2022-2023学年人教A版2019高中数学 必修1 5.1.1 任意角 课件(66张PPT)

文档属性

名称 2022-2023学年人教A版2019高中数学 必修1 5.1.1 任意角 课件(66张PPT)
格式 pptx
文件大小 1.8MB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2022-07-27 15:00:58

图片预览

文档简介

(共66张PPT)
5.1.1 任意角
第五章 §5.1 任意角和弧度制
学习目标
1.了解任意角的概念,区分正角、负角与零角.
2.了解象限角的概念,理解并掌握终边相同的角的概念,能写出终边相同的角所组成的集合.
3.利用象限角和终边相同的角的概念解决简单的问题.
导语
同学们,钟表是帮助我们掌握时间的好帮手,生活中我们经常听到时钟慢了5分钟,或时钟快了30分钟,应该如何校准?再比如,我们一节课45分钟,时针、分针以及秒针分别旋转了多少度?再比如在体操、花样游泳、跳水等项目中,我们也常常听到“前空翻转体540度”“后空翻转体720度”等这样的解说,这些问题都和角度是分不开的,为了研究这些问题,我们开始今天的新课.
课时对点练
一、任意角的概念
二、象限角
三、终边相同的角
随堂演练
四、区域角以及终边在已知直线上的角的表示
内容索引
任意角的概念

问题1 在初中是如何定义角的?角的范围是多少?
提示 角可以看成一条射线绕着它的端点旋转所成的图形,角的范围是0°~360°.
1.角的概念
角可以看成一条 绕着它的端点 所成的 .
2.角的表示
知识梳理
如图所示,角α可记为“α”或“∠α”或“∠AOB”,始边: ,终边:
,顶点: .
OA
射线
旋转
图形
OB
O
名称 定义 图示
正角 一条射线绕其端点按______方向旋转形成的角
负角 一条射线绕其端点按______方向旋转形成的角
零角 一条射线____做任何旋转形成的角
3.角的分类
逆时针
顺时针
没有
4.任意角
我们把角的概念推广到了 ,包括 、 和 .
5.相反角
我们把射线OA绕端点O按不同方向旋转相同的量所成的两个角叫做互为相反角,角α的相反角记为 .
任意角
正角
-α
负角
零角
若手表时针走过4小时,则时针转过的角度为
A.120° B.-120°
C.-60° D.60°

由于时针是顺时针旋转,故时针转过的角度为负数,
例1
正确理解锐角、直角、钝角、平角、周角等概念,弄清角的始边与终边及旋转方向与大小.逆时针旋转形成一个正角,顺时针旋转形成一个负角.正角与负角是表示具有相反意义的旋转量,它的正负规定纯属习惯,就好像正数和负数的规定一样.
反思感悟
经过2个小时,钟表的时针和分针转过的角度分别是
A.60°,720° B.-60°,-720°
C.-30°,-360° D.-60°,720°
跟踪训练1

象限角

问题2 现在,我们把角的概念推广到了任意角,如何更形象地表示一个角?
提示 我们通常在直角坐标系内讨论角,为了方便,使角的顶点与原点重合,角的始边与x轴的非负半轴重合,那么,角的终边在第几象限,就说这个角是第几象限角.
(1)锐角是第一象限角,钝角是第二象限角,直角的终边在坐标轴上,它不属于任何一个象限.
(2)每一个象限都有正角和负角.
(3)无法比较两个象限角的大小.
注意点:
(多选)在①160°;②480°;③-960°;④1 530°下列四个角中,属于第二象限角的是
A.160° B.480° C.-960° D.1 530°
例2



A中,160°很显然是第二象限角;
B中,480°=120°+360°是第二象限角;
C中,-960°=-3×360°+120°是第二象限角;
D中,1 530°=4×360°+90°不是第二象限角.
正确理解象限角与锐角、直角、钝角、平角、周角等概念的关系,需要掌握判断结论正确与否的技巧,判断结论正确需要证明,而判断结论不正确只需举一个反例即可.
反思感悟
(多选)下列叙述不正确的是
A.三角形的内角是第一象限角或第二象限角
B.钝角是第二象限角
C.第二象限角比第一象限角大
D.小于180°的角是钝角、直角或锐角
跟踪训练2



直角不属于任何一个象限,故A不正确;
钝角是大于90°小于180°的角,是第二象限角,故B正确;
由于120°是第二象限角,390°是第一象限角,120°<390°,故C不正确;
由于零角和负角也小于180°,故D不正确.
终边相同的角

问题3 给定一个角,它的终边是否唯一?若两角的终边相同,那么这两个角相等吗?
提示 给定一个角,它的终边唯一;两角终边相同,这两个角不一定相等,比如30°的终边和390°的终边相同,它们正好相差了360°.
终边相同的角
所有与角α终边相同的角,连同角α在内,可构成一个集合S={β|β=α+k·360°,k∈Z},即任一与角α终边相同的角,都可以表示成角α与整数个周角的和.
知识梳理
已知α=-1 845°,在与α终边相同的角中,求满足下列条件的角.
(1)最小的正角;
例3
因为-1 845°=-45°+(-5)×360°,
即-1 845°角与-45°角的终边相同,
所以与角α终边相同的角的集合是
{β|β=-45°+k·360°,k∈Z},
最小的正角为315°.
(2)最大的负角;
最大的负角为-45°.
(3)-360°~720°之间的角.
-360°~720°之间的角分别是-45°,315°,675°.
反思感悟
终边相同的角的表示
(1)终边相同的角都可以表示成α+k·360°(k∈Z)的形式.
(2)终边相同的角相差360°的整数倍.
若角2α与240°角的终边相同,则α等于
A.120°+k·360°,k∈Z
B.120°+k·180°,k∈Z
C.240°+k·360°,k∈Z
D.240°+k·180°,k∈Z
跟踪训练3

角2α与240°角的终边相同,
则2α=240°+k·360°,k∈Z,
则α=120°+k·180°,k∈Z.
区域角以及终边在已知直线上的角的表示

已知角α的终边在图中阴影部分内,试指出角α的取值范围.
例4
终边在30°角的终边所在直线上的角的集合为S1={α|α=30°+k·180°,k∈Z},终边在180°-75°=105°角的终边所在直线上的角的集合为S2={α|α=105°+k·180°,k∈Z},
因此,终边在图中阴影部分内的角α的取值范围为{α|30°+k·180°≤α<105°+k·180°,k∈Z}.
反思感悟
(1)象限角的判定方法
①根据图象判定.利用图象实际操作时,依据是终边相同的角的思想,因为0°~360°之间的角与坐标系中的射线可建立一一对应的关系.
②将角转化到0°~360°范围内.在直角坐标平面内,在0°~360°之间没有两个角终边是相同的.
反思感悟
(2)表示区域角的三个步骤
第一步:先按逆时针的方向找到区域的起始和终止边界.
第二步:按由小到大分别标出起始和终止边界对应的-360°~360°范围内的角α和β,写出最简区间{x|α第三步:起始、终止边界对应角α,β再加上360°的整数倍,即得区域角集合.
已知,如图所示.(1)分别写出终边落在OA,OB位置上的角的集合;
跟踪训练4
终边落在OA位置上的角的集合为{α|α=210°+k·360°,k∈Z},终边落在OB位置上的角的集合为{α|α=300°+k·360°,k∈Z}.
(2)写出终边落在阴影部分(包括边界)的角的集合.
终边落在阴影部分(包括边界)的角的集合是{α|210°+k·360°≤α≤300°
+k·360°,k∈Z}.
课堂
小结
1.知识清单:
(1)正角、负角、零角的概念.
(2)终边相同的角的表示.
(3)象限角、区域角的表示.
2.方法归纳:数形结合、分类讨论.
3.常见误区:锐角与小于90°角的区别,终边相同的角的表示中漏掉k∈Z.
随堂演练
1.“α是锐角”是“α是第一象限角”的
A.充分不必要条件
B.必要不充分条件
C.充要条件
D.既不充分也不必要条件
1
2
3
4

因为α是锐角能推出α是第一象限角,
但是反之不成立,例如400°是第一象限角,但不是锐角,
所以“α是锐角”是“α是第一象限角”的充分不必要条件.
2.2 022°是
A.第一象限角 B.第二象限角
C.第三象限角 D.第四象限角

1
2
3
4
2 022°=5×360°+222°,
所以2 022°角的终边与222°角的终边相同,为第三象限角.
3.与-460°角终边相同的角可以表示成
A.460°+k·360°,k∈Z B.100°+k·360°,k∈Z
C.260°+k·360°,k∈Z D.-260°+k·360°,k∈Z
因为-460°=260°+(-2)×360°,
故与-460°角终边相同的角可以表示成260°+k·360°,k∈Z.
1
2
3
4

1
2
3
4
4.已知角α的终边在如图阴影表示的范围内(不包含边界),那么角α的集合是_________________________________________.
{α|45°+k·360°<α<150°+k·360°,k∈Z}
观察图形可知,角α的集合是
{α|45°+k·360°<α<150°+k·360°,k∈Z}.
课时对点练
1.如果角α的终边上有一点P(0,-3),那么α
A.是第三象限角 B.是第四象限角
C.是第三或第四象限角 D.不是象限角

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
基础巩固
点P(0,-3)在y轴负半轴上,故α的终边为y轴的负半轴.
2.若α是第四象限角,则180°-α是
A.第一象限角 B.第二象限角
C.第三象限角 D.第四象限角
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

可以给α赋一特殊值-60°,
则180°-α=240°,故180°-α是第三象限角.
3.时针走过2小时40分,则分针转过的角度是
A.80° B.-80° C.960° D.-960°

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
由于时针、分针都是顺时针旋转,
∴时针走过2小时40分,分针转过的角度为-2×360°-240°=-960°.
4.下面各组角中,终边相同的是
A.390°,690° B.-330°,750°
C.480°,-420° D.3 000°,-840°

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
因为-330°=-360°+30°,750°=2×360°+30°,
所以-330°与750°终边相同.
5.如图,终边在阴影部分(含边界)的角的集合是
A.{α|-45°≤α≤120°}
B.{α|120°≤α≤315°}
C.{α|-45°+k·360°≤α≤120°+k·360°,k∈Z}
D.{α|120°+k·360°≤α≤315°+k·360°,k∈Z}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
如题图,终边落在阴影部分(含边界)的角的集合是{α|-45°+k·360°
≤α≤120°+k·360°,k∈Z}.
6.(多选)下列四个角为第二象限角的是
A.-200° B.100° C.220° D.420°


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
-200°=-360°+160°,在0°~360°范围内,与-200°终边相同的角为160°,它是第二象限角,同理100°为第二象限角,220°为第三象限角,420°为第一象限角.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
∵1 112°=360°×3+32°,
∴1 112°的终边与32°的终边相同,均为第一象限角.
7.1 112°角是第_____象限角.

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
8.在0°~360°范围内,与角-60°的终边在同一条直线上的角为 ____________.
120°,300°
与角-60°的终边在同一条直线上的角可表示为β=-60°+k·180°,k∈Z.
∵所求角在0°~360°范围内,
∴0°≤-60°+k·180°≤360°,k∈Z,
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
∴k=1或2.
当k=1时,β=120°;
当k=2时,β=300°.
9.已知α=-1 910°.
(1)把α写成β+k·360°(k∈Z,0°≤β<360°)的形式,并指出它是第几象限角;
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
α=-1 910°=-6×360°+250°,它是第三象限角.
(2)求θ,使θ与α的终边相同,且-720°≤θ<0°.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
令θ=250°+n·360°(n∈Z),
取n=-1,-2就得到符合-720°≤θ<0°的角.
当n=-1时,θ=250°-360°=-110°;
当n=-2时,θ=250°-720°=-470°.
故θ=-110°或θ=-470°.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
10.在平面直角坐标系中,用阴影表示下列集合:
(1){α|30°+k·360°≤α≤60°+k·360°,k∈Z};
根据任意角的定义,画出集合{α|30°+k·360°≤α
≤60°+k·360°,k∈Z}对应的区域如图阴影部分(含边界)所示.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
(2){α|30°+k·180°≤α≤60°+k·180°,k∈Z}.
根据任意角的定义,画出集合{α|30°+k·180°
≤α≤60°+k·180°,k∈Z}对应的区域如图阴影部分(含边界)所示.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
综合运用
11.(多选)角α=45°+k·180°(k∈Z)的终边落在
A.第一象限 B.第二象限
C.第三象限 D.第四象限


1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
当k=2m+1(m∈Z)时,
α=2m·180°+225°=m·360°+225°,
故α为第三象限角;
当k=2m(m∈Z)时,α=m·360°+45°,
故α为第一象限角.
故α的终边落在第一或第三象限.
12.终边与坐标轴重合的角α的集合是
A.{α|α=k·360°,k∈Z}
B.{α|α=90°+k·180°,k∈Z}
C.{α|α=k·180°,k∈Z}
D.{α|α=k·90°,k∈Z}

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
终边在坐标轴上的角为90°的整数倍,
所以终边与坐标轴重合的角的集合为{α|α=k·90°,k∈Z}.
13.已知α为锐角,则2α为
A.第一象限角 B.第二象限角
C.第一或第二象限角 D.小于180°的正角
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16

因为α为锐角,
所以0°<α<90°,则0°<2α<180°.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
14.若α为△ABC的一个内角,且4α与120°的终边相同,则α=__________.
120°或30°
∵4α=120°+k·360°,k∈Z,
∴α=30°+k·90°,k∈Z,
又∵0°<α<180°,
∴当k=1时,α=120°;当k=0时,α=30°.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
拓广探究
15.角α与角β的终边关于y轴对称,则α与β的关系为
A.α+β=k·360°,k∈Z
B.α+β=180°+k·360°,k∈Z
C.α-β=180°+k·360°,k∈Z
D.α-β=k·360°,k∈Z

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
方法一 (特值法)令α=30°,β=150°,
则α+β=180°.
方法二 (直接法)因为角α与角β的终边关于y轴对称,所以β=180°-α+k·360°,k∈Z,
即α+β=180°+k·360°,k∈Z.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
∵α是第二象限角,
∴90°+k·360°<α<180°+k·360°(k∈Z).
∴180°+2k·360°<2α<360°+2k·360°(k∈Z),
∴2α的终边位于第三或第四象限,或在y轴的非正半轴上.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
方法二 将坐标系的每个象限二等分,得到8个区域.自x轴正向按逆时针方向把每个区域依次标上Ⅰ,Ⅱ,Ⅲ,Ⅳ,如图所示.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
将坐标系的每个象限三等分,得到12个区域.自x轴正向按逆时针方向把每个区域依次标上Ⅰ,Ⅱ,Ⅲ,Ⅳ,如图所示.
本课结束