.8、7、3、6的和 B.正8、负7、正3、负6的和
C.8减7加正3、减负6 D.8减7加3减6的和
(3)两个数相加,其和小于每个加数,那么这两个数( )
A.同为负数 B.异号 C.同为正数 D.零或负数
(4)甲数减去乙数的差与甲数比较,必为( )
A.差一定小于甲数 B.差不能大于甲数
C.差一定大于甲数 D.差的大小取决于乙是什么样的数
3.把下列各式写成省略括号的和的形式
(1)(-28)-(+12)-(-3)-(+6)
(2)(-25)+(-7)-(-15)-(-6)+(-11)-(-2)
4.计算下列各题
(1)(+17)-(-32)-(+23) (2)(+6)-(+12)+(+8.3)-(+7.4)
(3)1.2-2.5-3.6+4.5 (4)-7+6+9-8-5;
(5)73-(8-9+2-5)
(6)-16+25+16-15+4-10 (7)-5.4+0.2-0.6+0.8
5.有十箱梨,每箱质量如下:(单位:千克)51,53,46,49,52,45,47,50,53,48。你能较快地算出它们的总质量吗?列式计算。
6 若,,且求a-b+c的值。
1-4 有理数乘法与除法(1)
第13学时
学习目标:1.了解有理数乘法的实际意义,理解有理数的乘法法则;
2. 能熟练地进行有理数的乘法运算.
学习难点:积的符号的确定
教学过程:
一、情境引入:
什么叫乘法运算?
求几个相同加数的和的运算。如 2+2+2+2+2=2×5;
(-2)+(-2)+(-2)+(-2)+(-2)=(-2)×5
像(-2)×5这样带有负数的式子怎么运算?
二、探究学习:
1、在水文观测中,常遇到水位上升与下降的问题,请根据日常生活经验,回答下列问题:
(1)如果水位每天上升4cm,那么3天后的水位比今天高还是低?高(或低)多少?
(2)如果水位每天上升4cm,那么3天前的水位比今天高还是低?高(或低)多少?
(3)如果水位每天下降4cm,那么3天后的水位比今天高还是低?高(或低)多少?
(4)如果水位每天下降4cm,那么3天前的水位比今天高还是低?高(或低)多少?
我们规定水位上升为正,水位下降为负;几天后为正,几天前为负;你能用正数或负数表示上述问题吗?你算的结果与经验一致吗?
2、 填写书37页表格
3、两个有理数相乘,积的符号怎样确定?积的绝对值怎样确定?小组讨论,总结、归纳得出有理数乘法法则。
有理数乘法法则:两数相乘,同号得正,异号得负,并把绝对值相乘;
任何数与0相乘都得0。
问题1、计算 (1)(- 4)×5; (2)(- 5) ×(-7)
解:(1) (- 4)×5; (2)(- 5) ×(-7)
= - (4 ×5) (异号得负,绝对值相乘) = + (5 ×7) (同号得正,绝对值相乘)
= - 20 = 35
注:计算时,先定符号,再把绝对值相乘,切勿与加法混淆。
练一练:书38页
4、我们已经学会了两个有理数相乘,那多个有理数相乘又如何运算呢?
(-2)×3×4×5×6=-720
(-2)×(-3)×4×5×6=720
(-2)×(-3)×(-4)×5×6=-720
(-2)×(-3)×(-4)×(-5)×6=720
(-2)×(-3)×(-4)×(-5)×(-6)=-720
积的符号怎样确定?积的绝对值怎样确定?你发现规律了吗?
小组讨论,总结、归纳得:
多个有理数乘法法则:几个不等于0的数相乘,积的符号由负因数的个数来确定。当负因数有奇数个时,积为负;当负因数有偶数个时,积为正;几个数相乘,有一个因数为0时,积就为0。
问题2、计算:
(1)-4×12× (2)-× eq \b(-)× eq \b(-)
练一练:
(1)-×2.5× eq \b(-)× (2)-× eq \b(-)×
【知识巩固】
1.填空
_______×(-2)=-6 ; (-3)×______=9 ;______×(-5)=0
2.选择:
1. 一个有理数与它的相反数的积 ( )
A. 是正数 B. 是负数 C. 一定不大于0 D. 一定不小于0
2. 下列说法中正确的是 ( )
A.同号两数相乘,符号不变
B.异号两数相乘,取绝对值较大的因数的符号
C.两数相乘,积为正数,那么这两个数都为正数
D.两数相乘,积为负数,那么这两个数异号
3. 两个有理数,它们的和为正数,积也为正数,那么这两个有理数 ( )
A. 都是正数 B. 都是负数 C. 一正一负 D. 符号不能确定
4. 如果两个有理数的积小于零,和大于零,那么这两个有理数 ( )
A.符号相反 B.符号相反且绝对值相等
C.符号相反且负数的绝对值大 D.符号相反且正数的绝对值大
5.若ab=0,则( )
A. a=0 B. b=0 C. a=0或b=0 D. a=0且b=0
6. 两个有理数a,b满足下列条件,能确定a,b的正负吗( )
A. a+b>0,ab<0 B. a+b>0,ab>0
C. a+b<0,ab<0 D. a+b<0,ab>0
3.判断
① 同号两数相乘,取原来的符号,并把绝对值相乘。 ( )
② 两数相乘积为正,则这两个因数都为正。 ( )
③ 两数相乘积为负,则这两个因数都为负。 ( )
④ 一个数乘(-1),便得这个数的相反数。 ( )
4、计算:
(1) × (2)6× (3)-× eq \b(-1)
(4)×16 (5) 3×××4 (6) 15×××0
(7) -8×[― eq \b(―)] (8)5×―× eq \b(-)
5、规定一种新的运算:a△b=a×b-a-b+1.如,3△4=3×4-3-4+1
(1)计算-5△6= ;
(2)比较大小:△4 4△
6、初一年级共100名学生,在一次数学测试中以90分为标准,超过的记为正,不足的记为负,成绩如下:
人数 10 20 5 14 12 18 10 4 9 6 2
成绩 -1 +3 -2 +1 +10 +2 0 -7 +7 -9 -12
请你算出这次考试的平均成绩.
1-4有理数乘法与除法(2)
第14学时
学习目标:
1. 熟练掌握有理数的乘法法则
2. 会运用乘法运算率简化乘法运算.
3. 了解互为倒数的意义,并回求一个非零有理数的倒数
学习难点:运用乘法运算律简化计算
教学过程:
一、探索
1、同加法运算律在有理数范围内仍然适用的验证活动一样,从复习有理数的乘法运算开始,由问题“在含有负数的乘法运算中,乘法交换律,结合律和分配律还成立吗?”引发学生思考。
观察下列各有理数乘法,从中可得到怎样的结论
(1)(-6)×(-7)= (-7)×(-6)=
(2)[(-3)×(-5)]×2 = (-3)×[(-5)×2]=
(3)(-4)×(-3+5)= (-4)×(-3)+(-4)×5=
结论?
(4)请学生再举几组数试一试,看上面所得的结论是否成立?例如对扑克牌上数字的正负规定(黑正,红负),用抽两张扑克牌的方法验证有理数乘法运算律。
2.有理数乘法运算律
交换律 a×b=b×a 结合律 ( a×b)×c=a×(b×c)
分配律 a×(b+c)=a×b+a×c
二、问题讲解
问题1.计算:
(1)8×(-)×(-0.125) (2)
(3)()×(-36) (4)
练一练:书39页2
问题2.计算
(1)99×20 (2)(—99)×5
练一练:(1)(-28)×99 (2)(—5)×9
问题3.计算
(1)8× (2)(—4)×(—) (3)(—)×(—)
互为倒数的意义______________________________________
倒数等于本身的数是 ;绝对值等于本身的数是 ;相反数等于本身的数是 .
练一练:书39页1
【知识巩固】
1.运用运算律填空.
(1)-2×=×(_____).
(2)[×2]×(-4)=×[(______)×(______)].
(3)×[+]=×(_____)+(_____)×
2.选择题
(1)若a×b<0 ,必有 ( )
A a<0 ,b>0 B a>0 ,b<0 C a,b同号 D a,b异号
(2)利用分配律计算时,正确的方案可以是 ( )
A B
C D
3.运用运算律计算:
(1)(-25)×(-85)×(-4) (2) eq \b(--)×16
(3)60×-60×+60× (4)(—100)×(-+-0.1)
(5)(-7.33)×(42.07)+(-2.07)×(-7.33) (6)18× eq \b(-)+13×-4×
4. 已知:互为相反数,c、d互为倒数,x的绝对值是1,
求:3x—[(a+b)+cd]x的值
5. 定义一种运算符号△的意义:a△b=ab—1,
求:2△(—3)、2△[(—3)—5]的值
6. 有6张不同数字的卡片:—3,+2,0, —8, 5, +1,如果从中任取3张,
(1)使数字的积最小,应如何抽?最小积是多少?
(2)使数字的积最大,应如何抽?最大积是多少?
1-4有理数乘法与除法(3)
第15学时
学习目标:
1.会将有理数的除法转化成乘法
2.会进行有理数的乘除混合运算
3.会求有理数的倒数
教学重点:正确进行有理数除法的运算,正确求一个有理数的倒数
教学难点:如何进行有理数除法的运算,求一个负数的倒数
教学过程:
一、复习引入:
1、倒数的概念;
2、说出下列各数对应的倒数:1、-、-(-4.5)、|-|
3、现实生活中,一周内的每天某时的气温之和可能是正数,可能是0,也可能是负数,如盐城市区某一周上午8时的气温记录如下:
周日  周一  周二  周三  周四  周五  周六
-30c -30c -20c -3°c 0°c -2°c -1°c
问:这周每天上午8时的平均气温是多少?
二、探索新知:
1、解:[(-3)+(-3)+(-2)+(-3)+0+(-2)+(-1)]÷7,
即:(-14)÷7=?
(除法是乘法的逆运算)什么乘以7等于-14?
因为(-2)×7=-14,
所以: (-14)÷7=-2
又因为:(-14)×=-2
所以:(-14)÷7=(-14)×
2、有理数除法法则
除以一个不等于0的数等于乘以这个数的倒数;
0除以任何一个不等于0的数都等于0
有此可见:“除以一个数,等于乘以这个数的倒数”,在引进负数以后同样成立。
问题1、计算:
(1)36÷(-9) (2)(48)÷(-6)
(2)0÷(-8) (3)(-)÷(-)
(4)0.25÷(-0.5) (5)(-24)÷(-6)
(6)(-32)÷4×(-8) (7)17×(-6)÷5
★1、能整除时,将商的符号确定后,直接将绝对值相除;
2、不能整除时,将除数变为它的倒数,再用乘法;
3、有乘除混合运算时,注意运算顺序。先将除法转化为乘法,再进行乘法运算;
问题2、计算:
(1)48÷[(-6)-4] (2)(-81)÷×÷(-16)
(3)÷(-2)-×(-1)-0.75
练习 : P42/2、3
问题3、化简下列分数:
,,
3、小结本节内容
(1)有理数的乘法法则及运算律
(2)有理数的除法法则
(3)与小学四则运算不同,有理数的加、减、乘、除首先要确定和、差、积、商的符号,然后在确定和、差、积、商的绝对值。
4、课堂作业:P43/4、5、7
课后思考题:
1、计算:(7+3-2-1)÷(15+7-4-3)(第15届“五羊杯”邀请赛试题)
2、a、b、c、d表示4个有理数,其中每三个数之和是-1,-3,2,17,求a、b、c、d;
3、2001减去它的,再减去剩余数的,再减去剩余数的,…,依此类推,一直减去剩余数的,求最后剩余的数;(第16届江苏竞赛题)
知识巩固:
A组题:
1、下列说法中,不正确的是 ( )
A.一个数与它的倒数之积为1; B.一个数与它的相反数之商为-1;
C.两数商为-1,则这两个数互为相反数; D.两数积为1,则这两个数互为倒数;
2、下列说法中错误的是 ( )
A.互为倒数的两个数同号; B.零没有倒数;
C.零没有相反数; D.零除以任意非零数商为0
3、如果两个有理数在数轴上对应的点分别在原点的两侧,则这两个数相除所得的商是( )
A.一定是负数; B.一定是正数;
C.等于0; D.以上都不是;
4、1.4的倒数是 ; 若a,b互为倒数,则2ab= ;
5、若一个数和它的倒数相等,则这个数是 ;若一个数和它的相反数相等,则这个数是 ;
6、计算:
(1)(-27)÷9; (2)-0.125÷; (3)(-0.91)÷(-0.13);
(4)0÷(-35); (5)(-23)÷(-3)×; (6)1.25÷(-0.5)÷(-2);
(7)(-81)÷(+3)×(-)÷(-1); (8)(-45)÷[(-)÷(-)];
(9)(-+)÷(-); (10)-3÷(-).
7、列式计算.
(1)-15的相反数与-5的绝对值的商的相反数是多少?
(2)一个数的4倍是-13,则此数为多少?
B组:
1.若     若
2.若     若
3.=0,则一定有 ( )
A.n=0且m≠0; B.m=0或n=0 ; C.m=0且n≠0; D.m=n=0
4.果两个有理数的和除以它们的积,所得的商是0,那么这两个有理数 ( )
A.互为相反数,但不等于0 ; B.互为倒数 ; C.有一个等于0 ; D.都等于0
5.数的相反数与这个数的倒数的和为0,则这个数的绝对值为 ( )
A.2 B.1 C.0.5 D.0
6.b≠0,则+的取值不可能是 ( )
A.0 B.1 C.2 D.-2
7.++=1,求()2003÷(××)的值。
有理数的乘方
第16学时
班级 小组 姓名 小组评价_________教师评价_______
使用说明及方法指导:
学生先自学课本,经历自主探索总结的过程,并独立完成自主学习部分,然后小组讨论交流,预习时间20分钟
学习目标
1、理解乘方的意义,探究有理数乘方的符号法则,会进行乘方的运算
2、通过合作交流及独立思考,培养学生正确迅速的运算及探究新知识的能力。
重点:乘方的意义及运算
难点:乘方的运算
一、自主学习:
1、复习巩固:
①乘法运算的符号法则及运算方法:
②多个不为0的数相乘,积的符号怎样确定?
2、导学:
(1)一般地,几个相同因数相乘,即,记作 ,读作
求n个相同因数的 ,叫作乘方,乘方的结果叫做 。 在中,叫做 ,叫作 。当看作的次方的结果时,也可读作 。
特别地一个数也可以看作这数本身的一次方,如5就是5的一次,即,指数为1通常 不写。
(2)警示:
①乘方是一种运算(乘法运算的特例),即求个相同因数连乘的简便形式;
②幂是乘方的结果,它不能单独存在,即没有乘方就无所谓幂;
③乘方具有双重含义:既表示一种 ,又表示乘方运算的结果;
④书写格式:若底数是负数、分数或含运算关系的式子时,必须要用 把底数括起来,以体现底数的整体性。
(3)拓展:底数为,0,1,10,0.1的幂的特性:
(n为正整数) (n为整数)
(1后面有____个0), =0.00…01 (1前面有______个0)
(4)乘方的符号法则:
负数的奇次幂是 数,负数的偶次幂是 数。
正数的任何次幂都是 数,0的任何正整数次幂都是 。
(5)参照乘法运算的方法进行乘方运算。
(6)用计算器作乘方运算。
二、合作探究:
1、计算:
2、 ;
3、已知n是正整数,那么 ,
4、如果一个有理数的偶次幂是非负数,那么这个有理数是 。
A、正数 B、负数 C、0 D、任何有理数
5、平方等于9的数是 ,立方等于27的数是 ,平方等于本身的数是 ,立方等于本身的数是
三、学以致用:
1、把写成乘方形式 。
2、计算: , ,
3、下列运算正确的是 。
A、 B、 C、
D、
4、若,则
若,则
四、能力提升:
1、计算:
2、,
3、观察下列数,根据规律写出横线上的数
;;;;______;第2010个数是____________。
有理数的乘方
第17学时
班级 小组 姓名 小组评价_________教师评价_______
使用说明及方法指导:
先回顾有理数的加、减、乘、除及乘方的运算法则,自学教材有理数混合运算部分,独立完成自主学习部分,然后小组内交流讨论,预习时间20分
学习目标:
1、熟练进行有理数的混合运算
2、及时纠正运算中的错误,进一步培养学生正确迅速的运算能力,培养学生严谨的学习态度
重难点:有理数的四则混合运算
一、自主学习:
(一)复习回顾:
1、有理数的加、减、乘、除及乘方的运算法则
2、加入乘方后,有理数的混合运算的顺序如何?
(二)导学:
有理数的混合运算顺序:(1)先 ,再 ,最后 ;(2)同级运算,从左到右进行;(3)如有括号,先做 的运算,按小括号、中括号、大括号依次进行。
方法规律:
(1)有理数运算分三级运算,加减法是第一级运算,乘除法是第二级运算,乘方和开方(以后学习)是第 级运算。
运算顺序是:先算高级运算,再算 运算;同级运算,再按从左至右的顺序运算。
(2)在运算过程中注意运算律的运用
(三)完成P43例3及P44的练习
二、合作探究
1、计算:
(1)
(2)
(3)
2、观察下面行数:
① -3,9,-27,81,-243,729,…
② 0,12,-24,84,-240,732,…
③ -1,3,-9,27,-81,243,…
(1)第①行数有什么规律?
(2)第②行数与第①行数有什么关系?
(3)第③行数与第①行数有什么关系?
(3)取每行数的第10个数,计算这三个数的和
三、学习致用:
1、计算:
2、、为有理数,且,求的值;
3、
4、一根1米长的绳子,第一次剪去,第二次剪去剩下的,如此剪下去,第六次后剩下的绳子还有1厘米长吗?为什么?
四、能力提升
已知
试求的值
科学记数法
第18学时
班级 小组 姓名 小组评价_________教师评价_______
使用说明及学法指导:
1、收集现实生活中你认为非常大的数;
2、自学课本第44-45页部分,勾画重难点,完成课后练习及自主学习部分,预习时间15分钟
学习目标:
1、了解科学记数法的意义,体会科学记数法的好处,会用科学记数表示绝对值大于10的数;
2、弄清科学记数法中10的指数n与这个数的整数位数的关系。
重点:用科学记数法表示绝对值大于10的数;
难点:正确使用科学记数法表示数
一、自主学习:
1、展示你收集的你认为非常大的数,与同学交流,你觉得记录这些数据方便吗?
2、现实生活中,我们会遇到一些比较大的数,如太阳的半径、光速,日前世界人口等,读写这样大的数有一定的困难,先看10的乘方的特点:
1000 000 1000 000 000
10…..0(在1后面有 个0)
对于一般的大数如何简单地表示出来?
3000 000 000 1000 000 000
696000 100 000
读作6.96乘10的5次方(幂)
3、科学记数法:
像上面这样,把一个大于10的数表示成 的形式(其中是整数数位只有一位的数,n是整数),使用的是科学记数法,“科学记数”谨记三点:
(1)弄清a×中的a的取值范围
(2)正确确定a×中的n的值,当所记数大于10时,n是 且等于所记数的整数位数 。
(3)会将用科学记数法表示的数还原。
提醒:a符号与原数的符号相同,如:将科学记数时,a为而不是。
二、合作探究
1、用科学记数法表示下列各数:
1000 000; 572 000 000; 123 000 000 000; ; ;
2、第五次人口普查知山西省人口总数约为3297万人,用科学记数法表示是多少人?
3、太阳直径为千米,其原数为多少米?
三、学以致用:
1、用科学记数法表示下列各数
10000; 800000; 567000; 000;
2、下列用科学记数法写出的数,原数分别是什么数?
4.5 7.04 3.96
3、下列各数,属于科学记数法表示的是 。
A、53.7 B、0.537 C、537 D、5.37
4、在比例尺为1:8000 000的地图上,量得太原到北京的距离为6.4㎝,将实际距离用科学记数法表示为 ㎞。
四、能力提升:
地球绕太阳公转的速度约为1.1㎞/h,声音在空气中传播速度为330m/s,试比较这两个速度的大小。
有理数全章复习
第19学时
一、课题 有理数复习课
二、教学目标
1、复习整理有理数有关概念和有理数运算法则,运算律以及近似计算等有关知识;
2、培养学生综合运用知识解决问题的能力;
3、渗透数形结合的思想?
三、教学重点和难点
重点:有理数概念和有理数运算?
难点:负数和有理数法则的理解?
四、教学手段
现代课堂教学手段
五、教学方法
启发式教学
六、教学过程
(一)、讲授新课
1、阅读教材中的“全章小结”,给关键性词语打上横线?
2、利用数轴患讲有理数有关概念?
本章从引入负数开始,与小学学习的数一起纳入有理数范畴,我们学习的数地范围在不断扩
大?从数轴上看,小学学习的数都在原点右边(含原点),引入负数以后,数轴的左边就有了
实际意义,原点所表示的0也不再是最小的数了?数轴上的点所表示的数从左向右越来越大
,A点所表示的数小于B点所表示的数,而D点所表示的数在四个数中最大?
我们用两个大写字母表示这两点间的距离,则AO>BO>CO,这个距离就是我们说的绝对值?
由AO>BO>CO可知,负数的绝对值越大其数值反而越小?
由上图中还可以知道CO=DO,即C,D两点到原点距离相等,即C,D所表示的数的绝对值相等,又它们在原点两侧,那么这两数互为相反数?从数轴上看,互为相反数就是在原点两侧且到原点等距的两点所表示的数?
利用数轴,我们可以很方便地解决许多题目?
例1 (1)求出大于-5而小于5的所有整数;
(2)求出适合3<<6的所有整数;
(3)试求方程=5, =5的解;
(4)试求<3的解?
解:(1)大于-5而小于5的所有整数,在数轴上表示±5之间的整数点,如图,显然有±4,±3,±2,±1,0
(2)3<<6在数轴上表示到原点的距离大于3个单位而小于6个单位的整数点?
在原点左侧,到原点距离大于3个单位而小于6个单位的整数点有-5,-4;在原点右侧距离原点大于3个单位而小于6个单位的整数点有4,5?
所以 适合3<<6的整数有±4,±5?
(3) =5表示到原点距离有5个单位的数,显然原点左、右侧各有一个,分别是-5和5?
所以=5的解是x=5或x=-5?
同样=5表示2x到原点的距离是5个单位,这样的点有两个,分别是5和-5.
所以2x=5或2x=-5,解这两个简易方程得x=或x=-?
(4) <3在数轴上表示到原点距离小于3个单位的所有点的集合.
很显然-3与3之间的任何一点到原点距离都小于3个单位?
所以 -3<x<3?
例2 有理数a、b、c、d如图所示,试求?
解:显然c、d为负数,a、b为正数,且
=-c, (复述相反数定义和表示)
=a-c,(判断a-c>0)
=-a-d,(判断a+d<0)
=b-c?(判断b-c>0)
3、有理数运算
(1)+17+20; (2)-13+(-21); (3)-15-19; (4)-31-(-16); (5)-11×12;
(6)(-27)(-13); (7)-64÷16; (8)(-54)÷(-24); (9)(-)3; (10)-()2;
(11)-(-1)100; (12)-2×32; (13)-(2×3)2; (14)(-2)3+32?
计算[4()2÷2(-)]÷[(-)2+(-)3+(-)+1]?
4、课堂练习
(1)填空:
①两个互为相反数的数的和是_____;
②两个互为相反数的数的商是_____;(0除外)
③____的绝对值与它本身互为相反数;
④____的平方与它的立方互为相反数;
⑤____与它绝对值的差为0;
⑥____的倒数与它的平方相等;
⑦____的倒数等于它本身;
⑧____的平方是4,_____的绝对值是4;
⑨如果-a>a,则a是_____;如果=-a3,则a是______;如果,那么a是_____;如果=-a,那么a是_____;
10 如果x3=14?76,(-24?53)3=-14760,那么x=____?
(2)用“>”、“<”或“=”填空:
当a<0,b<0,c<0,d<0时:
①____0; ②____0; ③_____0;④____0;⑤____0;
⑥____0; ⑦____0; ⑧____0;
a>b时,⑨a>0,b>0,则;
10a<0,b<0,则.?
七、练习设计
1、写出下列各数的相反数和倒数?
原 数 5 -6 1 0?5 -1
相反数
倒 数
2、计算:
(1)5÷0.1; (2)5÷0.001; (3)5÷(-0.01);(4)0.2÷0.1;(5)0.002÷0.001;
(6)(-0.03)÷0.01?
3?计算:
(1); (2)(-81)÷÷(-16);
(3) (4)3(-2.5)(-4)+5(-6)(-3)2;
(5){0.85-[12+4×(3-10)]}÷5; (6)22+(-2)3×5-(-0.28)÷(-2)2
(7)[(-3)3-(-5)3]÷[(-3)-(-5)]?
4?分别根据下列条件求代数式的值:
(1)x=-1.3,y=2.4; (2)x=,y=-?
八、板书设计
§2.12有理数复习(一)知识回顾 (三)例题解析 (五)课堂小结 例1、例2(二)观察发现 (四)课堂练习 练习设计
九、教学后记
全章复习的目的是使学生进一步系统掌握基础知识、基本技能和基本方法,进一步提高综合运用数学知识灵活地分析和解决问题的能力?因此,在选择教学内容时我们注意了下面两个方面:第一,既加强基础,又提高能力和发展智力;第二,既全面复习,又突出重点?。
第一学时 整式(1)
学习内容:教科书第54—56页,2.1整式:1.单项式。
学习目标:1.理解单项式及单项式系数、次数的概念。
2.会准确迅速地确定一个单项式的系数和次数。
3.通过小组讨论、合作学习等方式,经历概念的形成过程,培养自主探索知识和合作交流能力。
学习重点和难点:
重点:掌握单项式及单项式的系数、次数的概念,并会准确迅速地确定一个单项式的系数和次数。
难点:单项式概念的建立。
一、自主学习;
1、先填空,再分析写出式子特点,与同伴交流。
(1)若正方形的边长为a,则正方形的面积是 ;
(2)若三角形一边长为a,并且这边上的高为h,则这个三角形的面积为 ;
(3)若x表示正方体棱长,则正方体的体积是 ;
(4)若m表示一个有理数,则它的相反数是 ;
(5)小明从每月的零花钱中贮存x元钱捐给希望工程,一年下来小明捐款 元。
2、观察以上式子的运算,有什么共同特点?
3、单项式定义:由数与字母的乘积组成的代数式称为单项式。
[老师提示] 单独一个数或一个字母也是单项式,如a,5,0。
4、练习:判断下列各代数式哪些是单项式?
(1); (2)abc; (3)b2; (4)-5ab2; (5)y; (6)-xy2; (7)-5。
5、单项式系数和次数:
观察“1”中所列出的单项式,发现单项式是由数字因数和字母因数两部分组成。单项式中的数字因数叫单项式的系数;单项式中所有字母指数的和叫单项式的次数。
说说四个单项式a2h,2πr,abc,-m的数字因数和字母因数及各个字母的指数?
二、合作探究:
1、教材p56例1:阅读例题,体会单项式及系数次数概念。
2、判断下列各代数式是否是单项式。如不是,请说明理由;如是,请指出它的系数
和次数。
①x+1; ②; ③πr2; ④-a2b。
3、下面各题的判断是否正确?
①-7xy2的系数是7; ②-x2y3与x3没有系数; ③-ab3c2的次数是0+3+2;
④-a3的系数是-1; ⑤-32x2y3的次数是7; ⑥πr2h的系数是。
[老师提示]
①圆周率π是常数;
②当一个单项式的系数是1或-1时,“1”通常省略不写,如x2,-a2b等;
③单项式次数只与字母指数有关。
4、课堂练习:课本p56:1,2。
5、若单项式xmy2的次数是5,则m= ;
6、已知单项式2xmyn+2与3xm+2的次数相同,求n的值。
7、写一个含m,n的3次单项式 ;
8、有一串单项式:-x,2x2, -3x3,4x4…, 10x10…
(1)、请写出第2010个单项式;
(2)、请写出第n个单项式。
三、学习小结:
四、课堂作业: 课本p59习题第1,2题
第二学时 整式(2)
学习内容:
教科书第56—59页,2.1整式:2.多项式。
学习目标和要求:
1.通过本节课的学习,掌握整式多项式的项及其次数、常数项的概念。
2.通过小组讨论、合作交流,经历新知的形成过程,培养比较、分析、归纳的能力。由单项式与多项式归纳出整式,有利于知识的迁移和知识结构体系的更新。
3.初步体会类比和逆向思维的数学思想。
学习重点和难点:
重点:掌握整式及多项式的有关概念,掌握多项式的定义、多项式的项和次数,以及常数项等概念。
难点:多项式的次数。
一、自主学习:
1.列代数式:
(1)长方形的长与宽分别为a、b,则长方形的周长是 ;
(2)某班有男生x人,女生21人,则这个班共有学生 人;
(3)鸡兔同笼,鸡a只,兔b只,则共有头 个,脚 只。
2.观察以上所得出的三个代数式与上节课所学单项式有何区别。
[老师提示]上面这些代数式都是由几个单项式相加而成的。几个单项式的和叫做多项式。在多项式中,每个单项式叫做多项式的项。其中,不含字母的项,叫做常数项。如:多项式有三项,它们是,-2x,5。其中5是常数项。
一个多项式含有几项,就叫几项式。多项式里,次数最高项的次数,就是这个多项式的次数。例如,多项式是一个二次三项式。
注意:
(1)多项式的次数不是所有项的次数之和,是次数最高的项的次数;
(2)多项式的每一项都包括它前面的符号。
(3)多项式不包含单项式
单项式与多项式统称整式
二、合作探究:
1、教材p57例2
2、判断:
①多项式a3-a2b+ab2-b3的项为a3、a2b、ab2、b3,次数为12; ( )
②多项式3n4-2n2+1的次数为4,常数项为1。 ( )
[注意]:多项式的次数为最高次项的次数。
3、指出下列多项式的项和次数:
(1)3x-1+3x2; (2)4x3+2x-2y2。
4、指出下列多项式是几次几项式。
(1)x3-x+1; (2)x3-2x2y2+3y2。
5、已知代数式3xn-(m-1)x+1是关于x的三次二项式,求m、n的条件。
6.课堂练习:课本p59:1,2。
7、填空:-a2b-ab+1是 次 项式,其中三次项系数是 ,二次项为 ,常数项为 ,写出所有的项 。
8、下列代数式中哪些是整式?哪些是单项式?哪些是多项式?
xy+z a x2+bx -1 π ;
三、学习小结:
四、课堂作业: 课本p60:第3题
第三学时 整式(3)
学习内容:课本p58例3及课本p64提到的一个内容
学习目的和要求:
1、通过用整式来表示事物间的关系,逐步掌握数学建模思想;
2、理解多项式的升(降)幂排列的概念,会进行多项式的升(降)幂排列。
3、通过尝试和交流,体会多项式升(降)幂排列的可行性和必要性。
4、初步体验排列组合思想与数学美感,培养审美观。
学习重点和难点:
重点:会进行多项式的升(降)幂排列,体验其中蕴含的数学美。
难点:会进行多项式的升(降)幂排列,体验其中蕴含的数学美。
自主学习:
1、教材p58例3:我们知道船在河流中行驶时,船的速度需要分两种情况讨论:
(1)顺水行驶:船的速度= ;
(2)逆水行驶:船的速度= ;
在上面两个关系式中若用字母V表示静水速度则
船的顺水速度为 船的逆水速度为
当V=20时则
甲船顺水速度 甲船逆水速度
乙船顺水速度 乙船逆水速度
2..请运用加法交换律,任意交换多项式x2+x+1中各项的位置,可以得到几种不同的排列方式?在众多的排列方式中,你认为那几种比较整齐?
【提示】
有六种不同的排列方式,像x2+x+1与1+x+x2这样的排列比较整齐。这两种排列有一个共同点,那就是x的指数是逐渐变小(或变大)的。我们把这种排列叫做升幂排列与降幂排列。例如:把多项式5x2+3x-2x3-1按x的指数从大到小的顺序排列,可以写成-2x3+5x2+3x-1,这叫做这个多项式按字母x的降幂排列。
若按x的指数从小到大的顺序排列,则写成-1+3x+5x2-2x3,这叫做这个多项式按字母x的升幂排列。
二、合作探究
1、请把卡片
按x降幂排列
2、把多项式2πr-1+3πr3-π2r2按r升幂排列。
【提示】:π是数字,不是字母,题目中一次项、二次项、三次项系数分别为2π、-π2、3π。
3、把多项式a3-b3-3a2b+3ab2重新排列。
(1)按a升幂排列;
(2)按a降幂排列。
4、把多项式x4-y4+3x3y-2xy2-5x2y3用适当的方式排列。
(1)按字母x的升幂排列得: ;
(2)按字母y的升幂排列得: 。
【注意】:
(1)重新排列多项式时,每一项一定要连同它的符号一起移动;
(2)含有两个或两个以上字母的多项式,常常按照其中某一字母升幂排列或降幂排列。
5.一个三位数百位数字是a,十位数字是b,个位数字是c 则这个三位数表示为 ;
课堂练习书P61习题8,9,10,11题
三.学习小结
四.作业。书P60习题4,5,6,7,题
第四学时 整式的加减(1)
学习内容:
教科书第63—64页,2.2整式的加减:(1)同类项。
学习目标和要求:
1.理解同类项的概念,在具体情景中,认识同类项。
2.通过小组讨论、合作学习等方式,经历概念的形成过程,培养自主探索知识和合作交流的能力。
3.初步体会数学与人类生活的密切联系。
学习重点和难点:
重点:理解同类项的概念。 难点:根据同类项的概念在多项式中找同类项。
一、自主学习
1、问题;每本练习本x元,小明买5本,小红买3本,两人一共花了多少钱 小明比小红多花多少钱?
用代数式表示以上问题;(用两种表示方法)
2、运用有理数的运算定律填空:
100×2+252×2=( ) 100×(-2)+252×(-2)=( )
100t+252t=( )
你发现什么规侓了吗?与同伴交流一下。
3、用发现的规律填空:
(1)100t-252t=( ) t (2)3x2y+2x2y=( ) x2y
(3)3mn2--4mn2=( ) mn2
4.同类项的定义:
我们常常把具有相同特征的事物归为一类。比如多项式的项100t和-252t可以归为一类,3x2y、2x2y可以归为一类,3 mn2、-4mn2可以归为一类,5a与9a也可以归为一类,还有、0与也可以归为一类。3x2y与2x2y只有系数不同,各自所含的字母都是x、y,并且x的指数都是2,y的指数都是1;同样地3mn2、4mn2,也只有系数不同,各自所含的字母都是m、n,并且m的指数都是1,n的指数都是2。
像这样,所含字母相同,并且相同字母的指数也分别相等的项叫做
同类项。另外,所有的常数项都是同类项。比如,前面提到的、0与也是同类项。
二、合作探究
1、判断下列说法是否正确,正确地在括号内打“√”,错误的打“×”。
(1)3x与3mx是同类项。 ( ) (2)2ab与-5ab是同类项。 ( )
(3)3x2y与-yx2是同类项。 ( ) (4)5ab2与-2ab2c是同类项。 ( )
(5)23与32是同类项。 ( )
2、指出下列多项式中的同类项:
(1)3x-2y+1+3y-2x-5; (2)3x2y-2xy2+xy2-yx2。
3、k取何值时,3xky与-x2y是同类项?
4、若把(s+t)、(s-t)分别看作一个整体,指出下面式子中的同类项。
(1)(s+t)-(s-t)-(s+t)+(s-t); (2)2(s-t)+3(s-t)2-5(s-t)-8(s-t)2+s-t。
三、学习小结:
四、课堂作业:若2amb8与a3b2m+3n是同类项,求m与n的值。
第五学时 整式的加减(2)
学习内容:
教科书第64—66页,2.2整式的加减:2.合并同类项。
学习目的和要求:
1.理解合并同类项的概念,掌握合并同类项的法则。
2.经历概念的形成过程和法则的探究过程,培养观察、归纳、概括能力,发展应用意识。
3.渗透分类和类比的思想方法。
4.在独立思考的基础上,积极参与讨论,敢于发表自己的观点,从交流中获益。
学习重点和难点:
重点:正确合并同类项。 难点:找出同类项并正确的合并。
一、自主学习
1、问题:为了搞好班会活动,李明和张强去购买一些水笔和软面抄作为奖品。他们首先购买了15本软面抄和20支水笔,经过预算,发现这么多奖品不够用,然后他们又去购买了6本软面抄和5支水笔。问:
①他们两次共买了多少本软面抄和多少支水笔?
②若设软面抄的单价为每本x元,水笔的单价为每支y元,则这次活动他们支出的总金额是多少元?
2.合并同类项的定义:
【提示】(讨论问题2)可根据购买的时间次序列出代数式,也可根据购买物品的种类列出代数式,再运用加法的交换律与结合律将同类项结合在一起,将它们合并起来,化简整个多项式,所得结果都为(21x+25y)元。
由此可得:把多项式中的同类项合并成一项,叫做合并同类项。
二、合作探究
1、找出多项式3x2y-4xy2-3+5x2y+2xy2+5种的同类项,并用交换律、结合律、分配律合并同类项。
根据以上合并同类项的实例,讨论归纳,得出合并同类项的法则:
把同类项的系数相加,所得的结果作为系数,字母和字母指数保持不变。
2、下列各题合并同类项的结果对不对?若不对,请改正。
(1)2x2+3x2=5x4; (2)3x+2y=5xy; (3)7x2-3x2=4; (4)9a2b-9ba2=0。
3、合并下列多项式中的同类项:
2a2b-3a2b+0.5a2b; ②a3-a2b+ab2+a2b-ab2+b3;
③5(x+y)3-2(x-y)4-2(x+y)3+(y-x)4。
【提示】(用不同的记号如横线、双横线、波浪线等标出各同类项,会减少运算错误,当然熟练后可以不再标出。其中第(3)题应把(x+y)、(x-y)看作一个整体,特别注意(x-y)2n=(y-x)2n,n为正整数。)
4、求多项式3x2+4x-2x2-x+x2-3x-1的值,其中x=-3。
试一试:把x=-3直接代入例4这个多项式,可以求出它的值吗?与上面的解法比较一下,哪个解法更简便?
(两种方法。通过比较两种方法,使学生认识到,在求多项式的值时,常常先合并同类项,再求值,这样比较简便。)
5.课堂练习:课本p66:1,2,3。
三、学习小结
四、课堂作业: 课本p71:1
第六学时 整式的加减(3)
学习内容:
课本第66页至第68页.
学习目标
1、 能运用运算律探究去括号法则,并且利用去括号法则将整式化简.
2、 经历类比带有括号的有理数的运算,发现去括号时的符号变化的规律,归纳出去括号法则,培养观察、分析、归纳能力.
3、 培养主动探究、合作交流的意识,严谨治学的学习态度。
重、难点与关键
1.重点:去括号法则,准确应用法则将整式化简.
2.难点:括号前面是“-”号去括号时,括号内各项变号容易产生错误.
3.关键:准确理解去括号法则.
一、自主学习
问题: 在格尔木到拉萨路段,如果列车通过冻土地段要t小时,那么它通过非冻土地段的时间为(t-0.5)小时,于是,冻土地段的路程为100t千米,非冻土地段的路程为120(t-0.5)千米,因此,这段铁路全长为
100t+120(t-0.5)千米 ①
冻土地段与非冻土地段相差
100t-120(t-0.5)千米 ②
上面的式子①、②都带有括号,它们应如何化简?
【提示】类比数的运算, 利用分配律,可以去括号,合并同类项,得:
100t+120(t-0.5)=100t+120t+120×(-0.5)=220t-60
100t-120(t-0.5)=100t-120t-120×(-0.5)=-20t+60
我们知道,化简带有括号的整式,首先应先去括号.
上面两式去括号部分变形分别为:
+120(t-0.5)=+120t-60 ③
-120(t-0.5)=-120+60 ④
比较③、④两式,你能发现去括号时符号变化的规律吗?
【提示】 如果括号外的因数是正数,去括号后原括号内各项的符号与原来的符号相同;如果括号外的因数是负数,去括号后原括号内各项的符号与原来的符号相反.
【注意】 去括号规律要准确理解,去括号应对括号的每一项的符号都予考虑,做到要变都变;要不变,则谁也不变;法则顺口溜:去括号,看符号:是“+”号,不变号;是“―”号,全变号。另外,括号内原有几项去掉括号后仍有几项.
二、合作交流
1、做一做:
(1)a+(b-c)= (2)a- (-b+c)=
(3)(a+b)+(c+d)= (4)-(a+b)-(-c-d)=
2、化简下列各式:
(1)8a+2b+(5a-b); (2)(5a-3b)-3(a2-2b).
3、书p68页例5
4、课本第68页练习1、2题.
5、计算:5xy2-[3xy2-(4xy2-2x2y)]+2x2y-xy2.
6、-(m-2n)+(3m-2n)-(m+n)
【提示】:一般地,先去小括号,再去中括号,然后去大括号.
三、学习小结
四 、作业布置
1.课本第71页习题2.2第2、3、5、8题.
第七学时 整式的加减(4)
学习内容:课本没有“添括号”内容,整式的加减过程中要用到。
学习目标和要求:
1.初步掌握添括号法则。
2.会运用添括号法则进行多项式变项。
3.理解“去括号”与“添括号”的辩证关系。
学习重点和难点:
重点:添括号法则;法则的应用。
难点:添上“―”号和括号,括到括号里的各项全变号。
一、自主学习
1、练习:
(1)(2x―3y)+(5x+4y); (2)(8a―7b)―(4a―5b);
(3)a―(2a+b)+2(a―2b); (4)3(5x+4)―(3x―5);
(5)(8x―3y)―(4x+3y―z)+2z; (6)―5x2+(5x―8x2)―(―12x2+4x)+;
(7)2―(1+x)+(1+x+x2―x2); (8)3a2+a2―(2a2―2a)+(3a―a2);
(9)2a―3b+[4a―(3a―b)]; (10)3b―2c―[―4a+(c+3b)]+c。
二、合作探究
1.添括号的法则:
①观察:分别把前面去括号的(1)、(2)两个等式中等号的两边对调,并观察对调后两个等式中括号和各项符号的变化,你能得出什么结论?
②通过观察与分析,可以得到添括号法则:
所号。添括号前面是“+”号,括到括号里的各项都不变符号;
所添括号前面是“-”号,括到括号里的各项都改变符【法则顺口溜】添括号,看符号:是“+”号,不变号;是“―”号,全变号。
2、按要求,将多项式3a―2b+c添上括号:
(1)把它放在前面带有“+”号的括号里。(2把它放在带有)“-”的括号里。
3、做一做:在括号内填入适当的项:
(1)x2―x+1= x2―(__________); (2) 2x2―3x―1= 2x2+(__________);
(3)(a-b)―(c―d)=a-(________________)。 (4)(a+b―c)(a―b+c)=[a+( )][a―( )]
3、用简便方法计算:
(1)214a+47a+53a; (2)214a-39a-61a.
4、按下列要求,将多项式x3―5x2―4x+9的后两项用( )括起来:
(1)括号前面带有“+”号; (2)括号前面带有“―”号?
5、按要求将2x2+3x―6:
(1)写成一个单项式与一个二项式的和; (2)写成一个单项式与一个二项式的差。
【提示】此题(1)、(2)小题的答案都不止一种形式,。?
三、学习小结
第八学时 整式的加减(5)
学习内容:
教科书第68—70页,2.2整式的加减:4.整式的加减。
学习目的和要求:
1.从实际背景中去体会进行整式的加减的必要性,并能灵活运用整式的加减的步骤进行运算。
2.培养观察、分析、归纳、总结以及概括能力。
3.认识到数学是解决实际问题和进行交流的重要工具。
学习重点和难点:
重点:整式的加减。
难点:总结出整式的加减的一般步骤。 
一、自主学习
1.做一做。
某学生合唱团出场时第一排站了n名,从第二排起每一排都比前一排多一人,一共站了四排,则该合唱团一共有多少名学生参加?
以上答案能进一步化简吗?如何化简?我们进行了哪些运算?
2.练习:化简:
(1)(x+y)—(2x-3y) (2)(8a-7b)-(4a-5b)
通过练习你发现进行整式加减的一般步骤了吗?
【提示】去括号和合并同类项是整式加减的基础。