第四章 一次函数【挑战满分】2022-2023学年数学八上阶段性复习精选精练(北师大版 含解析)

文档属性

名称 第四章 一次函数【挑战满分】2022-2023学年数学八上阶段性复习精选精练(北师大版 含解析)
格式 doc
文件大小 877.5KB
资源类型 试卷
版本资源 北师大版
科目 数学
更新时间 2022-07-29 22:00:44

图片预览

文档简介

第四章 一次函数
一、单选题
1.已知自变量为 的一次函数的图象经过第二、三、四象限,则( )
A.>0,<0 B.<0,>0 C.<0,<0 D.>0,>0
2.如果一盒圆珠笔有12支,售价18元,用(元)表示圆珠笔的售价,表示圆珠笔的支数,那么与之间的解析式为( ).
A. B. C. D.
3.已知张强家、体育场、文具店在同一直线上.下面的图象反映的过程是:张强从家跑步去体育场,在那里锻炼了一阵后又走到文具店去买笔,然后散步走回家.图中x表示时间,y表示张强离家的距离.则下列结论不正确的是( )
A.张强从家到体育场用了15min B.体育场离文具店1.5km
C.张强在文具店停留了20min D.张强从文具店回家用了35min
4.周末,小明骑自行车从家里出发去游玩.从家出发1小时后到达迪诺水镇,游玩一段时间后按原速前往万达广场.小明离家1小时50分钟后,妈妈驾车沿相同路线前往万达广场.妈妈出发25分钟时,恰好在万达广场门口追上小明.如图是他们离家的路程y(km)与小明离家时间x(h)的函数图象,则下列说法中正确的是( )
A.小明在迪诺水镇游玩1h后,经过h到达万达广场
B.小明的速度是20km/h,妈妈的速度是60km/h
C.万达广场离小明家26km
D.点C的坐标为(,25)
5.若一次函数的图像经过点,且函数值随着增大而减小,则点的坐标可能为( )
A. B. C. D.
6.某天早晨7:00,小明从家骑自行车去上学,途中因自行车发生故障,就地修车耽误了一段时间,修好车后继续骑行,7:30赶到了学校.图所示的函数图象反映了他骑车上学的整个过程.结合图象,判断下列结论正确的是( )
A.小明修车花了15min
B.小明家距离学校1100m
C.小明修好车后花了30min到达学校
D.小明修好车后骑行到学校的平均速度是3m/s
7.若点,都在一次函数的图象上,则与的大小关系是( )
A. B. C. D.不能确定
8.为了增强抗旱能力,保证今年夏粮丰收,某村新修建了一个蓄水池,这个蓄水池安装了两个进水管和一个出水管(两个进水管的进水速度相同),一个进水管和一个出水管的进出水速度如图(1)所示,某天0点到6点(至少打开一个水管),该蓄水池的蓄水量如图(2)所示,并给出以下三个论断:①0点到1点不进水,只出水;②1点到4点不进水,不出水;③4点到6点只进水,不出水.则一定正确的论断是(  )
A.①③ B.②③ C.③ D.①②
9.下列函数中,y随x的增大而减小的函数是( )
A. B.y=6﹣2x C. D.y=﹣6+2x
10.甲、乙两位同学放学后走路回家,他们走过的路程s(千米)与所用的时间t(分钟)之间的函数关系如图所示.根据图中信息,下列说法错误的是( )
A.前10分钟,甲比乙的速度慢 B.经过20分钟,甲、乙都走了1.6千米
C.甲的平均速度为0.08千米/分钟 D.经过30分钟,甲比乙走过的路程少
二、填空题
11.小明从家跑步到学校,接着立即原路步行回家.如图是小明离家的路程y(米)与时间x(分)之间的函数关系的图像,则小明步行回家的平均速度是__________米/分.
12.如图(a)所示,在矩形ABCD中,动点P从点B出发,沿BC,CD,DA运动至点A停止.设点P运动的路程为x,的面积为y,如果y关于x的关系如图(b)所示,则m的值是________.
13.(1)由于任何一元一次方程都可转化为____(k,b为常数,k≠0)的形式.所以解一元一次方程可以转化为当一次函数y=kx+b(k≠0)的值为_____时,求相应的_____的值.
(2)一元一次方程kx+b=0的解,是直线y=kx+b与____轴交点的____坐标值.
14.函数中,自变量x的取值范围是_________
15.在弹性限度内,弹簧挂上物体后会伸长,已知一弹簧的长度y(cm)与所挂物体的质量x(kg)之间的关系如下表:
物体的质量(kg) 0 1 2 3 4 5
弹簧的长度(cm) 12 12.5 13 13.5 14 14.5
写出y与x的关系式________.
16.某商店今年6月初销售纯净水的数量如下表所示:
日期 1 2 3 4
数量(瓶) 120 125 130 135
观察此表,利用所学函数知识预测今年6月7日该商店销售纯净水的数量约为________瓶.
17.星期天,小明上午8:00从家里出发,骑车到图书馆去借书,再骑车回到家.他离家的距离y(千米)与时间t(分钟)的关系如图所示,则上午8:45小明离家的距离是__千米.
三、解答题
18.数学兴趣小组的同学们受《乌鸦喝水》故事的启发,在数学实验室中,利用带刻度的容器和匀速流水的水龙头进行数学实验.
(1)如图,有三种不同形状的容器,现向三种容器匀速注水,恰好注满时停止.已知注水前 图①的容器中有的水,图②容器中有的水,图③容器中没有水,是空的.图①和图②的注水速度均为 ,图③的注水速度为.设容器中水的体积为(单位:),注水时间为(单位:).请分别写出三个容器中关于的函数表达式,填写在图中对应的横线上.
(2)如图④,同学们自己制作了一个特殊的容器,这个特殊容器有上、下两个高度相同的圆柱体组合而成,且上圆柱体底面圆的半径是下圆柱体底面圆的半径的一半.已知这个特殊容器的高为,注水前,容器内的水面高度是,现向容器匀速注水,直至容器恰好注满时停止,每记录一次水面的高度(单位:),前5次数据如下表所示.
注水时间 0 5 10 15 20 …
水面高度 4 5 6 7 8 …
①在平面直角坐标系中,请画出水面高度关于注水时间的函数图像,并标注相关数据;
②在水面高度满足时,则注水时间的取值范围是__________.
19.为了解某种品牌小汽车的耗油量,我们对这种车在高速公路上做了耗油试验,并把试验的数据记录下来,制成下表:
汽车行驶时间t(h) 0 1 2 3 …
油箱剩余油量Q(L) 100 94 88 82 …
①根据上表的数据,请你写出Q与t的关系式;
②汽车行驶5h后,油箱中的剩余油量是多少;
③该品牌汽车的油箱加满50L,若以100km/h的速度匀速行驶,该车最多能行驶多远.
20.如图,直角坐标系xOy中,一次函数y=﹣x+5的图象l1分别与x,y轴交于A,B两点,正比例函数的图象l2与l1交于点C(m,4).
(1)求m的值及l2的解析式;
(2)求S△AOC﹣S△BOC的值;
(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,直接写出k的值.
21.某游泳馆每年夏季推出两种游泳付费方式,方式一:先购买会员证,每张会员证100元,只限本人当年使用,凭证游泳每次再付费5元;方式二:不购买会员证,每次游泳付费9元.
设小明计划今年夏季游泳次数为x(x为正整数).
(I)根据题意,填写下表:
游泳次数 10 15 20 … x
方式一的总费用(元) 150 175 ______ … ______
方式二的总费用(元) 90 135 ______ … ______
(Ⅱ)若小明计划今年夏季游泳的总费用为270元,选择哪种付费方式,他游泳的次数比较多?
(Ⅲ)当x>20时,小明选择哪种付费方式更合算?并说明理由.
22.今年植树节期间,某景观园林公司购进一批成捆的,两种树苗,每捆种树苗比每捆种树苗多10棵,每捆种树苗和每捆种树苗的价格分别是630元和600元,而每棵种树苗和每棵种树苗的价格分别是这一批树苗平均每棵价格的0.9倍和1.2倍.
(1)求这一批树苗平均每棵的价格是多少元?
(2)如果购进的这批树苗共5500棵,种树苗至多购进3500棵,为了使购进的这批树苗的费用最低,应购进种树苗和种树苗各多少棵?并求出最低费用.
23.I号无人机从海拔10m处出发,以10m/min的速度匀速上升,II号无人机从海拔30m处同时出发,以a(m/min)的速度匀速上升,经过5min两架无人机位于同一海拔高度b(m).无人机海拔高度y(m)与时间x(min)的关系如图.两架无人机都上升了15min.
(1)求b的值及II号无人机海拔高度y(m)与时间x(min)的关系式.
(2)问无人机上升了多少时间,I号无人机比II号无人机高28米.
参考答案:
1.C
【解析】
【分析】
根据函数图象经过二、三、四象限,可知,进一步判断即可.
【详解】
解:∵原函数为,图象经过二、三、四象限,
∴<0,<0,
解得<0,<0.
故选:C
【点睛】
本题考查一次函数图象性质,熟记相关知识点是解题关键.
2.A
【解析】
【分析】
首先求出每支平均售价,即可得出y与x之间的关系.
【详解】
∵每盒圆珠笔有12支,售价18元,
∴每只平均售价为:=1.5(元),
∴y与x之间的关系是:,
故选:A.
【点睛】
此题主要考查了列函数关系式,求出圆珠笔的平均售价是解题关键.
3.B
【解析】
【分析】
利用图象信息解决问题即可.
【详解】
解:由图可知:
A. 张强从家到体育场用了15min,正确,不符合题意;
B. 体育场离文具店的距离为:,故选项错误,符合题意;
C. 张强在文具店停留了:,正确,不符合题意;
D. 张强从文具店回家用了,正确,符合题意,
故选:B.
【点睛】
本题考查函数的应用,解题的关键是读懂图象信息,灵活运用所学知识解决问题.
4.B
【解析】
【分析】
根据题意和函数图象中的数据,可以判断各个选项中的说法是否正确,从而可以解答本题.
【详解】
解:由图象可得,
小明在迪诺水镇游玩1h后,经过到达万达广场,故选项A错误;
小明的速度为20÷1=20(km/h),妈妈的速度是(20+20×)÷=60(km/h),故选项B正确;
万达广场离小明家20+20×=20+5=25(km),故选项C错误;
点C的坐标为(,25),故选项D错误;
故选:B.
【点睛】
本题考查函数图像,掌握函数图像的特征,仔细阅读图像,从中找到需要的信息是解题关键.
5.D
【解析】
【分析】
由题意可得k<0,然后把k用x和y表示出来,再把4个选项的x和y分别代入可以求得k的值,根据k<0经过筛选即可得到解答.
【详解】
解:由题意可得k<0,且,
A、x=2,y=4,所以k=,不合题意;
B、,不合题意;
C、,不合题意;
D、,符合题意,
故选D .
【点睛】
本题考查一次函数的增减性,熟练掌握一次函数的增减性并运用逆向思维法求解是解题关键.
6.A
【解析】
【分析】
根据函数图像进行分析计算即可判断.
【详解】
解:根据图像7:05-7:20为修车时间20-5=15分钟,故A正确;
小明家距离学校2100m,故B错误;
小明修好车后花了30-20=10分钟到达学校,故C错误;
小明修好车后骑行到学校的平均速度是(2100-1000)÷600=m/s,故D错误;
故选:A.
【点睛】
本题考查函数图像的识别,正确理解函数图像的实际意义是解题的关键.
7.C
【解析】
【分析】
根据一次函数的增减性解答即可.
【详解】
∵一次函数,
∴函数为递减函数,y随x的增大而减小,
∵,都在一次函数的图象上,,
∴,
故选:C.
【点睛】
本题主要考查一次函数的性质,对于一次函数y=kx+b(k≠0),当k>0时,y随x的增大而增大;当k<0时,y随x的增大而减小;熟练掌握一次函数的性质是解题的关键.
8.C
【解析】
【分析】
根据图象1可知进水速度小于出水速度,结合图2中特殊点的实际意义即可作出判断.
【详解】
①0点到1点既进水,也出水;
②1点到4点同时打开两个管进水,和一只管出水;
③4点到6点只进水,不出水.
正确的只有③.
故选:C.
【点睛】
本题考查了函数图象的读图能力和函数与实际问题结合的应用.要能根据函数图象的性质和图象上的数据分析得出函数的类型和所需要的条件,结合实际意义得到正确的结论.
9.B
【解析】
【分析】
根据一次函数的性质,时,y随x的增大而增大;时,y随x的增大而减小;即可进行判断.
【详解】
解:A、∵k=>0,∴y随x的增大而增大,故本选项错误;
B、∵k=﹣2<0,∴y随x的增大而减小,故本选项正确;
C、∵k=>0,∴y随x的增大而增大,故本选项错误;
D、∵k=2>0,∴y随x的增大而增大,故本选项错误.
故选:B.
【点睛】
本题考查了一次函数的性质,解题的关键是掌握 时,y随x的增大而增大; 时,y随x的增大而减小.
10.D
【解析】
【分析】
结合函数关系图逐项判断即可.
【详解】
A项,前10分钟,甲走了0.8千米,乙走了1.2千米,则甲比乙的速度慢,故A项正确,故不符合题意;
B项,前20分钟,根据函数关系图可知,甲、乙都走了1.6千米,故B正确,故不符合题意;
C项,甲40分钟走了3.2千米,则其平均速度为:3.2÷40=0.08千米/分钟,故C项正确,故不符合题意;
D项,经过30分钟,甲走了2.4千米,乙走了2.0千米,则甲比乙多走了0.4千米,故D项错误,故符合题意;
故选:D.
【点睛】
本题考查了一次函数的图像及其在行程问题中的应用,理解函数关系图是解答本题的关键.
11.80
【解析】
【分析】
根据图象可知小明家到学校的距离是800米,呈下降趋势的线段表示其步行回家,利用路程除以时间可得速度.
【详解】
解:由图象可知小明家到学校的距离是800米,
从5分钟到15分钟的一段线段代表小明步行回家.
其步行速度为800÷(15-5)=80(米/分).
故答案为80.
【点睛】
本题主要考查了函数图象,解决这类问题要注意结合实际,并弄清楚横、纵轴表示的含义.
12.5
【解析】
【分析】
先根据点(2,3)在图象上得出BC的长,然后利用三角形的面积求出AB的长,进而可得答案.
【详解】
解:由图象上的点可知:,
由三角形面积公式,得:,解得:.
,.
故答案为:5.
【点睛】
本题考查了利用图象表示变量之间的关系,属于常见题型,根据题意和图象得出BC和AB的长是解题关键.
13. kx+b=0 0 自变量 x 横
【解析】
【分析】
(1)根据一次函数与x轴交点横坐标与一元一次方程的关系解答;
(2)根据一次函数与x轴交点横坐标与一元一次方程的关系解答;
【详解】
解:(1)由于任何一元一次方程都可转化为kx+b=0 (k,b为常数,k≠0)的形式.所以解一元一次方程可以转化为当一次函数y=kx+b(k≠0)的值为0时,求相应的自变量的值.
故答案为:kx+b=0,0,自变量;
(2)一元一次方程kx+b=0的解,是直线y=kx+b与x轴交点的横坐标值.
故答案为:x,横.
【点睛】
本题主要考查了一次函数与一元一次方程的关系.任何一元一次方程都可以转化为ax+b=0(a,b为常数,a≠0)的形式,所以解一元一次方程可以转化为:当某个一次函数的值为0时,求相应的自变量的值.从图象上看,相当于已知直线y=ax+b,确定它与x轴的交点的横坐标的值.
14.≠1的一切实数
【解析】
【分析】
分式的意义可知分母:就可以求出x的范围.
【详解】
解:根据题意得:x-1≠0,
解得:x≠1.
故答案为x≠1.
【点睛】
主要考查了函数自变量的取值范围的确定和分式的意义.函数自变量的范围一般从三个方面考虑:(1)当函数表达式是整式时,自变量可取全体实数;(2)当函数表达式是分式时,考虑分式的分母不能为0;(3)当函数表达式是二次根式时,被开方数非负.
15.y=12+0.5x
【解析】
【分析】
由表中的数据可知,x=0时,y=12,并且每增加1千克的重量,长度增加0.5cm,所以y=0.5x+12.
【详解】
解:根据上表y与x的关系式是:y=12+0.5x.
故答案为:y=12+0.5x
【点睛】
本题考查了函数关系式,需仔细分析表中的数据,进而解决问题;关键是写出解析式.
16.150
【解析】
【分析】
观察可以发现这是一个一次函数模型,设y=kx+b,利用待定系数法即可解决问题.
【详解】
这是一个一次函数模型,设y=kx+b,
则有,
解得,

当时,,
∴预测今年6月7日该商店销售纯净水的数量约为150瓶,
故答案为:150
【点睛】
本题考查一次函数的应用,涉及了待定系数法,求函数值等知识,通过观察发现这是一个一次函数模型问题是解题的关键.
17.1.5##
【解析】
【分析】
首先设当40≤t≤60时,距离y(千米)与时间t(分钟)的函数关系为y=kt+b,然后再把(40,2)(60,0)代入可得函数解析式,再把t=45代入即可.
【详解】
解:设当40≤t≤60时,距离y(千米)与时间t(分钟)的函数关系为y=kt+b.
∵图象经过(40,2)(60,0),
∴,解得:,
∴y与t的函数关系式为y=﹣,
当t=45时,y=﹣×45+6=1.5.
故答案为1.5.
【点睛】
本题主要考查了一次函数的应用,关键是正确理解题意,掌握待定系数法求出函数解析式.
18.(1)①;②;③;(2)①见解析;②
【解析】
【分析】
(1)注入水的体积=注水时间注水速度+原有水的体积,据此依次解题;
(2)①根据题意先解得下圆柱体注满水的时间,再结合表格信息解得上圆柱体水面高度关于注水时间的一次函数,接着令时,解得,即当时,上圆柱体开始注水,根据上圆柱体底面圆的半径是下圆柱体底面圆的半径的一半,得到注水速度是下圆柱体注水速度的倍,继而得到上容器注水时间最多为,利用待定系数法解得下圆柱体水面高度关于注水时间的一次函数;
②分别令、时,代入相应的解析式,解得当时的时间值即可求解.
【详解】
(1)根据注入水的体积=注水时间注水速度+原有水的体积得,
①;②;③,
故答案为:①;②;③;
(2)①由(1)知水面高度是关于注水时间的一次函数,
容器上、下两个高度相同
上、下面的容器高均为
由表格信息知注水,
下容器注水时间最多为

代入得

当时,,
上圆柱体底面圆的半径是下圆柱体底面圆的半径的一半,
上圆柱体底面圆的面积是下圆柱体底面圆的面积的,
即上圆柱体的注水速度是下圆柱体的注水速度,
上容器注水时间最多为

代入得

如图:
②当时,即
当时,即
水面高度满足时,则注水时间的取值范围是,
故答案为:.
【点睛】
本题考查一次函数的实际应用、画函数的图象等知识,是重要考点,难度较易,掌握相关知识是解题关键.
19.①Q=100﹣6t;② 70L;③km.
【解析】
【分析】
①由表格可知,开始油箱中的油为100L,每行驶1小时,油量减少6L,据此可得t与Q的关系式;
②求汽车行驶5h后,油箱中的剩余油量即是求当t=5时,Q的值;
③贮满50L汽油的汽车,理论上最多能行驶几小时即是求当Q=0时,t的值.
【详解】
解:①Q与t的关系式为:Q=100﹣6t;
②当t=5时,Q=100﹣6×5=70,
答:汽车行驶5h后,油箱中的剩余油量是70L;
③当Q=0时,0=50﹣6t,
6t=50,
解得:t=,
100×=km.
答:该车最多能行驶km.
20.(1)m=2,l2的解析式为y=2x;(2)S△AOC﹣S△BOC=15;(3)k的值为或2或﹣.
【解析】
【分析】
(1)先求得点C的坐标,再运用待定系数法即可得到l2的解析式;
(2)过C作CD⊥AO于D,CE⊥BO于E,则CD=4,CE=2,再根据A(10,0),B(0,5),可得AO=10,BO=5,进而得出S△AOC﹣S△BOC的值;
(3)分三种情况:当l3经过点C(2,4)时,k=;当l2,l3平行时,k=2;当11,l3平行时,k=﹣;故k的值为或2或﹣.
【详解】
解:(1)把C(m,4)代入一次函数y=﹣x+5,可得
4=﹣m+5,
解得m=2,
∴C(2,4),
设l2的解析式为y=ax,则4=2a,
解得a=2,
∴l2的解析式为y=2x;
(2)如图,过C作CD⊥AO于D,CE⊥BO于E,则CD=4,CE=2,
y=﹣x+5,令x=0,则y=5;令y=0,则x=10,
∴A(10,0),B(0,5),
∴AO=10,BO=5,
∴S△AOC﹣S△BOC=×10×4﹣×5×2=20﹣5=15;
(3)一次函数y=kx+1的图象为l3,且11,l2,l3不能围成三角形,
∴当l3经过点C(2,4)时,k=;
当l2,l3平行时,k=2;
当11,l3平行时,k=﹣;
故k的值为或2或﹣.
【点睛】
本题主要考查一次函数的综合应用,解决问题的关键是掌握待定系数法求函数解析式、等腰直角三形的性质、全等三角形的判定和性质、勾股定理及分类讨论思想等.
21.(I)200,100+5x,180,9x;(II)选择方式一付费方式,他游泳的次数比较多(III)当2025时,小明选择方式一的付费方式
【解析】
【详解】
分析:(Ⅰ)根据题意得两种付费方式 ,进行填表即可;
(Ⅱ)根据(1)知两种方式的关系,列出方程求解即可;
(Ⅲ)当时,作差比较即可得解.
详解:(Ⅰ)200,,180,.
(Ⅱ)方式一:,解得.
方式二:,解得.
∵,
∴小明选择方式一游泳次数比较多.
(Ⅲ)设方式一与方式二的总费用的差为元.
则,即.
当时,即,得.
∴当时,小明选择这两种方式一样合算.
∵,
∴随的增大而减小.
∴当时,有,小明选择方式二更合算;
当时,有,小明选择方式一更合算.
点睛:本题考查一次函数的应用,解答本题的关键是明确题意,找出所求问题需要的条件,利用一次函数的性质解答.
22.(1)这一批树苗平均每棵的价格是20元;(2)购进种树苗3500棵,种树苗2000棵,能使得购进这批树苗的费用最低为111000元.
【解析】
【分析】
(1)设这一批树苗平均每棵的价格是元,分别表示出两种树苗的数量,根据“每捆种树苗比每捆种树苗多10棵”列方程即可求解;
(2)设购进种树苗棵,这批树苗的费用为,得到w与t的关系式,根据题意得到t的取值范围,根据函数增减性即可求解.
【详解】
解:(1)设这一批树苗平均每棵的价格是元,
根据题意,得,
解之,得.
经检验知,是原分式方程的根,并符合题意.
答:这一批树苗平均每棵的价格是20元.
(2)由(1)可知种树苗每棵价格为元,种树苗每棵价格为元,
设购进种树苗棵,这批树苗的费用为,则

∵是的一次函数,,随着的增大而减小,,
∴当棵时,最小.此时,种树苗有棵,.
答:购进种树苗3500棵,种树苗2000棵,能使得购进这批树苗的费用最低为111000元.
【点睛】
本题考查了分式方程的实际应用,一次函数实际应用,不等式应用等问题,根据题意得到相关“数量关系”,根据数量关系得到方程或函数解析式是解题关键.
23.(1);(2)无人机上升12min,I号无人机比II号无人机高28米
【解析】
【分析】
(1)直接利用I号无人机从海拔10m处出发,以10m/min的速度匀速上升,求出其5分钟后的高度即可;
(2)将I号无人机的高度表达式减去II号无人机高度表达式,令其值为28,求解即可.
【详解】
解:(1).
设,
将,代入得:

∴;

(2)令,
解得,满足题意;
无人机上升12min,I号无人机比II号无人机高28米.
【点睛】
本题考查了一次函数的实际应用,涉及到了求一次函数的表达式,两个一次函数值之间的比较等内容,解决本题的关键是读懂题意,与图形建立关联,能建立高度的表达式等,本题着重于对函数概念的理解与应用,考查了学生的基本功.
试卷第1页,共3页
21世纪教育网(www.21cnjy.com)
同课章节目录