13.2画轴对称图形(第1课时)课件(共21张PPT)

文档属性

名称 13.2画轴对称图形(第1课时)课件(共21张PPT)
格式 pptx
文件大小 645.7KB
资源类型 试卷
版本资源 人教版
科目 数学
更新时间 2022-07-27 21:41:00

图片预览

文档简介

(共21张PPT)
人教版八年级数学上册
13.2.1 画轴对称图形(第1课时)
1.能够按要求画简单平面图形经过一次对称后的图形.(难点)
2.掌握作轴对称图形的方法.(重点)
3.通过画轴对称图形,增强学生学习几何的趣味感.
素养目标
导入新知
我们前面学习了轴对称图形以及轴对称图形的一些相关的性质.如果有一个图形和一条直线,如何画出这个图形关于这条直线对称的图形呢?这节课我们一起来学习作轴对称图形的方法。
导入新知
在一张半透明纸的左边部分,画一只左脚印,把这张纸对折后描图,打开对折的纸,就能得到相应的右脚印,这时,右脚印和左脚印成轴对称,折痕所在直线就是它们的对称轴,并且连接任意一对对应点得到的线段被对称轴垂直平分.类似地,请你再画一个图形做一做,看看能否得到同样的结论.
探索新知
(1)认真观察,左脚印和右脚印有什么关系?
(2)对称轴是折痕所在的直线,即直线l,它与图中的线段PP ′是什么关系?
成轴对称
直线l垂直平分线段PP′
探索新知
由一个平面图形可以得到与它关于一条直线l对称的图形,这个图形与原图形的形状、大小完全相同;新图形上的每一点都是原图形上的某一点关于直线l的对称点;连接任意一对应点的线段被对称轴垂直平分.
探索新知
例1 将一张正方形纸片按如图①,图②所示的方向对折,然后沿图③中的虚线剪裁得到图④,将图④的纸片展开铺平,再得到的图案是(  )
图①
图②
图③
图④
A
B
C
D
探索新知
例2 如图,将长方形ABCD 沿DE折叠,使A点落在BC上的F处,若∠EFB=50°,则∠CFD的度数为(  )
A.20°
B.30°
C.40°
D.50°
方法归纳:折叠是一种轴对称变换,折叠前后的图形形状和大小不变,对应边和对应角相等.
探索新知
问题1:如何画一个点的轴对称图形?
画出点A关于直线l的对称点A′.

l
A

A′
O
作法:
(1)过点A作l的垂线,垂足为点O.
(2)在垂线上截取OA′=OA.
点A′就是点A关于直线l的对称点.
探索新知
问题2:如何画一条线段的对称图形?
已知线段AB,画出AB关于直线l的对称线段.
A
B
(图1)
(图2)
(图3)
A
B
l
l
A
B
l
探索新知
问题2:如何画一条线段的对称图形?
已知线段AB,画出AB关于直线l的对称线段.
A
B
(图1)
(图2)
(图3)
A
B
l
l
A
B
l
A ′
A ′
A ′
B ′
(B ′)
B ′
探索新知
想一想:如果有一个图形和一条直线,如何画出与这个图形关于这条直线对称的图形呢?
例3 如图,已知△ABC和直线l,作出与△ABC关于直线l对称的图形.
A
B
C
分析:△ABC可以由三个顶点的位置确定,只要能分别画出这三个顶点关于直线l的对称点,连接这些对称点,就能得到要画的图形.
探索新知
作法:(1)过点A画直线l的垂线,垂足为点O,在垂线上截取OA′=OA,A′就是点A关于直线l的对称点.
(3)连接A′B′,B′C′,C′A′,得到△ A′B′C′
即为所求.
(2)同理,分别画出点B,C关于直线l的对称点B′,C′ .
A
B
C
A′
B′
C′
O
探索新知
几何图形都可以看作由点组成.对于某些图形,只要作出图形中一些特殊点(如线段端点)的对称点,连接这些对称点,就可以得到原图形的轴对称图形.
探索新知
例4 在3×3的正方形格点图中,有格点△ABC和△DEF,且△ABC和△DEF关于某直线成轴对称,请在下面给出的图中画出4个这样的△DEF.
A
B
C
A
B
C
A
B
C
A
B
C
(F)
(D)
E
(E)
F
D
(F)
D
E
(D)
(E)
F
方法归纳:作一个图形关于一条已知直线的对称图形,关键是作出图形上一些点关于这条直线的对称点,然后再根据已知图形将这些点连接起来.
探索新知
1.如图,把下列图形补成关于直线l的对称图形
巩固练习
2.如图,画△ABC关于直线m的对称图形
m
A
B
C
(A ′)
C ′
B ′
巩固练习
3.如图,在2×2的正方形格纸中,有一个以格点为顶点的△ABC,请你找出格纸中所有与△ABC成轴对称且以格点为顶点的三角形,这样的三角形共有_____个。请在下面所给的格纸中一一画出(所给的六个格纸未必全用)
A
B
C
A
B
C
A
B
C
A
B
C
A
B
C
A
B
C
巩固练习
画轴对称图形
作图原理
作图方法
对称轴是对称点连线段的垂直平分线
(1)找特征点;
(2)作垂线;
(3)截取等长;
(4)依次连线.
课堂小结
谢 谢