直线和平面垂直的判定与性质(一)
一、素质教育目标
(一)知识教学点
1.直线和平面垂直的定义及相关概念.
2.直线和平面垂直的判定定理.
3.线线平行的性质定理(即例题1).
(二)能力训练点
1.要善于应用平移手法将分散的条件集中到某一个图形中进行研究,特别是辅助线的添加.
2.讲直线和平面垂直时,应注意引导学生把直线和平面关系转化为直线和直线的关系.如直线和平面垂直,只须这条直线垂直于这个平面内的两条相交直线,向学生渗透转化思想的应用.
(三)德育渗透点
引导学生认识到,定理的证明过程实质是应用转化思想的过程:立体几何的问题转化为平面几何的问题来解决,线、面垂直问题转化为线、线垂直问题来解决.转化思想是重要的数学思想方法,在立体几何的证明和解题中,是一种常用的思想方法.
二、教学重点、难点、疑点及解决方法
1.教学重点
(1)掌握直线和平面垂直的定义:如果一条直线和一个平面内的任何一条直线垂直,那么这条直线就和这个平面垂直.
(2)掌握直线和平面垂直的判定定理:
(3)掌握线线平行的性质定理:
若a∥b,a⊥α则b⊥α.
2.教学难点:在于线、面垂直定义的理解和判定定理的证明;同时还要解决好定理证明过程中,辅助线添加的方法和原因,及为何可用经过B点的两条直线说明“任意”直线的问题.
3.教学疑点:判定定理的条件中,“相交”是关键,“两条”也是一个重要条件,对于初学立体几何的学生来讲,是不好理解的,教师应该用实例说明这两个条件缺一不可.
三、课时安排
本课题共安排2课时,本节课为第一课时.
四、学生活动设计(略)
五、教学步骤
(一)温故知新,引入课题
1.空间两条直线有哪几种位置关系?
(三种:相交直线、平行直线、异面直线)
2.经过一点和一条直线垂直的直线有几条?
(从两条直线互相垂直的定义可知:经过一点有无数多条直线和已知直线垂直)
3.空间一条直线与一个平面有哪几种位置关系?
(直线在平面内、直线和平面相交、直线和平面平行.)
4.怎样判定直线和平面平行?
师:我们已经知道,判定直线和平面平行的问题可以转化为考察直线和直线平行的关系.今天我们转入学习直线和平面相交的一种特殊情形——直线和平面垂直,这个问题同样可以从两条直线垂直的关系入手.
(板书课题:§1.9直线和平面垂直)
(二)猜想推测,激发兴趣
1.教师演示课本上的实例并指出书脊(想象成一条直线)、各书页与桌面的交线,由于书脊和书页底边(即与桌面接触的一边)垂直,得出书脊和桌面上所有直线垂直,书脊和桌面的位置关系给了我们以直线和平面垂直的形象.从而引入概念:一条直线和平面内的任何一条直线都垂直,我们说这条直线和这个平面互相垂直,直线叫做平面的垂线,平面叫做直线的垂面.
2.指出:过一点有且只有一条直线和一个平面垂直;过一点有且只有一个平面和一条直线垂直.平面的垂线和平面一定相交,交点叫做垂足.
3.说明直线和平面垂直的画法及表示.
师:要证明一条直线和一个平面垂直,若每次都要证明这条直线和平面上每一条直线都垂直,显然是很麻烦也不必要的.让我们先看看木工师傅是如何判断一根立柱是否和板面垂直的方法:用曲尺检查两次(只要两次,但曲尺靠板面的尺,两次不能在同一条直线上),如果立柱、板面都和曲尺的两条边完全吻合,便可断定立柱和板面垂直.从中你能得到判定直线和平面垂直的方法吗?(引导学生进行猜想推测)
(三)层层推进,证明定理
指导学生写出已知条件和结论,并画出图形如右:
求证:l⊥α
师:你如何证明直线和平面垂直呢?
生:根据直线和平面垂直的概念,只需证明该直线和平面内的任何一条直线都垂直即可.
师:设g是平面α内的任意一条直线,现在只要证明l⊥α就可以了.对于平面α内不经过点B的直线,可以过点B作它的平行直线,所以,我们先证明l,g都经过点B的情况.
(生思考证明方法,教师在原有图形上适时添加辅助线,并对下列问题根据需要作提示.)
1.l、g是相交直线,要证它们垂直,实际上已经转化为平面几何中的垂直证明问题,可以考虑等腰三角形的性质.在直线l上点B的两侧分别取点A,A′,使AB=A′B.
2.直线m、n和线段AA′是什么关系?
(m、n垂直平分AA′)
3.从结论看,直线g与线段AA′应当有什么关系?(g垂直平分AA′)
4.怎样证明直线g垂直平分线段AA′?
(只要g上一点E,有EA=EA′)
5.过E作直线分别与m、n交于C、D,连结AC、A′C、AD、A′D,则有:AC=A′C、AD=A′D,由此能证明EA=EA′吗?
(利用全等三角形性质)
(学生叙述证明过程,教师板书主要步骤.)
参看右图并作如下说明:
1.当直线g与m(或n)重合时,结论是显然的.
2.如果直线l、g有一条或两条不经过点B,那么可过点B引它们的平行直线,由过点B的这样两条直线所成的角,就是直线l与g所成的角,同理可证这两条直线垂直,因而l⊥g.
3.要判断一条已知直线和一个平面是否垂直,取决于在这个平面内能否找出两条相交直线和已知直线垂直,至于这两条相交直线是否和已知直线有公共点,是无关紧要的.
这样我们有了直线和平面垂直的判定定理.
(板书)如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.
4.强调定理中“两条”和“相交直线”这两个条件的重要性,可举下面两个反例,加深学生的理解.
(1)将一块木制的大三角板的一条直角边AC放在讲台上演示,这时另一条直角边BC就和讲台上的一条直线(即三角板与桌面的交线AC)垂直,但它不一定和讲台桌面垂直.
(2)在讲台上放一根平行于大三角板直角边AC的木条EF,那么三角板的直角边BC也垂直于EF,但它不一定和讲台桌面垂直.
(四)初步运用,提高能力
例1 如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于同一个平面.
分析:首先写出已知条件和结论,并画图形.
已知:a∥b,a⊥α (如图1-68).
求证:b⊥α,
要证明:b⊥α,根据判定定理,只要证明在平面α内有两条相交直线m、n与b垂直即可.
证明:在平面α内作两条相交直线m、n,设m∩n=A.
说明:
1.本例可以作为直线和平面垂直的又一个判定定理.这样,判定一条直线与已知平面垂直,可以用这条直线垂直于平面内两条相交直线来证明,也可以用这条直线的平行直线垂直于平面来证明.
2.课本书写的证明过程比较简洁,最好要求学生按照本教案示例书写.
练习(课后练习2)求证:如果三条共点直线两两垂直,那么其中一条直线垂直于另两条直线确定的平面.
已知:OA⊥OB,OB⊥OC,OC⊥OA.
求证:
OA⊥平面BOC,OB⊥平面AOC,OC⊥平面AOB.
证明:(以证明OA⊥平面BOC为例,目的是强化书写格式)
(五)归纳小结,强化思想
师:今天这节课,我们学习了直线和平面垂直的定义,这个定义最初用在判定定理的证明上,但用得较多的则是,如果直线l垂直于平面α,那么l就垂直于α内的任何一条直线;对于判定定理,判定线、面垂直,实质是转化成线、线垂直,从中不难发现立体几何问题解决的一般思路.
六、作业
作为一般要求,完成习题四1、2、3、4.
提高要求,完成以下两个补充练习:
1.如图1-70,在正方形ABCD中,E、F分别是BC、CD的中点,G是EF的中点,现在沿AE、AF及EF把这个正方形折成一个空间图形,使B、C、D三点重合,重合后的点记为H,那么,在这个空间图形中必有 [ ]
A、AH⊥△EFH 所在平面
B、AD⊥△EFH所在平面
C、HF⊥△AEF所在平面
D、HD⊥△AEF所在平面
答案:选择(A)
∵AH⊥EH,AH⊥FH,
∴AH⊥平面EFH.
讲评作业时说明:应用折叠不变性设计的本题,目的是用于培养学生的空间想象能力和“转化”思想方法;折叠问题要注意应用折叠前、后平面图和立体图中,各个元素间大小和位置关系不变的量.
2.如图1-71,MN是异面直线a、b的公垂线,平面α平行于a和b,
求证:MN⊥平面α.
证明:过相交直线a和MN作平面β,
设α∩β=a′,
∵a∥α.
∴ a∥a′
∵ MN是a、b的公垂线,∴MN⊥a,于是MN⊥a′.
同样过相交直线b和MN作平面γ,
设α∩γ=b′,则可得MN⊥b′.
∵a′、b′是α 内两条相交直线,∴MN⊥α.
第 8 页 共 8 页三垂线定理练习课一
教学目标
1.进一步理解、记忆并应用三垂线定理及其逆定理;
2.理解公式cosθ1·cosθ2=cosθ的证明及其初步应用;(课本第122页第3题)
3.理解正方体的体对角线与其异面的面对角线互相垂直及其应用;
4.了解课本第33页第11题.
教学重点和难点
教学的重点是进一步掌握三垂线定理及其逆定理并应用它们来解有关的题.教学的难点是在讲公式cosθ1·cosθ2=cosθ应用时比较θ2与θ的大小.
教学设计过程
师:上一节课我们讲了三垂线定理及其逆定理的证明并初步应用了这两个定理来解一些有关的题.今天我们要进一步应用这两个定理来解一些有关的题,先看例1.
例1 如图1,AB和平面α所成的角是θ1;AC在平面α内,BB′⊥平面α于B′,AC和AB的射影AB′成角θ2,设∠BAC=θ.求证:
cosθ1·cosθ2=cosθ.
师:这是要证明三个角θ1,θ2和θ的余弦的关系,θ1已经在直角△ABB′中,我们能否先作出两个直角三角形分别使θ2和θ是这两个直角三角形中的锐角.
生:作B′D⊥AC于D,连BD,则BD⊥AC于D.这时θ2是直角△B′DA中的一个锐角,θ是直角△ABD中的一个锐角.
师:刚才的表述是应用三垂线定理及其逆定理时常常使用的“套话”,我们一定要很好理解并能熟练地应用.现在已经知道θ1、θ2和θ分别在三个直角三角形中,根据三角函数中的余弦的定义分别写出这三个角的余弦,再来证明这公式.
师:这个公式的证明是利用余弦的定义把它们转化成邻边与斜边的比,为此要先作出直角三角形,为了作出直角三角形我们应用了三垂线定理.当然也可用它的逆定理.
这个公式是在课本第121页总复习参考题中的第3题.我们为什么要提前讲这个公式呢?讲这个公式的目的是为了用这个公式,因为在解许多有关题时都要用到这公式.那我们要问在什么条件下可用这个公式?
生:因为θ1是斜线AB与平面α所成的角,所以只有当图形中出现斜线与平面所成的角时,才有可能考虑用这公式.
师:为了在使用这个公式时方便、易记,我们规定θ1表示斜线与平面所成的角,θ2是平面内过斜足的一条射线与斜线射影所成的角,θ是这条射线与斜线所成的角.下面我们来研究一下这个公式的应用.
应用这个公式可解决两类问题.
第一是求值.即已知这公式中的两个角,即可求出第三个角或其余弦值.
例如:
θ=60°,这时θ2<θ;
当θ1=45°,θ2=135°时,cosθ=cos45°·cos135°=
第二是比较θ2与θ的大小.因为我们已经规定θ1是斜线与平面所成的角,一定有0°<θ1<90°,它的大小不变,为了比较θ2与θ的大小,下面分三种情况进行讨论.
(1)θ2=90°,因为θ2=90°,所以cosθ2=0,因此cosθ=cosθ1·cosθ2=0,故θ=90°.当θ=90°时,我们也可以证明θ2=90°.
一条直线如果和斜线的射影垂直,那么它就和斜线垂直.这就是三垂线定理.
一条直线如果和斜线垂直,那么它就和斜线的射影垂直.这就是三垂线定理的逆定理.
所以,我们可以这样说,这个公式是三垂线定理及其逆定理的一般情况,而三垂线定理及其逆定理是这公式的特殊情况.
现在我们来研究在θ2是锐角时,θ2与θ的大小.
(2)0°<θ2<90°.
师:在这个条件下,我们怎样来比较θ2与θ的大小?
生:因为0°<θ1<90°,所以0<cosθ1<1,又因为0°<θ2<90°,所以0<cosθ2<1.又因为cosθ=cosθ1·cosθ2,所以0<cosθ1<1,而且cosθ=cosθ1·cosθ2<cosθ2,在锐角条件下,余弦函数值大的它所对应的角小.所以θ2<θ.
师:现在我们来讨论当θ2是钝角时,θ2与θ的大小.
(3)90°<θ2<180°.
在这个条件下,我们不再用公式cosθ1·cosθ2=cosθ做理论上的证明来比较θ2与θ的大小,而是一起来看模型(或图形).
我们假设θ2的邻补角为θ′2,θ的邻补角为θ′,即θ2+θ′2=180°,θ+θ′=180°.在模型(或图形)中我们可以看出当θ2是钝角时,θ也是钝角,所以它们的两个邻补角θ′2和θ′都是锐角,由对第二种情况的讨论我们知道θ′2<θ′.由等量减不等量减去小的大于减去大的,所以由θ2=180°-θ′2,θ=180°-θ′,可得θ2>θ.
根据以上讨论现在小结如下:
当θ2=90°时,θ=θ2=90°,它们都是直角.
当0°<θ2<90°时,θ2<θ,它们都是锐角;
当90°<θ2<180°时,θ2>θ,它们都是钝角.
关于公式cosθ1·cosθ2=cosθ的应用,今后还要随着课程的进展而反复提到.现在我们来看例2.
例2 如图2,在正方体ABCD-A1B1C1D1中,求证:
(1)A1C⊥平面C1DB于G;
(2)垂足G为正△C1DB的中心;
(3)A1G=2GC.
师:我们先来证明第(1)问.要证直线与平面垂直即要证什么?
生:要证A1C与平面C1DB内两条相交的直线垂直.
师:我们先证A1C为什么与DB垂直?
生:连AC,对平面ABCD来说,A1A是垂线,A1C是斜线,AC是A1C在平面ABCD上的射影,因为AC⊥DB(正方形的性质),所以 A1C⊥DB.(三垂线定理)
同理可证A1C⊥BC1.
因为A1C⊥平面C1DB(直线与平面垂直的判定理)
(在证A1C⊥BC1时,根据情况可详、可略,如果学生对应用三垂线定理还不太熟悉,则可让学生把这证明过程再叙述一遍,因为这时是对平面B1BCC1来说,A1B1是垂线,A1C是斜线,B1C是A1C在平面B1BCC1上的射影,由B1C⊥BC1,得A1C⊥BC1)
师:现在来证第(2)问,垂足G为什么是正△C1DB的中心?
生:因为A1B=A1C1=A1D,所以BG=GC1=DG,故G是正△C1DB的外心,正三角形四心合一,所以G是正△C1DB的中心.
师:现在来证第(3)问,我们注意看正方体的对角面A1ACC1,在这对角面内有没有相似三角形?
生:在正方体的对角面A1ACC1内,由平面几何可知△A1GC1∽△OGC,且A1C1∶OC=A1G∶GC,所以A1G∶GC=2∶1,因此A1G=2GC.
师:例2是在正方体的体对角线与其异面的面对角线互相垂直引申而来,而例2也是一个基本的题型,对于以后证有关综合题型时很有用.所以对例2的证明思路和有关结论,尽可能的理解、记住.现在我们来看例3.
例3 如图3,已知:Rt△ABC在平面α内,PC⊥平面α于C,D为斜边AB的中点,CA=6,CB=8,PC=12.求:
(1)P,D两点间的距离;
(2)P点到斜边AB的距离.
师:现在先来解第(1)问,求P,D两点间的距离.
师:现在我们来解第(2)问,求P点到AB边的距离.
生:作PE⊥AB于E,连CE则CE⊥AB.(三垂线定理的逆定理)PE就是P点到AB边的距离.
师:要求PE就要先求CE,CE是直角三角形ABC斜边上的高,已知直角三角形的三边如何求它斜边上的高呢?
生:可用等积式CE·AB=AC·CB,即斜边上的高与斜边的乘积等于两直角边的乘积.
师:这个等积式是怎样证明的?
生:有两种证法.因CE·AB是Rt△ABC面积的二倍,而AC·CB也是Rt△ABC面积的二倍,所以它们相等;也可用△BCE∽△ABC,对应边成比例推出这个等积式.
师:这个等积式很有用,根据这个等积式,我们可以由直角三角形的三边求出斜边上的高,这个等积式以后在求有关距离问题时会常常用到,所以要理解、记住、会用.现在就利用这等积式先求CE,再求PE.
师:通过这一题我们要区分两种不同的距离概念及求法;在求点到直线距离时,经常要用到三垂线定理或其道定理;在求直角三角形斜边上的高时会利用上述的等积式来求斜边上的高.现在我们来看例4.
例4 如图4,已知:∠BAC在平面α内,PO α,PO⊥平面α于O.如果∠PAB=∠PAC.
求证:∠BAO=∠CAO.
(这个例题就是课本第32页习题四中的第11题.这个题也可以放在讲完课本第30页例1以后讲.不论在讲课本第30页例1,还是在讲这个例时,都应先用模型作演示,使学生在观察模型后,得出相关的结论,然后再进行理论上的证明,这样使学生对问题理解得具体、实在,因而效果也较好)
师:当我们观察了模型后,很容易就猜想到了结论.即斜线PA在平面α上的射线是∠BAC的角平分线所在的直线,现在想一想可以有几种证法?
生:作OD⊥AB于D,作OE⊥AC于E,连PD,PE,则PD⊥AB,PE⊥AC.
所以Rt△PAD≌Rt△PAE,因此PD=PE,故OD=OE,所以∠BAO=∠CAO.
师:今天我们讲了公式cosθ1·cosθ2=cosθ.能否用这公式来证明这题.
(利用这公式来证明这个题,完全是由学生想到的,当然如果有的班学生成绩较差,思路不活,也可做些必要的提示)
生:因为∠PAO是斜线与平面α所成的角,所以可以考虑用公式cosθ1·cosθ2=cosθ.∠PAO相当于θ1;∠PAB=∠PAC它们都相当于θ,由公式可得θ2=θ′2,即∠BAO=∠CAO.
师:今天我们是应用三垂线定理及其逆定理来解这四个例题.例1、例2、例4是三个基本题.对这三个题一定要会证、记住、会用.关于这三个题的应用,以后还会在讲课过程中反复出现.在高考题中也曾用到.
作业
课本第33页第13题.
补充题
1.已知:∠BSC=90°,直线SA∩平面BSC=S.∠ASB=∠ASC=60°,求:SA和平面BSC所成角的大小.[45°]
2.已知:AB是平面α的一斜线,B为斜足,AB=a.直线AB与平面α所成的角等于θ,AB在平面α内的射影A1B与平面α内过B
3.已知:P为Rt△ABC所在平面外一点,∠ACB=90°,P到直角顶点C的距离等于24,P到平面ABC的距离等于12,P到AC
4.已知:∠BAC在平面α内,PA是平面α的斜线,∠BAC=60°,∠PAB=∠PAC=45°.PA=a,PO⊥平面α于O.PD⊥AC于D,PE⊥AB于E.求:
(1)PD的长;
第 1 页 共 8 页两个平面平行的判定和性质(二)
一、素质教育目标
(一)知识教学点
1.两个平面平行的性质.
2.两个平行平面的公垂线、公垂线段、距离的定义.
(二)能力训练点
1.利用转化的思维方法掌握和应用两个平面平行的性质.
2.应用类比的方法理解并掌握两个平行平面的公垂线、公垂线段、距离的定义.
二、教学重点、难点、疑点及解决方法
1.教学重点:掌握两个平面平行的性质及其应用;掌握两平行平面间的距离的概念,会求两个平行平面间的距离.
2.教学难点:掌握两个平行平面的性质及其应用.
3.教学疑点:正确掌握如何将两个平面平行的性质的研究转化为线线平行、线面平行、线面垂直的研究.
三、课时安排
1.12两个平面的位置关系及1.13两个平面平行的判定和性质这两个课题调整安排为2课时.本节课为第二课时,主要讲解两个平面平行的性质.
四、教与学过程设计
(一)复习两个平面的位置关系及两个平面平行的判定
(一)复习两个平面的位置关系及两个平面平行的判定
师:两个平面的位置关系有哪几种?
生:平行或相交.
师:两个平面平行的判定方法有哪几种?
生:第一种可根据定义(一般用反证法).
b=0,a∥β,b∥β,则α∥β.
第三种可根据例1的结论,即:如图1-110,若α⊥AA',β⊥AA',则α∥β.
(二)两个平面平行的性质
师:今天我们研究两个平面平行的性质.根据两个平面平行直线和平面平行的定义可知:两个平面平行,其中一个平面内的直线必平行于另一个平面.因此,在解决实际问题时,常常把面面平行转化为线面平行或线线平行.这个结论可作为两个平面平行的性质1:若α∥
1.两个平面平行的性质定理
如果两个平行平面同时和第三个平面相交,那么它们的交线平行.
已知:α∥β,γ∩α=a,γ∩β=b.
求证:a∥b.
师:要证明这个定理,有两种证法:直接证法和间接证法(即反证法).下面请同学们书写直接证法,口述反证法.
生:(直接证法.)
∵α∥β,
∴α与β没有公共点.
∴a∥b.
(反证法.)
假设直线a不平行于直线b,因为直线a、b在同一个平面γ内,
公共点P,即α,β相交,这与“α∥β”矛盾,所以假设不成立,即a∥b.
师:这个结论可作为性质2:若α∥β,α∩γ=a,β∩γ=b,则a∥b.下面我们再看一个例题.
2.例题
例2 一条直线垂直于两个平行平面中的一个平面,它也垂直于另一个平面.
已知:α∥β,l⊥α,l∩α=A.
求证:l⊥β.
师提问:证明直线与平面垂直的方法有几种?
师与生共同回忆:方法一,证明直线与平面内的任何一条直线都垂直;方法二,证明直线与平面内两条相交的直线垂直;方法三,证明直线的一条平行线与平面垂直.
比较几种方法,我们可以试着用第一种方法来证明.
证明:在平面β内任取一条直线b,平面γ是经过点A与直线b的平面,设γ∩α=a.
因为直线b是平面β内的任意一条直线,所以l⊥β.
师:这个例题的结论可与定理“一个平面垂直于两条平行直线中的一条直线,它也垂直于另一条直线.”联系起来记忆,它也可作为性质3:若α∥β,l⊥α,则l⊥β.
3.两个平行平面的公垂线、公垂线段和距离
师:象性质3这样的,和两个平行平面α,β同时垂直的直线l,叫做这两个平行平面α,β的公垂线,它夹在这两个平行平面间的部分叫做这两个平行平面的公垂线段.
如图1—113,α∥β.如果AA'、BB'都是它们的公垂线段,那么AA'∥BB',根据两个平面平行的性质定理有A'B'∥AB,所以四边形ABB'A'是平行四边形,AA'=BB'.
由此,我们得到,两个平行平面的公垂线段都相等,公垂线段的长度具有唯一性.与两平行线间的距离定义相类似,我们把公垂线段的长度叫做两个平行平面的距离.两个平行平面间距离实质上也是点到面或两点间的距离,求值最后也是通过解三角形求得
4.练习(幻灯显示)
(1)如图1—114,平面α∥β,△ABC在β内,P是α、β
间的一点,线段PA、PB、PC分别交α于A'、B'、C',若BC=12cm,AC=50cm, AB=13cm,且PA'∶PA= 2∶3,则△
师提示:△ABC∽△A'B'C',且相似比为3∶2.
BB'⊥β于B',若 AC⊥AB,AC与β成60°角,AC=8cm,B'
师提示:可求A'C=4cm,又可证AB⊥平面AA'C,且四边形 AA'B'B为矩形,∴ AB = A'B',AB∥A'B'.∴A'B'⊥平面AA'C,从而A'B'⊥A'C.在Rt△A'B'C中,
(3)(P.38中练习3)夹在两个平行平面间的平行线段相等.
已知:如图1—116,α∥β,AB∥CD,A∈α,C∈α,B∈β,D∈β.
求证:AB=CD.
证明:∵AB∥CD,
∴过AB、CD的平面γ与平面α和β分别交于AC'和BD.
∵α∥β,
∴BD∥AC.
∴四边形ABCD是平行四边形,
∴AB=CD.
师:这个练习的结论可作为性质4:夹在两个平行平面间的平行线段相等.
(三)总结
这节课,我们不仅学习了两个平行平面的公垂线、公垂线段和距离的定义,还学习了两个平行平面的四个性质.此外,两平行平面的第五个性质:经过平面外一点只有一个平面和已知平面平行.它的证明作为今天的作业(P.38中习题五4).这节课学习的关键是利用两个平行平面的性质解题时,要注意常把面面平行的问题转化成线面平行或线线平行的问题.
五、作业
P.38—39中习题五4、5、6、7、8.
第 7 页 共 7 页二面角
一、素质教育目标
(一)知识教学点
1.二面角的有关概念.
2.二面角的平面角的定义及作法.
(二)能力训练点
1.利用类比的方法理解和掌握二面角的有关概念;掌握二面角的平面角的定义.
2.用转化的思维方法将二面角问题转化为其平面角问题,进一步培养学生的空间想象能力和分析、解决问题的能力.
3.通过练习,归纳总结作二面角的平面角的三种方法.
(三)德育渗透点
让学生认识到研究二面角的问题是人类生产实践的需要,进一步培养学生实践第一的观点.
二、教学重点、难点、疑点及解决方法
1.教学重点:二面角、二面角的平面角的概念.
2.教学难点:如何选取恰当的位置作出二面角的平面角来解题.
3.教学疑点:二面角的平面角必须满足下列两个条件:一是平面角的顶点必在棱上;二是平面角的两边分别在二面角的两个面内.
三、课时安排
1课时.
四、教与学过程设计
(一)二面角
师:我们知道,两个平面的位置关系有两种:一种是平行,另一种是相交.两个相交平面的相对位置是由这两个平面所成的“角”来确定的.在生产实践中,有许多问题也涉及到两个平面所成的角.如:修筑水坝时,为了使水坝坚固耐久,必须使水坝面和水平面成适当的角度;发射人造地球卫生时,也要根据需要,使卫星的轨道平面和地球的赤道平面成一定的角度(图看课本P.39中图1—43),等等.这些事实都说明了研究两个平面所成的“角”是十分必要的,我们就把这样的“角”叫二面角,那么如何定义二面角呢?阅读课本P.39—40,回答下列问题.
师:我们先来回忆:什么是角?如何表示?
生:从平面内一点出发的两条射线(半直线)所组成的图形叫做角(如图1—117),表示为∠AOB.
师:根据角的定义,我们可以类似地定义二面角.先给出半平面的定义.
生:一个平面内的一条直线,把这个平面分成两部分,其中的每一部分都叫做半平面.
从一条直线出发的两个半平面所组成的图形叫做二面角.这条直线叫做二面角的棱,这两个半平面叫做二面角的面(如图1—119).
师:那么如何表示二面角呢?
生:棱为AB,面为α、β的二面角记作二面角α—AB—β,如果棱用a表示,则记作二面角α—a—β.
师:二面角的画法通常有哪几种?
生:第一种是卧式法,也称为平卧式(如图1-120).
第二种是立式法,也称为直立式.
(二)平面角
师:为了对相交平面的相互位置作进一步的探讨,有必要研究二面角的大小问题.如门和墙所在的平面是相交的,但门可以在关上、开一点小缝、开一半、全开等各种位置上,也就是说两平面虽处于相交的位置关系,但相互之间的位置关系还是应当讨论的.为了表示二面角的大小,我们必须引入平面角的定义.
定义:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.
师:二面角的大小可以用它的平面角来度量,即二面角的平面角是几度,就说这个二面角是几度.现在我们来思考:
问题1:这样用平面角的度数来表示二面角的度数是否合理?为什么?
生:是合理的.
如图1—121,在二面角α—a—β的棱a上任取一点O,在半平面α和β内,从点O分别作垂直于棱a的射线OA、OB,射线OA和OB组成∠AOB,在棱上另取任意一点O',按同样的方法作∠A'O'B',因为OA和OA'、OB和OB'都垂直于棱a,所以∠AOB和∠A'O'B'的两边分别平行且方向相同,根据等角定理,得:∠AOB=∠A'O'B',即∠AOB的大小是一定的.由于这个唯一性,从而说明这样定义二面角的平面角是合理的,且与点O在棱上的位置无关.
问题2:二面角的平面角必须满足哪几个条件?
生:两个条件.一是平面角的顶点必在棱上;二是平面角的两边分别在二面角的两个面内.
师:平面角是直角的二面角叫直二面角.
在实际生活中,木工用活动角尺测量工件的两个面所成的角时,就是测量这两个角所成二面角的平面角(图见P.40中图1—45).我国发射的第一颗人造地球卫星的倾角是68.5°,就是说卫生轨道平面与地球赤道平面所成的二面角的平面角是68.5°(图见P.39中图1—43).
下面请同学们完成例题和练习.
(三)练习
例 如图1—122,山坡的倾斜度(坡面与水平面所成二面角的度数)是60°,山坡上有一条直道CD,它和坡脚的水平线AB的夹角是30°,沿这条路上山,行走100米后升高多少米?
解:已知CD=100米,设DH垂直于过BC的水平平面,垂足为H,线段DH的长度就是所求的高度.在平面DBC内,过点D作DG⊥BC,垂足是G,连结GH.
∵DH⊥平面BCH,DG⊥BC,
∴GH⊥BC.
因此,∠DGH就是坡面DGC和水平平面BCH所成的二面角的平面角,∠DGH=60°,由此得:
≈43.3(米).
答:沿直道前进100米,升高约43.3米.
注:在解题中要特别注意书写规范.如:
∵DG⊥BC,GH⊥BC,
∴∠DGH是坡面DGC和水平面BCH所成二面角的平面角.
练习:(P.41—42练习1、2、3、4.)
1.拿一张正三角形的纸片ABC,以它的高AD为折痕,折成一个二面角,指出这个二面角的面、棱、平面角.
2.一个平面垂直于二面角的棱,它和二面角的两个面的交线所成的角就是二面角的平面角.为什么?
3.教室相邻两面墙、天花板两两所成的二面角各有多少度?
4.在30°二面角的一个面内有一个点,它到另一个面的距离是10cm,求它到棱的距离.
解:1.如图1—123,二面角B—AD—C中,面ABD,面ACD;棱AD;平面角∠BDC.
2.如图1—124,平面AOB⊥a,平面AOB与平面α、β的交
∠AOB是二面角α—a—β的平面角.
3.如图1—125,二面角α—c—β,二面角β—b—γ,二面角α—a—γ的平面角分别为∠AOB,∠AOC,∠BOC,都是90°.
4.已知:如图1—126,二面角α—AB—β为30°,P∈α,P到平面β的距离为10cm.
求P到AB的距离.
解:在β内作点P的射影O,过点P作PQ⊥AB于Q,连结OQ,根据三垂线定理,可得OQ⊥AB.
∴∠PQO为二面角α—AB—β的平面角,即∠PQO=3O°.
∵PO=10cm,
∴PQ=20cm.
即P到AB的距离为20cm.
小结:从上面四题练习,我们可以总结三种作二面角的平面角的一般方法.
1.定义法:以二面角的棱上某一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角即二面角的平面角(如练习1,3).
2.应用三垂线(逆)定理法:在二面角α—l—β的面α上取一点A,作AB⊥β于B,BC⊥l于C,则∠ACB即为α—l—β的平面角(如练习4).
3.作垂面法:作棱的垂面,则它和二面角的两个面的交线所成的角就是二面角的平面角(如练习2).
(四)总结
本节课我们学习了二面角,二面角的平面角等有关概念,并学会了如何作二面角的平面角.学习的关键是将二面角的问题转化为其平面角的问题.
五、作业
P.45—46中习题六1、2、3、4、5.
第 7 页 共 7 页直线和平面平行的判定与性质(二)
一、素质教育目标
(一)知识教学点
直线和平面平行的性质定理.
(二)能力训练点
用转化的方法掌握应用直线与平面平行的性质定理,即由线面平行可推得线线平行.
(三)德育渗透点
让学生认识到研究直线和平面平行的性质定理是实际生产的需要,充分体现了理论联系实际的原则.
二、教学重点、难点、疑点及解决方法
1.教学重点:直线和平面平行的性质定理.
2.教学难点:直线和平面平行的性质定理的证明及应用.
理4,平面α内与b平行的所有直线都与a平行(有无数条).否则,都与a是异面直线.
三、课时安排
1.7直线和平面的位置关系和1.8直线和平面平行的判定与性质这两个课题安排为2课时,本节课为第二课时,讲解直线和平面平行的性质定理.
四、教与学过程设计
(一)复习直线和平面的位置关系及直线和平面平行的判定(幻灯显示)
师:直线和平面的位置关系有哪几种?
生:有三种位置关系:直线在平面内,直线与平面相交,直线与平面平行.直线与平面相交或平行统称为直线在平面外.
直线在平面内,说明直线与平面有无数个公共点;直线与平面相交,说明直线与平面只有1个公共点;直线与平面平行,说明直线与平面没有公共点.
师:直线和平面的判定方法有哪几种?
生:两种.
第一种根据定义来判定,一般用反证法.
第二种根据判定定理来判定:只要在平面内找出一条直线和已知直
α,a∥b,则a∥α.
(二)直线和平面平行的性质
师:命题“若直线a平行于平面α,则直线a平行于平面α内的一切直线.”对吗?(幻灯显示)
生:不对.
师:为什么不对?(出示教具演示)
平行的所有直线(为b′,b″)都与a平行(有无数条),否则,都与a是异面直线.
师:在上面的论述中,平面α内的直线b满足什么条件时,可以与直线a平行呢?我们有下面的性质.
直线和平面平行的性质定理:如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行.
求证:a∥b.
师提示:要证明同一平面β内的两条直线a、b平行,可用反证法,也可用直接证法.
证明:(一)反证法.
假设直线a不平行于直线b.
∴ 直线a与直线b相交,假设交点为O,则a∩b=O.
∴a∩α=O,这与“a∥α”矛盾.
∴a∥b.
(二)直接证法
∵a∥α,
∴a与α没有公共点.
∴a与b没有公共点.
a和b同在平面β内,又没有公共点,
∴a∥b.
下面请同学们完成例题与练习.
(三)练习
例2 有一块木料如图1-65,已知棱BC平行于面A′C′.要经过木料表面A′B′C′D′ 内的一点P和棱BC将木料锯开,应怎样画线?所画的线和面AC有什么关系?
解:(1)∵BC∥面A′C′,面BC′经过BC和面A′C′交于B′C′,
∴BC∥B′C′.
经过点P,在面A′C′上画线段EF∥B′C′,由公理4,得:EF∥BC.
的线.
(2)∵EF∥BC,根据判定定理,则EF∥面AC;BE、CF显然都和面AC相交.
总结:解题时,应用直线和平面平行的性质定理,要注意把线面平行转化为线线平行.
练习:(P.22中练习3)
在例题的图中,如果AD∥BC,BC∥面A′C′,那么,AD和面BC′、面BF、面A′C′都有怎样的位置关系.为什么?
∥面BC′.同理AD∥面BF.
又因为BC∥面A′C′,过BC的面EC与面A′C′交于EF,
(四)总结
本节课我们复习了直线和平面平行的判定,学习了直线和平面平行的性质定理.性质定理的实质是线面平行,过已知直线作一平面和已知
直线都与已知直线平行.
五、作业
P.22—23中习题三5、6、7、8.
六、板书设计
直线和平面平行的性质定理:
如果一条直线和一个平面平行,经过这条直线的平面和这个平面相交,那么这条直线就和交线平行.
性质定理的证明:
求证:a∥b.
例:
有一块木料,已知棱BC平行于面A′C′,要经过木料表面A′B′C′D′内的一点P和棱BC将木料锯开,应怎样画线?所画的线和面AC有什么关系?
练习:
在例中,若AD∥BC,BC∥面A′C′,那么,AD和面BC′、面BF、面A′C′都有怎样的位置关系,为什么?
第 6 页 共 6 页斜线在平面上的射影,直线和平面所成的角
一、素质教育目标
(一)知识教学点
1.点在平面上的射影,点到平面的垂线段.
2.有关平面的斜线的几个概念.
3.有关射影的几个概念.
4.射影定理.
5.有关直线和平面成角的几个概念.
(二)能力训练点
1.加深对数学概念的理解掌握.
2.初步学会依据直线与平面成角的定义用于解决成角问题的一般方法.
二、教学重点、难点、疑点及解决方法
1.教学重点:射影定理的叙述和记忆及直线与平面成角的概念.
2.教学难点:定理的理解及有关直线与平面成角的练习.
3.教学疑点及解决方法:
(1)“ 斜线在平面上的射影”是“直线和平面所成的角”的基础;“斜线在平面上的射影”这一小节出现概念较多,为了便于学生理解和记忆,可以边画出课本的图形1-30边讲解,结合图形记忆,快而且准.教学中,一般先画出斜线AC与平面α斜交于C,再过AC上一点A引AB⊥α,垂足为点B,连结BC,然后指出AC是平面α上的斜线;线段AC是点A到平面α的斜线段,线段AB是点A到平面α的垂线段,点B是点A到平面α的垂线的垂足,直线BC是线段AC在平面α上的射影.
(2)斜线段在平面上的射影是一条线段,斜线在平面上的射影是直线,垂线和垂线段在平面上的射影退化成一个点.
(3)为照顾一般习惯说法,课本中定义射影是用“在平面上”,而说点、直线“在平面内”,并非不同.
(4)射影定理中三个结论成立的前提是这些斜线段及垂线段必须是从平面外同一点向平面所引而得到的,否则,结论不成立.
(5)直线和平面相交,它们的相互位置与两条相交直线一样,仍需用角来表示,但过交点在平面内可以作许多条直线,与平面相交的直线同平面内每一条直线所成的角是不相等的,为了定义的准确性,所以取这些角中有确定值的最小角,也就是取该斜线与其在平面上射影所成的锐角作为直线和平面所成的角;
(6)直线和平面的位置关系可以用直线和平面成角范围来刻划;反之,由直线和平面所成角的大小也可以确定直线和平面的相互位置:
②直线和平面平行或直线在平面内,θ=0°.
③直线和平面成角的范围是0°≤θ≤90°.
三、课时安排
1课时.
四、学生活动设计
常规活动.(略)
五、教学步骤
(一)新课概念教学
1.点在平面上的射影,点到平面的垂线段自一点向平面引垂线,垂足叫做这点在这个平面上的射影.这点与垂足间的线段叫这点到这个平面的垂线段.
2.平面的斜线的有关概念
一条直线和一个平面相交,但不和这个平面垂直,这条直线叫这个平面的斜线,斜线和平面的交点叫斜足,斜线上一点和斜足间的线段叫这点到这个平面的斜线段.
3.射影的有关概念
过斜线上斜足以外的一点向平面引垂线,过垂足和斜足的直线叫斜线在这个平面上的射影.垂足和斜足间的线段叫这点到平面的斜线段在这个平面上的射影.
说明:教师边画出课本图形1-30,边讲解.
点B—点A在平面上的射影
AB—点A到平面的垂线段
AC—平面的一条斜线
C—斜足
线段AC—斜线段
直线BC—斜线AC在平面上的射影
线段BC—斜线段AC在平面上的射影
(板书)
(1).点在平面上的射影.
(2).点到平面的垂线段.
(3).斜线、斜足、斜线段.
(4).斜线在平面上的射影.
(5).线段在平面上的射影.
(二)射影定理
从平面外一点向这个平面所引的垂线段和斜线段中,
(1)射影相等的两条斜线段相等,射影较长的斜线段也较长;
(2)相等的斜线段的射影相等,较长的斜线段的射影也较长;
(3)垂线段比任何一条斜线段都短.
关于射影定理说明如下:
设A为平面α外一点,AO⊥α,AB、AC为任意两条斜线,O为垂足,则OB和OC分别是AB和AC的射影.
则AB和AC分别为Rt△ABO和Rt△ACO的斜边;由勾股定理可知
AB2=AO2+OB2;
AC2=AO2+OC2;
比较上面两个等式,得
还可以得到AB>AO,AC>AO.所以,AO过点A向平面α所引线段中最短的一条.
(三)直线与平面成角
1.定义:
(1)平面的一条斜线和它在平面上的射影所成的锐角,叫做这条直线和平面所成的角.
(2)直线和平面垂直——直线与平面所成的角是直角.
(3)直线和平面平行或直线在平面内——直线与平面所成的角是0°度的角.
2.按照定义,在求直线和平面所成的角时,应按下述三种情况依次进行考虑:
(1) 直线和平面平行或直线在平面内时,直线和平面所成的角是0°角;
(2)直线和平面垂直时,直线和平面所成的角是直角;
(3)直线和平面斜交时,直线和平面所在的角是指直线和它在平面内的射影所成的锐角.
3.斜线和平面所成的角,是这条斜线和平面内经过斜足的直线所成的一切角中最小的角.(让学生看书3分钟,加以理解)
(四)例题分析
1.如图1-82,在正方体ABCD-A1B1C1D1中,E、F分别是AA1、A1D1的中点,求:
(1)D1B1与面AC所成角的余弦值;
(2)EF与面A1C1所成的角;
(3)EF与面AC所成的角.
解:
(2)45°.
(3)45°.
2.如图1-83,Rt△ABC的斜边AB在平面M内,AC和BC与M所成的角分别是30°、45°,CD是斜边AB上的高,求CD与M所成的角.
分析:作出CD与平面M所成的角,然后去解含这个角的三角形.
解:作CC1⊥平面M,连结AC1、BC1、DC1,依题意
∠CAC1=30°,∠CBC1=45°,设CC1=a,则AC=2a,
∴∠CDC1=60°.
3.可让学生完成课后练习1、2.
(五)归纳小结
这节课,我们学习了有关平面的斜线、射影和直线与平面成角的几个概念,射影定理中的三个结论成立的前提是这些斜线段及垂线段必须是从平面外同一点向平面所引而得到的.否则,结论不成立.
六、布置作业
作为一般要求,完成习题四9、10.
补充:
1.AB是直角三角形ABC的斜边,三个顶点在平面M的同侧,它们在M内的射影分别是A1、B1、C1,如果三角形A1B1C1是正三角形,且AA1=3cm,BB1=5cm,CC1=4cm.求三角形A1B1C1的面积.
解:设正三角形A1B1C1的边长为x.
则AC2=x2+1
BC2=x2+1
AB2=x2+22
∵AC2+BC2=AB2,
2.已知PA,PB,PC与平面α所成的角分别为60°,45°,30°,PO⊥平面α,O为垂足,又斜足A,B,C三点在同一直线上,且AB=BC=10cm,求PO的长.
参考答案:
第 8 页 共 8 页平面
立体几何课程是初等几何教育的内容之一,是在初中平面几何学习的基础上开设的,以空间图形的性质、画法、计算以及它们的应用为研究对象,以演绎法为研究方法.通过立体几何的教学,使学生的认识水平从平面图形延拓至空间图形,完成由二维空间向三维空间的转化,发展学生的空间想象能力,逻辑推理能力和分析问题、解决问题的能力.
平面的概念和平面的性质是立体几何全部理论的基础.平面,是现实世界存在着的客观事物形态的数学抽象,在立体几何中是只描述而不定义的原始概念,但平面是把三维空间图形转化为二维平面图形的主要媒介,在立体几何问题平面化的过程中具有重要的桥梁作用.
一、素质教育目标
(一)知识教学点
1.“平面”是空间图形的基本元素,很多空间图形的面都是平面图形,平面图形及其性质是初中平面几何的主要学习内容,因此,要建立起“空间问题平面化”的观点.
2.虽然日常生活中的平面物体有一定的局限,但作为立体几何中的“平面”无大小之分,是无限延展的.
3.平面可用图形表示,也可用符号表示,应理清与其它图形表示法的联系与区别.
(二)能力训练点
1.通过“平面”概念的教学,初步培养空间想象能力,如平面的无限延展性.
2.由叙述语言、图形语言和符号语言的互译,培养语言转换能力.
(三)德育渗透点
通过通俗意义上的平面到数学意义上的平面的学习,了解具体与抽象,特殊与一般的辩证关系,由点、直线、平面间内在的联系逐渐形成“事物总是运动变化”的辩证观点.
二、教学重点、难点及解决办法
1.教学重点
(1)从客观存在的平面物体抽象出“平面”概念.
(2)掌握点、直线、平面间的相互关系,并会用文字、图形、符号语言正确表示.
(3)理解平面的无限延展性.
2.教学难点
(1)理解平面的无限延展性.
(2)集合概念的符号语言的正确使用.
3.解决办法
(1)借助实物操作,抽象出“平面”概念.
(2)运用正迁移规律,将直线的无限延伸性类比于平面的无限延展性.
三、课时安排
1课时.
四、学生活动设计
准备好纸板三块,纸盒一个,小竹签四根.纸板作为平面的模型,纸盒用于观察平面的位置,以便同画出的图形比较,小竹签用于表示直线.
五、教学步骤
(一)明确目标
1.能够从日常生活实例中抽象出数学中所说的“平面”.
2.理解平面的无限延展性.
3.正确地用图形和符号表示点、直线、平面以及它们之间的关系.
(二)整体感知
“立体几何”作为一门学生刚开始学习的学科,其内容对学生来说基本上是完全陌生的,应以“讲授法’的主,引导学生观察和想象,吸引学生的注意力,激发学生的学习兴趣,初步培养空间想象力.
本课是“立体几何”的起始课,应先把这一学科的内容作一大概介绍,包括课本的知识结构,“立体几何”的研究对象,研究方法,学习立体几何的方法和作用等.而后引入“平面”概念,以类比的方式,联系直线的无限延伸性去理解平面的无限延展性,突破教学难点.在进行“平面的画法”教学时,不仅要会画水平放置的平面,还应会画直立的平面和相交平面(包括有部分被遮住的相交平面).在用字母表示点、直线、平面三者间的关系时,应指明是借用了集合语句,并用列表法将这些关系归类,以便作为初学者的学生便于比较、记忆和运用.
(三)重点、难点的学习与目标完成过程
A.引言
师:以往我们所学的几何是平面几何,研究的是平面图形的性质、画法、计算、应用.今天我们开始学习一门新的学科——立体几何.立体几何的研究对象是空间图形的性质、画法、计算及应用.它使得我们的学习内容从二维平面上升到三维空间,因此,需要我们在学习过程中通过严密的逻辑推理把三维空间图形问题转化为二维平面图形问题,这也是学好立体几何的一个重要方法.
《立体几何》一书共分两章:第一章“直线和平面”是立体几何的基础知识和理论基础;第二章“多面体和旋转体”是理论知识的运用,并被广泛地应用于日常生产生活之中.
B.平面
1.平面的特点
师:现在我们来看手中的纸盒,它是由几个面构成的?
生:6个面.
师:对,这六个面给我们以平面的形象,还有哪些面留给我们平面的形象呢?
生:桌面、黑板、地面、海平面等.
师:对,这些物体是生活中所说的平面,但还不能算是数学意义上的平面,因为它们是有限的面.再如海平面上有波涛,当我们想象它是一平如镜时,它有什么特点呢?
生:很大、很平.
师:对,平面是一个不加定义的概念,具有“平”、“无限延展”、“无厚薄”的特点.一个平面可以把空间分成两部分,这正如直线是无限延伸的,一条直线可以把平面分成两部分,我们所画的只是一条直线的一部分.因此,刚才所说的物体如果是平的,也只是它所在平面的一部分.
2.平面的画法
师:同学们从小就会画平面,是否记得用什么图形来表示?
生:平行四边形.
师:对,通常画平行四边形来表示平面,但有时不,如四面体(图1-1),又如三个平面相交且交于一点(图1—2).
注意,在画平行四边形表示平面时,所表示的平面如果是水平平面,通常把锐角画成45°,横边画成邻边的两倍(图1-3);如果是非水平平面,只要画成平行四边形,如直立平面(图1-4);如果几个平面画在一起,当一个平面有一部分被另一个平面遮住时,应把被遮部分的线段画成虚线或不画(图1-5).请看课本中有关内容.
3.平面的表示法
师:平面的表示法有如下几种:(1)在一个希腊字母α、β、γ的前面加“平面”二字,如平面α、平面β、平面γ等,且字母通常写在平行四边形的一个锐角内(图1-3、图1-5);(2)用平行四边形的四个字母表示,如平面ABCD(图1-4);(3)用表示平行四边形的两个相对顶点的字母来表示,如平面AC(图1-4).
4.点、直线、平面之间的基本关系
师:空间图形的基本元素是点、直线、平面.从运动的观点看,点动成线,线动成面,从而可以把直线、平面看成是点的集合,因此它们之间的关系除了用文字和图形表示外,还可借用集合中的符号语言来表示.规定直线用两个大写的英文字母或一个小写的英文字母表示,点用一个大写的英文字母表示,而平面则用一个小写的希腊字母表示(以下各种情形要用小竹签和纸板示范).参图1—6.
师:可见,集合中“∈”的符号只能用于点与直线,点与平面的关
与平面的关系,虽然借用于集合符号,但在读法上仍用几何语言.
【练习】
[练习一]1.能不能说一个平面长4米,宽5米?为什么?能不能说矩形长3米,宽2米?“这个矩形是平面的一部分”的说法是否正确?
2.观察图1-7、图1-8的甲、乙两个图形,用模型来说明它们的位置有什么不同,并用字母表示各平面.
附注:(1)讲评图1-7时,用书作示意,对直线的可见部分与不可见部分加以区别.
(2)讲评图1-8时,出示模型,对可见棱与不可见棱加以区别.
[练习二]试用集合符号表示:
(1)点A在直线l上,点B不在直线上;
(2)点A在平面α内,而点B不在平面α内.
(四)总结、扩展
通过这一节课的学习,我们知道了立体几何是在学面几何的基础上对几何的继续研究,研究的对象是空间图形,主要研究空间图形的画法、性质、计算以及应用.今天首先学面的画法和表示法,以及点、直线、平面间基本关系的文字语言,图形语言和符号语言之间关系的转换,为下一节课学习平面的基本性质作准备.
六、布置作业
1.阅读立体几何课本有关“平面”的内容.
2.试用集合符号表示下列各语句,并画出图形:(1)点A在平面α内,但不在平面β内;(2)直线a经过不属于平面α的点A,且a不在平面α内;(3)平面α与平面β相交于直线l,且l经过点P;(4)直线l经过平面α外一点P,且与平面α相交于点M.
4.预面的基本性质”.
七、板书设计
第 7 页 共 7 页直线和平面复习(一)
教学目标
1.配合系统复习,进一步培养空间想象力;
2.借助平面几何中,三角形的重心、垂心、内心、外心等知识,解决立体几何问题.
教学重点和难点
1.空间想象力的培养;
2.分析问题能力与综合运用知识能力的培养.
教学设计过程
师:同学们已经很好地完成了知识总结的作业,有些同学还将知识的内在联系用图表展示出来.也有的同学将各种位置关系用图形语言和符号语言进行归纳和整理.在此一并提出表扬.我们将把这些总结用展板展示,请同学们互相学习.
师:本节课我们将通过一组问题来进行复习.复习的目的之一是进一步培养同学们的空间想象力.
关于空间想象力的问题,在高一年级刚开始时,单纯的想象占主导地位,随着一个学期的学习,关于线面的各种位置关系及性质研究的深入,单纯的想象力就转化为:在线面各种位置关系的定义、性质定理指导下的想象.
请先看下面一组题目:
填空题:
1.空间三个平面可能将空间分成______部分.
2.正方体各个面所在的平面将空间分成______部分.
3.与空间四个点距离相等的平面有______个.
*4.A,B,C,D是空间不共面的四点.它们到平面α的距离比(依次)为:2∶1∶1∶1,满足条件的平面α有__个.
生:第1题空间三个平面可能将空间分成4或6或7或8部分.
师:请你画图说明你的观点.
生:(作图)
师:很好,图1、图2、图3、图4依次表示三个平面将空间分成4,6,7,8部分.
生:第2题答案是27.
师:你给同学们解释一下,答案为什么是27.
生:(手拿一个粉笔盒)这个粉笔盒近似看成一个正方体,它的上底面与下底之间被分成9部分.同样,上底面上边与下底面下面也各被分成9部分.总计正方体各个面所在的平面将空间分成27部分.
师:对于第3小题,需要先证明下面的命题:线段AB与平面α相交,若AB中点C在平面α上,则点A、点B到平面α的距离相等.
生A:本题的答案为4,因为经过有公共顶点的三条棱的中点作截面,根据老师刚介绍的引理,可以证明这样的截面符合条件.(如图5)
生B:还有一种情况.刚才生A所作平面使已知四个点中有三个在平面的同一侧,另外一个点在另一侧.我想所作平面两侧各有2个点.如图6.这类平面共有3个,即V,A两点在平面同侧;V,B两点在平面同侧;V,C两点在平面同侧.
师:刚才两名同学讲的都很好,相互补充,符合条件的平面共有7个.同学们有不同意见吗?
……
师:刚才两名同学都认为已知四个点不共面,事实上,当这四个点共面时,符合题目要求的平面有无数个.只要与四点所在平面平行的平面都符合要求.
生:老师,如果这四个点共线呢?
师:当四个点共线时,只要与这条直线平行的平面均符合条件,这个题目的正确答案应该是7个或无数个.分类讨论的方法不仅在代数课上使用,几何学中也经常使用,此题就是按照图形的不同位置关系进行分类讨论.
我们继续讨论第4题.
生:我认为仿照第3小题的解答,可提出下面引理:若点A、点B
师:他的猜测是正确的.这个命题的正确性请同学们课下论证.下面我们讨论第4小题的解法.
生A:分别延长AB,AC,AD至B1,C1,D1,使BB1=AB,CC1=AC,DD1=AD,如图7,则平面α就是平面B1C1D1.
生B:分别在AB,AC,AD上取点B′,C′,D′,使得:
师:分别取BC,CD,DA的中点E,F,G.那么经过EG的任何一个平面都满足:它与B,C,D三点的距离相等,在这些平面中,经过点B′或经过C′D′(因为C′D′∥CD∥GE)的平面符合题目要求.(图8)
经过EG有两个平面符合题意.同样,经过EF,FG各有两个平面符合题意,综合以上分析共有8个平面符合题目要求.
师:问题5.是否存在一个四面体,它的每个面都是直角三角形?请同学们思考.
……
生A:我找到一个几何体,它的三个面都是直角三角形.如图 9.∠AVB=∠BVC=∠CVA=90°.
生B:我曾经证过生A所给的图中,△ABC是锐角三角形.
师:根据两名同学的发言,给我们以下启示:三个面是直角三角形的几个体已经找到;三个直角顶点不能是同一个点!
构造∠VAB=∠VAC=90°,且∠BAC≠90°.再构造∠ACB=90°,同学们不难证明∠VCB=90°.
生:是根据三垂线定理.
师:空间想象力在不同时期有不同要求.上面这个问题如果是高一第一学期开始让同学们作,那就只有想象或动手制做模型.现在解决它,可以借助我们所学的线面位置关系去寻找解决问题的方法,并且在想象结束时,论证想象的合理性.
师;如图11,正方体ABCD-A1B1C1D1,P,Q,R分别在C1D1,CC1,AB上.画出截面PQR与正方体各面的交线.
由公理知:PQ 面DC1.因为面AB1∥面DC1,截面与它们相交,交线必平行(根据面面平行的性质定理).过点R在面AB1中作PQ平行线交AA1于S.PQ交DC于T,TR交BC于E,连结EQ,过S作SF∥EQ交A1D1于F,连FP,则多边形PQERSF的边就是截面PQR与正方体各面的交线.
师:同学们请看下面一组题:
6.从平面外一点向平面引垂线和斜线,若斜线与平面所成的角都相等,垂足是斜足多边形的______心.
7.直角三角形ABC中,∠C是直角,AC=6,BC=8,△ABC所在平面外一点P,PA=PB=PC=13,点P到△ABC所在平面的距离为______.
生:垂足是斜足多边形的外心,因为从平面外一点向平面引斜线.它们与平面所成角相等,可以得到它们的长相等,它们在平面内的射影长也相等.
师:同学们还可以进一步思考,满足什么条件时,垂足是斜足多边形的内心?垂足有没有可能成为斜足多边形的重心?垂心?
做完一道题目之后,不要满足于题目的本身,能够将条件、结论变换后的有关命题进行研究,可达到事半功倍,提高能力的效果.
师:根据已知条件,第7小题中,点P在△ABC所在平面上的射影恰为△ABC的外心.由于△ABC是直角三角形,所以由点P引平面ABC的垂线,垂足恰为△ABC斜边AB的中点,你们知道了解题思路吗?
生:作PD⊥面ABC于D,由PA=PB=PC,得DA=DB=DC,D是△ABC外心.又因为∠ACB=90°,由平面几何知识,得出D为AB的中点.PA=13,AD=5,PD=12.即点P到平面ABC的距离为12.
师:三角形的垂心、内心、外心、重心的知识在立体几何中经常使用.有一些题目本身没有明确给出,如第7小题,恰到好处地运用四心有关的知识,可简化解题过程.
下面一道题目也是与三角形的“心”有关的问题.
8.如图13,正△ABC边长为a,O为外心,PO⊥面ABC,PA=PB=PC=b,D,E分别为AC,AB的中点,且PA∥面DEFG.
求:四边形DEFG的面积.
由题设我们能得到哪些有用的结论?
生A:因为PA∥面EFGD,由线面平行的性质可得:EF∥PA,GD∥PA,所以EF∥DG.
由D,E分别是AB,AC的中点,DE∥BC,所以BC∥面DEFG.进一步得出BC∥FG.
综上DEFG是平行四边形.
能求出平行四边形DEFG的面积.
师:到目前为止,已知条件中还有两条没有发挥作用.
①等边△ABC;②O为△ABC的外心,
生C:当O为等边三角形外心时,它也是等边△ABC的垂心.即BC⊥AO,又PO⊥面ABC,由三垂线定理知:BC⊥PA.已经证明了EF∥PA,BC∥DE,得出EF⊥DE,EFGD为一矩形,它的面积
师:有效地利用“心”的有关概念,较好地解决一些立体几何问题.
本节课重点讨论了两个方面的问题;
1.关于空间想象力的进一步培养问题.不是空象,要注意有意识地利用各种线面位置关系.
2.通过问题,适当复面几何中的“四心”问题,进一步掌握利用“四心”的知识解决的方法.
下面布置作业:(略)
第 4 页 共 7 页平行直线
一、素质教育目标
(一)知识教学点
1.公理4,即平行公理.
2.等角定理及推论.
(二)能力训练点
1.利用联想的方法,掌握并应用由平面内引伸到空间中的平行公理.
2.充分利用构造的方法证明等角定理,为下一节两条异面直线所成的角的定义提供了可能性与唯一性.
3.通过本节课的学习,让学生认识到在平面几何中成立的结论或定理等,在用于非平面图形时,须先证明.
二、教学重点、难点、疑点及解决方法
1.教学重点:让学生掌握平行公理及其应用.
2.教学难点:等角定理证明的掌握及其应用.
3.教学疑点:正确理解等角定理中命题的条件:两个角的两边分别平行且这两个角的方向相同.
三、课时安排
1课时.
四、教与学的过程设计
(一)复习两条直线的位置关系(幻灯显示)
师:空间中两条直线的位置关系有哪几种?
生:三种:相交、平行、异面.异面直线是指不同在任何一个平面内的两条直线.相交直线和平行直线也称为共面直线.
师:异面直线的画法常用的有哪几种?
生:三种.如图1-38,a与b都是异面直线.
师:如何判定两条直线是异面直线?
生:(1)间接证法:根据定义,一般用反证法.
(2)直接证法:根据例题结论:过平面外一点与平面内一点的
(二)平行公理
师:在平面几何中,如图1-40,若a∥b,c∥b,则a与c平行吗?
生:平行.
师:也就是说,在平面中,若两条直线a、c都和第三条直线b平行,则a∥c.这个命题在空间中是否成立呢?
师:实际上,在空间中,若a∥b,c∥b,则a∥c也成立.我们把这个结论作为一个公理,不必证明,可直接应用.
平行公理:平行于同一条直线的两条直线互相平行.
如图1-41,三棱镜的三条棱,若AA′∥BB′,CC′∥BB′,则有AA′∥CC′.
下面请同学们完成下列的例题,巩固应用平行公理.
例已知四边形ABCD是空间四边形(四个顶点不共面的图1-41四边形),E、H分别是边AB、AD的中点,F、G分别是边CB、CD
师分析:要证明四边形EFGH是梯形,即要证明四边形EFGH的一组对边平行,另一组对边不平行;或证明一组对边平行且不相等.具体用哪一种方法,我们来分析一下题意:E、H分别是边AB、AD的中
证明:如图1-42,连结BD.
∵EH是△ABD的中位线,
根据公理4,EH∥FG,
又∵FG>EH,
∴四边形EFGH是梯形.
(三)等角定理
师:平行公理不仅是今后论证平行问题的主要依据,也是证明等角定理的基础.
等角定理:如果一个角的两边和另一个角的两边分别平行,并且方向相同,那么这两个角相等.
已知:∠BAC和∠B′A′C′的边AB∥A′B′,AC∥A′C′,并且方向相同.
求证:∠BAC=∠B′A′C′.
师分析:在平面内,这个结论我们已经证明成立了.在空间中,这个结论是否成立,还需通过证明.要证明两个角相等,常用的方法有:证明两个三角形全等或相似,则对应角相等;证明两直线平行,则同位角、内错角相等;证明平行四边形,则它的对角相等,等等.根据题意,我们只能证明两个三角形全等或相似,为此需要构造两个三角形,这也是本题证明的关键所在.
证明:对于∠BAC和∠B′A′C′都在同一平面内的情况,在平面几何中已经证明.下面我们证明两个角不在同一平面内的情况.
如图1-43,在AB、A′B′,AC、A′C′上分别取AD=A′D′、AE=A′E′,连结AA′、DD′、EE′,DE、D′E′.
∵AB∥A′B′, AD=A′D′,
∴AA′DD′是平行四边形.
根据公理4,得:DD′∥EE′.
又可得:DD′=EE′
∴四边形EE′D′D是平行四边形.
∴ED=E′D′,可得:△ADE≌△A′D′E′.
∴∠BAC=∠B′A′C′.
师:若把上面两个角的两边反向延长,就得出下面的推论.
推论:如果两条相交直线和另两条相交直线分别平行,那么这两组直线所成的锐角(或直角)相等.
从上面定理的证明可以知道:平面里的定义、定理等,对于非平面图形,需要经过证明才能应用.
下面请同学们完成练习.
(四)练习(P.14练习1、2.)
1.把一张长方形的纸对折两次,打开后如图1-44那样,说明为什么这些折痕是互相平行的?
答:把一张长方形的纸对折两次,打开后得4个全等的矩形,每个矩形的竖边是互相平行的,再应用平行公理,可得知它们的折痕是互相平行的.
△ABC≌△A′B′C′.
∴四边形BB′C′C是平行四边形.
∴BC=B′C′.
同理可证:AC=A′C′,AB=A′B′.
∴△ABC≌△A′B′C′.
(五)总结
这节课我们学行公理和等角定理及其推论.平行公理是论证平行问题的主要根据,也是确定平面的基础.等角定理给下一节两条异面直线所成角的定义奠定了基础.这节课我们还明确了在平面几何中成立的结论或定理等,在用于非平面图形时,须先证后用.
五、作业
教材P.17习题二4、5、6、7、8.
第 1 页 共 6 页直线和平复习(四)
教学目标
结合第一章的内容,渗透数学思想方法.(数形结合思想;方程的思想;转化的思想;分类讨论的思想)
教学重点和难点
数学思想的渗透与培养.
教学设计过程
师:今天是复习课的最后一节.今天以复习题目中体现的数学思想为主线,研究几种常用数学思想在本章的体现.
分类讨论的思想是同学们比较熟悉的.使用较多的是在代数课上y=ax2+bx+c的图象,当a>0时,开口向上;当a<0时,开口向下.
几何中,分类讨论思想的应用,主要是依据图形中元素位置关系的不同而展开的.
请看以下一组题目:
例1 已知:a∥b,直线a 平面α,直线b 平面α,直线c 平面α,c∥a.若直线a与直线b的距离为6cm,直线b与直线c的距离5cm,直线c与平面α的距离为4cm.
求:直线a与直线c的距离.
(教师画图)
生A:在直线c上任取一点A,作AB⊥α于B,过B作BC⊥a于C,反向延长交b于D,因为a∥b,所以BC⊥b.分别连结AC、AD,根据三垂线定理,a⊥AC,b⊥AD.
据题意知:CD=6cm,AD=5cm,AB=4cm,在Rt△ABD中,求出BD=3cm,所以BC=3cm,在Rt△ABC中,求出AC=5cm.
师:哪位同学对“生A”的解答有补充?
师:生A的解答基础是依据我画的图.而原题中并没有给图,也没有“如图”这样的说明,因此我们先要研究图应该怎么画!
生B:老师,我对“生A”的发言有补充.
这个题目的图形还有以下两种可能:
师:好.这道题目体现了分类讨论的思想.它是根据直线c在平面α内射影的不同位置来
进行讨论的.
生C:老师,我认为还有两种情况:
情形1:直线c在平面α内射影与直线a重合.
情形2:直线c在平面α内射影与直线b重合.
师:“生C”同学的补充很好.例1应该分为5种情况来讨论.但是其中会有一些情况无解,请同学们现在实践一下.
图一的位置.其余三种位置关系均无解.
师:还有一点提醒同学们注意:对于不同的位置关系,解题时都要给予论述,对于无解的情形要讲清无解的原因。有些同学认为无解就不用写了,这种认识是错误的.再看例2.
例2 平面α外两点A,B,它们到平面α的距离分别为a,b,
求:点P到平面α的距离.
生A:我认为有两种情况:一种是点A、点B在平面α同侧;另一种是点A、点B在平面α异侧.
生B:我有不同看法,已知条件中没有给出a,b的大小关系,“生A”解决图5情形时,默认为b>a是不对的,应该再分两种情形:
师:“生B”的补充很好,例2不仅在图形的位置关系上分类讨论,还要根据数据a,b的大小关系来分类讨论.如果简化题目,已知条件上补一个条件:b>a,是否上述解答就全面了呢?
生C:当A,B两点在两侧时,在图6中,点P不一定在A1B1上方.当b>2a时,点P位于A1B1上方;当b=2a时,点P在A1B1上;
师:经过“生C”的补充,题目解答就全面了.
下面谈一下方程的思想.在初中阶段,同学们重点研究了列方程解应用题,这就是最基本的方程的思想.通过设未知数,寻求已知量与未知量之间的关系,从而获得问题的解决.下面请看例3.
例3 如图7,二面角α-l-β,点B∈l,AB α,BC β.∠ABD=∠CBD=45°,∠ABC=60°.
求:二面角α-l-β的大小.
师:首先我们可以根据二面角的平面角的定义构造二面角的平面角.具体作法是:在l上选点D,经过点D分别在α,β平面内作l的垂线交BA,BC于E,F.
设AD=α,由∠ABD=45°得BD=a.
∠EDF=90°.
本例特点在于题目中没有给出任何线段的长度,而是通过设未知量,进而知道已知与未知的关系.
例4 二面角α-EF-β为120°,点A∈α,点B∈β,∠ACB为二面角的平面角,且AC=BC=a.在EF上取一点D.
问:D点在何处时,∠ADE=∠ADB=∠BDE=θ?
为了确定点D的位置,可设与D点有关的某一条线段长为x,依据题设建立等量关系.再求出x的值,同学们实践一下.
生A:在EF上取点D,设AD=x.
因为 AC=BC=a,∠ACB=120°,
因为 ∠ADE=∠ADB=∠BDE=0,
所以 ∠ADC=180°-θ.
△ABD中由余弦定理可得:
AB2=x2+x2-2x2cosθ,
生B:我认为解答不全面,刚才“生A”的解答中,运用了图8中各点之间位置关系.
应该给予讨论,当点D位于CF之间时,∠ADC=180°而不是等于180°-θ.
师:“生B”的问题提的好,在“生A”的解答中,距点C的距离
例5 如图9,∠ASB=90°,∠CSB=75°,∠ASC=105°,由
求:△ABC的周长.
师:这道题目的难度在于如何建立一座沟通已知与未知的桥梁.
生:观察图形,我发现图中有三对全等三角形.△ADS≌△AFS;△FSC≌△ESC;△BES≌△BDS.设∠DSA=α,∠FSC=β,∠ESB=γ.
师:上面列举了3个题目,从不同的侧面,以不同的形式反映出方程的思想在立体几何解题中的作用.
下面再谈一下转化的思想,转化的内涵十分丰富.有条件的转化;结论的转化;图形的转化;解题策略的转化……
事实上,许多题目的解答过程都不同程度在使用转化的思想.
例6 已知正方体ABCD-A1B1C1D1的棱长为1.
求:异面直线A1C1与B1C的距离.
生A:可以证明:B1C∥A1D1,进而可证B1C∥面A1DC1,问题转化为求直线B1C与平面A1C1D的距离……
生B:还可以证明AC∥A1C1,不难证明:平面A1C1D∥平面ACD1.问题转化为求平面A1C1D与平面ACB1的距离……
生C:在A1C1上取一点P,作PN⊥B1C1于N,作NQ⊥B1C于Q,连结PQ.可以证明PQ⊥B1C.
师:“生C”的思想是:依据异面直线的概念,特别是公垂线段的长是两条异面直线上各取一点后所连线段的最小值.
布置作业:(略)
第 1 页 共 8 页三垂线定理(二)
一、素质教育目标
(一)知识教学点
三垂线定理及其逆定理的应用.
(二)能力训练点
1.初步掌握三垂线定理及其逆定理应用的规律.
2.善于在复杂图形中分离出适用的直线用于解题.
3.进一步培养学生的识图能力、思维能力和解决问题的能力.
(三)德育渗透点
通过强化训练渗透化繁为简的思想和转化的思想.
二、教学重点、难点、疑点及解决方法
1.教学重点:三垂线定理及其逆定理的应用规律.
2.教学难点:对复杂图形如何分离出符合定理的条件用以解题以及解决问题的能力的培养是教学的难点.
三、课时安排
本课题共安排2课时,本节课为第二课时.
四、学生活动设计
常规教学,教师课前设计好幻灯片,上课时讲练结合,学生思考并记录关键步骤,个别学生回答问题.
五、教学步骤
(一)温故知新,引入课题
师:上节课我们学习了三垂线定理及其逆定理,请一个同学来叙述一下定理的内容.
生:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.
生:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直.
(学生回答时,教师画出图形,板书如下:)
并指出:a必须在平面α内,但不一定经过点O.
师:从定理的结论看,三垂线定理及其逆定理是判断直线和直线垂直的重要命题,在论证直线和直线垂直的问题中,我们常常用到它们.这节课,我们就来学习它们的应用.
(二)解题训练,提高能力
例1 Rt△ABC在平面α内,∠C=90°,AC=16,P为α外一点,PA=PB=PC,如果P到BC的距离为17,求点P到平面α的距离.
分析:求点到平面的距离,点到直线的距离,需要先作出这个距离,然后在适当的三角形中解这个三角形,本题关键的问题是确定点P在平面a内射影O的具体位置和直角三角形的外心性质.
解:作PO⊥平面α,
∵ PA=PB=PC,
∴ OA=OB=OC.
∴ O为Rt△ABC的外心.
取BC中点D,连结PD、OD.
则OD是△ABC中位线.
由三垂线定理知PD⊥BC,即PD=17,在Rt△ABC中,OP=
说明:这个例题通过三垂线定理证明直线与直线垂直,从而得到点到直线的距离,利用勾股定理解直角三角形是这类问题的常用方法.
教师引导学生看书,并讲解课本例题:
(课本例2)道旁有一条河,彼岸有电塔AB,高15m,只有测角器和皮尺作测量工具,能否求出电塔顶与道路的距离?
例2 如图1-96,在正方体AC1中,
求证:(1)AC1⊥A1D.
(2)AC1⊥平面A1BD.
分析:本例关键在于引导学生观察图形变化时,如何正确运用三垂线定理.事实上,要证明AC1⊥A1D,满足的射影所在平面是竖直位置的平面DA1,垂线是C1D1,斜线是AC1,射影是AD1.应当克服思维定势给证题带来的消极影响.
教学时,教师先写出第(1)小题的题目,让学生思考,并画出图形,写出证法要点,教师作个别指点.然后,让一个学生板演,教师讲评.接着教师再写出第(2)小题的题目,让全体同学观察、思考.
证明:(1)连结AD1,由正方形可得.
∵AD1⊥A1D,
C1D1⊥平面AD1,
∴AC1⊥A1D.
(2)由(1)AC1⊥A1D,
同理可证:AC1⊥A1B.
A1D∩A1B=A1,
∴AC1⊥平面A1BD.
例3 点P为平面ABC外一点,PA⊥BC,PC⊥AB,求证:PB⊥AC.
证明:过P作PO⊥平面ABC于O,连结OA、OB、OC.
例4 长方体ABCD-A1B1C1D1中,P、O、R分别是AA1、BB1、BC上的点,PQ∥AB,C1Q⊥PR.
求证:D1Q⊥QR.
分析:PQ∥AB提供的结论是PQ⊥平面BB1C1C,又因为C1Q⊥PR,在平面BB1C1C上,利用三垂线逆定理,就可以得到RQ⊥QC1;又因为D1Q在平面BB1C1C上的射影是QC1,再在这个平面上利用三垂线定理,就可以得到结论.
证明:∵PQ∥AB,在长方体ABCD-A1B1C1D1中,得PQ⊥平面BB1C1C,PR是平面BB1C1C的斜线,RQ是斜线PR在平面BB1C1C上
∴RQ⊥QC1.
又∵D1C1⊥平面BB1C1C,D1Q是平面BB1C1C的斜线,QC1是
∴D1Q⊥QR.
说明:本题运用了三垂线定理及其逆定理,探讨了直线与直线垂直关系的转换,图形中直线位置关系较为复杂,而且射影面也非常规位置,学生可能无法轻易看出,教师应当适当引导.
(五)归纳小结,强化思想
师:这节课,我们学习了三垂线定理及其逆定理的一些应用.
六、布置作业
(复习参考题一)8、9.
补充:
1.正三角形ABC的边长为a,AD⊥BC于D,沿AD把△ABC折起,使∠BDC=90°,求折起后点B到AC的距离.
解答:作BE⊥AC于E,连结DE.
∵BD⊥DC,BD⊥AD.
∴BD⊥平面ADC.
又∵BE⊥AC,
∴DE⊥AC.
2.Rt△ABC中,M是斜边AB的中点,PM⊥平面ABC,PM=AC=a,求点P到BC边的距离.
解答:作PN⊥BC于N,则PN就是点P到BC的距离.
∵PM⊥平面ABC,
∴MN⊥BC.
又∵AC⊥BC,M是AB的中点,
3.设P是△ABC所在平面M外一点,当P分别满足下列条件时,判断点P在M内的射影的位置.
(1)P到三角形各边的距离相等.
(2)P到三角形各顶点的距离相等.
(3)PA、PB、PC两两垂直.
答案:设P在平面M内的射影是O.
(1)O是△ABC的内心;
(2)O是△ABC的外心;
(3)O是△ABC的垂心.
第 7 页 共 7 页三垂线定理练习课二
教学目标
1.进一步理解、巩固并应用三垂线定理及其逆定理;
2.应用上一节课上所讲的两个基本题来解有关的综合题;
3.通过解综合题提高学生解综合题的能力.
教学重点和难点
教学的重点是进一步掌握三垂线定理及其逆定理,并能灵活的应用它们来解有关的题.教学的难点是在空间图形中有许多平面时,如何选好“基准平面”和“第一垂线”.
教学设计过程
师:上一节我们应用三垂线定理及其逆定理讲了四个例题.其中大多是基本题.今天我们一方面要在应用这些基本题的基础上解有关的综合题;另外我们再来解其它的综合题来提高我们的解综合题的能力.现在看例1.
例1 如图1,已知:PA⊥PB,PA⊥PC,PB⊥PC,求证:
△ABC是锐角三角形.
师:这一题证法很多,所以我们要多想几种证法.
所以 ∠BAC是锐角.
同理可证∠ABC,∠ACB都是锐角.
师:我们能不能直接用三垂线定理来证?
生:由已知可得PA⊥平面PBC.在直角三角形PBC中,作PD⊥BC于D,因为∠PBC,∠PCB都是锐角,所以垂足D一定在斜边BC内部,连PD,则PD⊥BC(三垂线定理).对于△ABC来说,因垂足D在BC边内部,所以∠ABC,∠ACB都是锐角,同理可证∠BAC也是锐角.
师:能不能用公式cosθ1·cosθ2=cosθ来证明△ABC为锐角三角形?
生:因AP⊥平面PBC,所以∠ABP是线面角,相当于θ1,∠PBC相当于θ2,因θ1,θ2都是锐角.所以cosθ1>0,cosθ2>0,cosθ=cosθ1·cosθ2>0,所以θ为锐角。即∠ABC是锐角,同理可证∠BAC,∠ACB都是锐角.
师:我们用了三种方法来证明△ABC是锐角三角形,现在我们换一个角度来研究这个基本图形另外一个性质.看例2.
例2 如图2,已知:PA⊥PB,PA⊥PC,PB⊥PC.PH⊥平面ABC于H.求证:H点是△ABC的垂心.
师:垂心是三角形三边垂线(高线)的交点,要证H是△ABC的垂心,只要证AH⊥BC即可.
生:因为 PA⊥BP,
PA⊥CP,
所以 PA⊥平面PBC.
故 PA⊥BC.
对于平面ABC来说,PH是垂线,
PA是斜线,AH是PA在平面ABC内的射线.
因为 PA⊥BC,所以 AH⊥BC.
同理可证BH⊥AC,CH⊥AB.
故H是△ABC的垂心.
师:由例2的演变可得例3,现在我们来看例3.
例3 如图3,△ABC中,∠BAC是锐角,PA⊥平面ABC于A,AO⊥平面PBC于O.求证:O不可能是△PBC的垂心.
师:要证明O不可能是△PBC的垂心,用什么方法?
生:用反证法.
师:为什么想到用反证法?
生:因为直接证不好证.
师:对,因为直接来证不好利用条件,而用反证法,假设O是△PBC的垂心,则这样证明的思路就“活了”,就可利用已知条件,现在我们用反证法来证明.
生:假设O是△PBC的垂心,则BO⊥PC.
对平面PBC来说,AO是垂线,AB是斜线,BO是AB在平面PBC内的射影.
因为 BO⊥PC,所以 AB⊥PC.
又因为 PA⊥平面ABC,PA⊥AB,
所以AB⊥平面PAC,AB⊥AC,∠BAC是直角,与已知∠BAC是锐角相矛盾.所以假设不能成立,所以O不可能是△PBC的垂心.
师:分析例3我们可以看出例3是由例2演变而来.也就是说在PA⊥AB,PA⊥ACO是△PBC的垂心条件下一定可以推导出AB⊥AC.是例2的逆命题再加以演变而得.现在我们来看例4.
例4 如图4,已知:∠AOB在平面α内,∠AOB=60°,PO是平面α的一条斜线段,∠POA=∠POB=45°,PP′⊥平面α于P′,且PP′=3.求:
(1)PO与平面α所成的角的正弦;
(2)PO的长.
师:我们如何利用上节课所讲的两个基本题来解这题.
生:因∠POA=∠POB,所以OP′是∠AOB的平分线,∠POP′相当于θ1,θ2=30°,θ=45°,由cosθ1·cos30°=cos
师:在我们脑中如果“储存”许多基本题,那么在我们解有关综合题时,就能“得心应手”.所以在平时我们一定要注意对基本题的理解、掌握,解这题的思路就是一个典型.下面我们来看例5.
(1)直线MN是异面直线A1B和B1D1的公垂线;
(2)若这个正方体的棱长为a,求异面直线A1B和B1D1的距离.
师:我们是在讲三垂线定理及其逆定理应用时讲这个例题的.所以我们想法用三垂线定理或它的逆定理来证明这一题.要用三垂线定理首先要确定对于哪一个平面来用三垂线定理.
生:对于平面A1B1C1D1来用三垂线定理.
师:这时MN是平面A1B1C1D1的斜线,我们如何作平面A1B1C1D1的垂线呢?
生:作MP⊥A1B1于P,又因为D1A1⊥平面A1ABB1,所以A1D1⊥PM,故PM⊥平面A1B1C1D1.
师:对于平面A1B1C1D1来说,MP是垂线,MN是斜线,NP是MN在平面A1B1C1D1上的射影.我们要证MN⊥B1D1,只要证PN⊥B1D1即可.在正方形A1B1C1D1中,我们知道A1C1⊥B1D1,所以现在只要证PN∥A1Q1即可.我们如何利用已知条件来证PN∥A1O1.
=O1N∶NB1,所以PN∥A1O1,所以PN⊥B1D1,故MN⊥B1D1.同理可证MN⊥A1B,所以MN是异面直线A1B和B1D1的公垂线.
师:已知正方体的棱长为a,在直角三角形MNP中,如何求出MN的长?
师:这是一道很好、很典型的题,它很巧妙、很直接地求出异面直线A1B,B1D1的公垂线及这两异面直线的距离.这一道题我们的先人们是如何想出来的?这一问题我们利用课外活动时间来进行探索.
今天就讲这五个例题,讲这五个例题的目的一是进一步应用三垂线定理及其逆定理,二是应用上节课刚讲过的基本题来解较综合的题.
作业
补充题
1.已知:正方形ABCD的边长为10,O为正方形中心,PO⊥平
2.已知:在△ABC中,∠BAC=90°,PC⊥△ABC所在平面,D为AB上一点,PA,PD,PB与平面ABC分别成60°,45°,30°的角,求证:D是AB的中点.
3.将正方形ABCD沿对角线BD折起来,使A点在平面BCD的射影O恰好在BD上,又CD的中点为E,求证:AE⊥CD.
〔提示:对于平面BCD来说,AO是垂线,OE是斜线AE在平面上的射影〕
AB=13,AC=15,A1B=5,A1C=9.试比较∠BAC与∠BA1C的大小.〔提示:用余弦定理可得∠BAC=∠BA1C〕
5.已知:矩形ABCD所在平面为α,点P∈α,但P BC.作PQ⊥平面α,问:点P在什么位置时,∠QCB分别是(1)直角,(2)锐角,(3)钝角,并加以证明.
〔提示:利用cosθ1·cosθ2=cosθ公式〕
第 1 页 共 7 页平面的基本性质(二)
平面的基本性质是立体几何中演绎推理的逻辑依据.以平面的基本性质证明诸点共线、诸线共点、诸点共面是立体几何中最基础的问题,既加深了对平面基本性质的理解,又是今后解决较复杂立体几何问题的基础.
一、素质教育目标
(一)知识教学点
掌握利用平面的基本性质证明诸点共面、诸线共面、三点共线、三线共点问题的一般方法.
1.证明若干点或直线共面通常有两种思路
(1)先由部分元素确定若干平面,再证明这些平面重合,如例1之①;
(2)先由部分元素确定一个平面,再证明其余元素在这平面内,如例1之②.
2.证明三点共线,通常先确定经过两点的直线是某两个平面的交线,再证明第三点是这两个平面的公共点,即该点分别在这两个平面内,如例2.
3.证明三线共点通常先证其中的两条直线相交于一点,然后再证第三条直线经过这一点,如练习.
(二)能力训练点
通过严格的推理论证,培养逻辑思维能力,发展空间想象能力.
(三)德育渗透点
通过对解题方法和规律的概括,了解个性与共性.特殊与一般间的关系,培养辩证唯物主义观点,又从有理有据的论证过程中培养严谨的学风.
二、教学重点、难点、疑问及解决办法
1.教学重点
(1)证明点或线共面,三点共线或三线共点问题.
(2)证明过程的书写格式与规则.
2.教学难点
(1)画出符合题意的图形.
(2)选择恰当的公理或推论作为论据.
3.解决办法
(1)教师完整板书有代表性的题目的证明过程,规范学生的证明格式.
(2)利用实物,摆放成符合题意的位置.
三、学生活动设计
动手画图并证明.
四、教学步骤
(一)明确目标
1.学会审题,根据题意画出图形,并写“已知、求证”.
2.论据正确,论证严谨,书写规范.
3.掌握基本方法:反证法和同一法,学习分类讨论.
(二)整体感知
立体几何教学中,对学生进行推理论证训练是发展学生逻辑思维能力的有效手段.首先应指导学生学会审题,包括根据题意画出图形,并写出已知、求证.其次,推理的依据是平面的基本性质,要引导学生确定平面.由于学生对立体几何中的推理颇不熟练,因此宜采用以启发为主,边讲边练的教学方式.教师在讲解时,应充分展开思维过程,培养学生分析空间问题的能力,在板书时,应复诵公理或推论的内容,加深对平面基本性质的理解.
(三)重点、难点的学习与目标完成过程
A.复习与讲评
师:我们已学面的基本性质,那么具备哪些条件时,直线在平面内?
(生回答公理1,教师板画图1-20示意.)
师:具备哪些条件可以确定一个平面?
(生4人回答,教师板画图1-21示意.)
师:上一节课后布置思考证明推论3,现在请同学们共同讨论这个证明过程.
已知:直线a∥b.
求证:经过a、b有且只有一个平面.
证明:“存在性”.
∵a∥b,
∴a、b在同一平面α内(平行线的定义).“唯一性”——在直线a上作一点A.
假设过a和b还有一个平面β,则A∈β.
那么过b和b外一点A有两个平面α和β.
这与推论1矛盾.
注:证唯一性,用了“反证法”.
B.例题与练习
师:先看怎样证几条线共面.
例1求证:两两相交而不过同一点的四条直线必在同一平面内.分析:四条直线两两相交且不共点,可能有两种:一是有三条直线共点;二是没有三条直线共点,故而证明要分两种情况.
(1)已知:d∩a=P,d∩b=Q.
d∩c=R,a、b、c相交于点O.
求证:a、b、c、d共面.
证明:∵d∩a=P,
∴过d、a确定一个平面α(推论2).
同理过d、b和d、c各确定一个平面β、γ.
∵O∈a,O∈b,O∈c,
∴O∈α,O∈β,O∈γ.
∴平面α、β、γ都经过直线d和d外一点O.
∴α、β、γ重合.
∴a、b、c、d共面.
注:本题的方法是“同一法”.
(2)已知:d∩a=P,d∩b=Q,d∩c=R,a
∩b=M,b∩c=N,a∩c=S,且无三线共点.
求证:a、b、c、d共面
证明:∵d∩a=P,
∴d和a确定一个平面α(推论2).
∵a∩b=M,d∩b=Q,
∴M∈α,Q∈α.
∴a、b、c、d四线共面.
注:①让学生从实物摆放中得到四条直线的两种位置关系.
②分类讨论时,强调要注意既不要重复,又不要遗漏.
③结合本例,说明证诸线共面的常用方法.
例2如图1-25,已知空间四边形ABCD中,E、F、G、H分别是AB、AD、BC、CD上的点,且EF交GH于P.
求证:P在直线BD上.
分析:易证BD是两平面交线,要证P在两平面交线上,必须先证P是两平面公共点.
已知:EF∩GH=P, E∈AB、 F∈AD, G∈BC, H∈CD,
求证:B、D、P三点共线.
证明:∵AB∩BD=B,
∴AB和BD确定平面ABD(推论2).
∵A∈AB,D∈BD,
∵E∈AB,F∈AD,
∴EF∩GH=P,
∴P∈平面ABD.
同理,P∈平面BCD.
∴平面ABD∩平面BCD=BD.
∴P∈BD即B、D、P三点共线.
注:结合本例,说明证三点共线的常规思路.
练习:两个平面两两相交,有三条交线,若其中两条相交于一点,证明第三条交线也过这一点.
分析:虽说是证三线共点问题,但与例2有异曲同工之处,都是要证点P是两平面的公共点.
已知:如图1-26,α∩β=a,β∩γ=b,α∩γ=c,b∩c=p.
求证:p∈a.
证明:∵b∩c=p,
∴p∈b.
∵β∩γ=b,
∴p∈β.
同理,p∈α.
又∵α∩β=a,
∴p∈a.
师:以上例、习题分别证明了四线共面.三点共线和三线共点问题,这只是证明这类问题中的个例,根据不同的条件有不同的分析问题和解决问题的过程,但也具有一般的思路和方法.除了例1、例2两类问题的常用方法外,本练习是证三线共点问题,也有常用证法(将知识教学点中所列三条用幻灯显示).
(四)总结、扩展
本课以练习为主,学习了线共面、点共线,线共点的一般证明方法和分类讨论的思想.证明依据是平面的基本性质,数学方法有反证法和同一法,这也是这一单元的主要证明方法.在证明的书写中,要求推论有据,书写规范.
五、布置作业
1.课本习题(略).
2.求证:两两相交的三条直线必在同一个平面内.
3.已知:△ABC在平面α外,三角形三边AB、AC、BC所在直线分别交α于M、N、R,求证:M、N、R三点共线.
4.如图1-27,在正方体ABCD-A1B1C1D1中,点E、F分别是接AA1、CC1的中点,求证:点D1、E1、F1、B共面.
(提示:证明空间若干个点共面,通常先由其中三点确定一个平面,再证明其它的点也在这个平面内.本题先连结D1E并延长交DA延长线于G,连结D1F并延长交DC延长线于H,可证GH是D1、E、F三点确定的平面和平面AC的交线,然后再用平面几何知识证点B在GH上.)
六、板书设计
第 8 页 共 8 页两条异面直线所成的角练习课
教学目标
1.记忆并理解余弦定理;
2.应用余弦定理来求异面直线所成的角.
教学重点和难点
这节课的重点是以异面直线所成的角的概念为指导作出相应的角,然后用余弦定理解这个角所在的三角形求出这个角的余弦.这节课的难点是使学生初步理解当cosθ>0时,0°<θ<90°,当cosθ=0时,θ=90°,当cosθ<0时,90°<θ<180°.
教学设计过程
一、余弦定理
师:余弦定理有哪两种表述的形式?它们各有什么用途?
生:余弦定理有两种表述的形式,即:
a2=b2+c2-2bccos A
b2=c2+a2-2cacos B
c2=a2+b2-2abcos C
第一种形式是已知两边夹角用来求第三边,第二种形式是已知三边用来求角.
师:在立体几何中我们主要用余弦定理的第二种形式,即已知三角形的三边来求角.
在余弦定理的第二个形式中,我们知道b2+c2可以等于a2;也可以小于a2;也可以大于a2.那么,我们想当b2+c2=a2时,∠A等于多少度?为什么?
生:当b2+c2=a2时,由勾股定理的逆定理可知∠A=90°.
师:当b2+c2>a2时,∠A应该是什么样的角呢?
生:因为cosA>0,所以∠A应该是锐角.
师:当b2+c2<a2时,∠A应该是什么样的角呢?
生:因为这时cosA<0,所以∠A应该是钝角.
师:对,关于这个问题,我们只要求同学们有初步的理解即可.初步理解后应该记住、会用.现在明确提出当cosθ=0时,θ=90°,θ是直角;当cosθ>0时,0°<θ<90°,θ是锐角当cosθ<0时,90°<θ<180°,θ是钝角.下面请同学们回答下列问题:
生:θ等于60°, 等于120°.
师:这时θ和 是什么关系?
生:θ和 是互为补角.
师:再回答下列问题:
生:θ1等于45°, 1等于135°,θ1+ 1=180°;θ2等于30°, 2=150°,θ2+ 2=180°.
师:一般说来,当cosθ=-cos 时,角θ与角 是什么关系?
生:角θ与角 是互补的两个角.即一个为锐角,一个
为钝角,且θ+ =180°.
(关于钝角的三角函数还没有定义,所以这里采用从特殊到一般的方法使学生有所理解即可)
二、余弦定理的应用
例1 在长方体ABCD-A1B1C1D1中,AB=BC=3,AA1=4.求异面直线A1B和AD1所成的角的余弦.(如图1)
师:首先我们要以概念为指导作出这个角,A1B和AD1所成的角是哪一个角?
生:因为CD1∥A1B,所以∠AD1C即为A1B与AD1所成的角.
师:∠AD1C在△AD1C中,求出△AD1C的三边,然后再用余弦定理求出∠AD1C的余弦.
师:我们要再一次明确求异面直线所成的角的三个步骤:第一是以概念为指导作出所成的角;第二是找出这个角所在的三角形;第三是解这个三角形.现在我们再来看例2.
例2 在长方体ABCD-A1B1C1D1中,∠C1BC=45°,∠B1AB=60°.求AB1与BC1所成角的余弦.(如图2)
师:在这例中,我们除了首先要以概念为指导作出异面直线所成的角以外,还要注意把所给的特殊角的条件转化为长方体各棱之间的关系,以便于我们用余弦定理.
生:因为BC1∥AD1,所以AB1与BC1所成的角即为∠D1AB1.根
师:现在我们来看例3.
例3 已知正方体的棱长为a,M为AB的中点,N为B1B的中点.求A1M与C1N所成的角的余弦.(如图3)(1992年高考题)
师:我们要求A1M与C1N所成的角,关键还是以概念为指导作出这个角,当一次平移不行时,可用两次平移的方法.在直观图中,根据条件我们如何把A1M用两次平移的方法作出与C1N所成的角?
生:取A1B1的中点E,连BE,由平面几何可知BE∥A1M1,再取EB1的中点F,连FN由平面几何可知FN∥BE,所以NF∥A1M.所以∠C1NF即为A1M与C1N所成的角.
师:还可以用什么方法作出A1M与C1N所成的角?
生:当BE∥A1M后,可取C1C中点G,连BG,则BG∥C1N,
师:这两种解法都要用两次平移来作出异面直线所成的角,现在我们来看例4.
例4 在长方体ABCD-A1B1C1D1中,AA1=c,AB=a,AD=b,且a>b.求AC1与BD所成的角的余弦.(如图4)
师:根据异面直线所成的角的概念,再根据长方体的基本性质,如何作出AC1与BD所成的角。
生:连AC,设AC∩BD=0,则O为AC中点,取C1C的中点F,
定理,得
师:想一想第二个解法
生:取AC1中点O1,B1B中点G.在△C1O1G中,∠C1O1G即
一可知:
师:想一想第三个解法.当然还是根据异面直线所成的角概念首先作出这个角.有时可根据题目的要求在长方体外作平行直线.
生:延长CD到E,使ED=DC.则ABDE为平行四边形.AE∥BD,所以∠EAC1即为AC1与BD所成的角.(如图5)连EC1,在
由余弦定理,得
所以∠EAC1为钝角.
根据异面直线所成角的定义,AC1与BD所成的角的余弦为
师:根据这一道题的三种解法,我们可以看出,当用异面直线所成的角的概念,作出所成的角,这时所作出的角可能是异面直线所成的角,也可能是它的邻补角,在直观图中无法判定,只有通过解三角形后,根据这个角的余弦的正、负值来判定这个角是锐角(也就是异面直线所成的角)或钝角.(异面直线所成的角的邻补角)
今天就讲这四个例题,这四个例题都是要用余弦定理来求异面直线所成的角.
作业
补充题
3.在棱长为a的正方体ABCD-A1B1C1D1中,O是正方形ABCD的中心,E,F分别是AB,BC中点.求:(1)异面直线A1D1和CD的距离;(2)异面直线C1O和EF的距离.
4.在长方体ABCD-A1B1C1D1中,∠BAB1=∠B1A1C1=30°.求:(1)AB与A1C1所成的角的度数;(2)A1A与CB1所成的角的度数;(3)AB1与A1C1所成的角的余弦.
第 1 页 共 8 页立体几何序言课教案设计
一、充分认识序言课的重要性,是上好立体几何序言课的前提。
立体几何序言课以课本中的“引言”为主要教学内容,让学生对立体几何这门功课有一个粗略的整体性了解,在学习具体内容之前有一个积极的思想准备。通过序言课的教学,学生明白了立体几何研究的内容及学习立体几何的目的,就能为以后的学习打下一个良好的基础。
然而有的老师对序言课却不够重视,把已经十分抽象概括的“引言”进一步抽象概括,开课后草草几句便开始了“平面”的教学。教师急急匆匆,学生稀里糊涂,极易给后继学习带来消极影响。
由此可见,教师在充分认识序言课重要性的前提下,认真组织教学,努力完成序言课的教学任务,对提高立体几何课的教学效益是至关重要的。
二、排除心理障碍,激发学习兴趣,是立体几何序言课的主要任务。
部分学生认为立体几何比平面几何难学,存在畏惧心理;多数学生对能不能学好这门功课信心不足,对怎样学习这门功课心中无数。这种消极心理状态必然会给学习造成消极影响。因此在序言课教学中,应把排除上述心理障碍,激发学生学习立体几何的兴趣作为首先任务。
1.尽量引用实例。
“引言”中指出,“建造厂房、制造机器、修筑堤坝等,都需要进一步研究空间图形的问题。”为了使学生真正认识到立体几何是一门应用广泛的基础学科,我们在序言课上展示学校教学楼的建筑图纸,学生争相观看,兴趣盎然,并能辨认出:“这就是我们的教学楼!”教者由此指出:“没有立体几何知识,这张图纸是画不出来的。”“同学们能从图纸上看出是我们的教学楼,这说明大家已具有一定的空间想象能力,这正是学习立体几何的基础。有这样好的基础,何愁学不好它?”听到这些鼓励,学生常露出自信的微笑。
2.巧用教具、模型。
要求学生自制简单几何体的模型这样在序言课上就可以让学生观看前届学生自制的各种模型。那些自制的模型,有纸质的,有木质的,有用铅丝做的,也有用粘土做的,看颜色,五彩缤纷,望形状,新颖别致。学生看了这些精美的并留有制作者姓名的模型后,赞叹不已,大有“跃跃欲试”之势。
借助模型还可以帮助学生克服学习平面图形时产生的思维定势的消极影响。
例如,在黑板上画出图1,不少学生乍一看认为这是一个平面图形,当教师指出这是一个空间图形的直观图时,有的学生认为小平行四边形凹在后面,有的学生认为小平行四边形凸在前面,因而引起了激烈的争论,但很快意见趋于统一:两种情况都可能存在。接着教师出示用硬纸板做的模型,学生观物思图,看图想物,终于形成了强烈的立体感。然后教师在黑板上画出图2和图3,并用模型示范,学生不仅分清了两种不同的情况,更重要的是感受到了学习立体几何新鲜有趣,就能变“要我学”为“我要学”。
3.加强知识联系。
立几知识与学生已掌握的平面几何知识有密切的联系。序言课中有目的地加强这种联系有助于消除学生怕学、厌学的心理障碍,增强学好立体几何的信心。
当教师把模型放上讲台时,学生认出模型中的正方体、圆柱体、圆锥体……教师指出:“这些几何体在小学大家就已经学过,现在学习立体几何,就是要进一步研究这些几何体的性质。”这样学生就会感到立体几何并不陌生。
教师还可以问学生:“两条直线相交有几个交点?两个平面相交有几条交线?”用教具演示后学生很快就能掌握。再问:“几个点可以确定一条直线?几个点可以确定一个平面?”学生会不加思索回答:“两个点可以确定一条直线,两个点也可以确定一个平面。”这时教师用两个指头试图将一块硬纸板顶住,但是无论怎样变化位置总不能成功,引得学生一阵哄笑,不少学生也拿出作业本做试验。教师抓住这一时机告诉学生:“立体几何与平面几何有密切的联系,它们研究的对象虽然不同,但研究的方法和研究的内容(性质、画法、计算和应用)基本相同。”这就能使学生认识到学习立几是学习平几的自然延续。
三、引导学生探讨如何学好立体几何是序言课教学的落脚点。
有些老师常在序言课上板着面孔提出要“认真听讲,认真做好作业,课前要预习,课后要复习”的要求,这些自学生跨进校门之日起就听惯了的老调,并没有多少效果。我们的做法是让学生自由讨论,各抒己见。因为通过以上活动,学生对立体几何的兴趣被点燃以后,便自然想到:“我们怎样才能学好立几知识呢?经过讨论以后,教师再归纳得出学好立几的主要方法:①加强与平几知识的联系,注意用对比的方法区别异同,掌握实质;②注意对实物、教具和模型的观察和分析,培养空间想象能力;③自己动手制作模型,以加深对立几知识的理解和应用。为了学好第一章,我们要求学生准备好硬纸板三块(代平面用),竹针或铅丝四根(代直线用),在学习中随时进行模型演示,以逐步建立起空间观念。
两条异面直线所成的角
一、素质教育目标
(一)知识教学点
1.两异面直线所成角的定义及两异面直线互相垂直的概念.
2.两异面直线的公垂线和距离的概念及两异面直线所成角及距离的求法.
(二)能力训练点
1.利用转化的思想,化归的方法掌握两异面直线所成角的定义及取值范围,并体现了定义的合理性.
2.利用类比的方法掌握两异面直线的公垂线和距离等概念,应用在证题中体现了严格的逻辑思维,并会求两条异面直线所成角与距离.
(三)德育渗透点
进一步培养学生的空间想象能力,以及有根有据、实事求是等严肃的科学态度和品质.
二、教学重点、难点、疑点及解决方法
1.教学重点:两异面直线所成角的定义;两异面直线的公垂线及距离的概念;两异面直线所成角和距离的求法.
2.教学难点:两异面直线所成角及距离的求法.
3.教学疑点:因为两条异面直线既不相交,但又有所成的角,这对于初学立体几何的学生来说是难以理解的.讲解时,应首先使学生明了学习异面直线所成角的概念的必要性.
三、课时安排
1课时.
四、教与学的过程设计
(一)复习提问引入课题
师:上新课前,我们先来回忆:平面内两条相交直线一般通过什么来反映它们之间的相互位置关系?
生:通过它们的夹角.如图1-46,a、b的位置关系与a′、b′的位置关系是不一样的,a、b的夹角比a′、b′的夹角来的小.
师:那么两条异面直线是否也能用它们所成的角来表示它们之间相互位置的不同状况.例如要表示大桥上火车行驶方向与桥下轮船航行方向间的关系,就要用到两条异面直线所成角的概念.
(二)异面直线所成的角
师:怎么定义两条异面直线所成的角呢?能否转化为用共面直线所成的角来表示呢?
生:可以把异面直线所成角转化为平面内两直线所成角来表示.如图1-47,异面直线a、b,在空间中任取一点O,过点O分别引a′∥a,b′∥b,则a′,b′所成的锐角(或直角)叫做两条异面直线所成的角.
师:针对这个定义,我们来思考两个问题.
问题1:这样定义两条异而直线所成的角,是否合理?对空间中的任一点O有无限制条件?
答:在这个定义中,空间中的一点是任意取的.若在空间中,再取一点O′,过点O′作a″∥a,b″∥b,根据等角定理,a″与b″所成的锐角(或直角)和a′与b′所成的锐角(或直角)相等.即过空间任意一点引两条直线分别平行于两条异面直线,它们所成的锐角(或直角)都是相等的,值是唯一的、确定的,而与所取的点位置无关,这表明这样定义两条异面直线所成角的合理性.注意:有时,为了方便,可将点O取在a或b上.
问题2:这个定义与平面内两相交直线所成角是否有矛盾?
答:没有矛盾.当a、b相交时,此定义仍适用,表明此定义与平面内两相交直线所成角的概念没有矛盾,是相交直线所成角概念的推广.
师:在定义中,两条异面直线所成角的范围是(0°,90°],若两条异面直线所成的角是直角,我们就说这两条异面直线互相垂直(出示模型:正方体).例如,正方体上的任一条棱和不平行于它的八条棱都是相互垂直的,其中有的和这条棱相交,有的和这条棱异面.
(三)两条异面直线的距离
师:(出示模型)观察模型,思考问题:a与b,a′与b所成角相等,但是否就表示它们之间的相互位置也一样呢?
生:不是.它们之间的远近距离不一样,从而得到两条异面直线的相互位置除了用它们所成的角表示,还要用它们之间的距离表示.
师:那么如何表示两条异面直线之间的距离呢?我们来回忆在平面几何中,两条平行线间的位置关系是用什么来表示的?
生:用两平行线间的距离来表示.
师:对.如图1-50,要知道它们的距离,先要定义它们的公垂线,如图1-50:a∥b,a′∥b′,c⊥a,c′⊥a′,则a、b与a′、b′的公垂线分别为c、c′,且线段AB、A′B′的长度分别是a、b与a′、b′之间的距离.
对两条异面直线的距离,我们可以应用类似的方法先定义它们的公垂线.
定义:和两条异面直线都垂直相交的直线叫做两条异面直线的公垂线.
师:根据定义,思考问题.
问题1:和两条异面直线都垂直的直线有多少条?
答:无数条.因为两条异面直线互相垂直时,它们不一定相交,所以公垂线的定义要注意“相交”的含义.
问题2:两条异面直线的公垂线有几条?
答:有且只有一条(出示正方体骨架模型),能和AA′、 B′C′都垂直相交的只有A′B′一条;能和AB与面A′C′内过点A′的直线都垂直相交的直线只有一条AA′.
师:有了两条异面直线公垂线的概念,我们就可以定义两条异面生成的距离.
定义:两条异面直线的公垂线在这两条异面直线间的线段的长度,叫做两条异面直线的距离.
如图1-52中的线段AB的长度就是异面直线a、b间的距离.
下面,我们来完成练习和例题.
(四)练习
例设图1-53中的正方体的棱长为a,(1)图中哪些棱所在的直线与直线BA′成异面直线?
(2)求直线BA′和CC′所成的角的大小.
(3)求异面直线BC和AA′的距离.
解:(l)∵A′平面BC′,而点B,直线CC′都在平面BC′
∴直线BA′与CC′是异面直线.
同理,直线C′D′、D′D、DC、AD、B′C′都和直线BA′成异面直线.
(2)∵CC′∥BB′,
∴BA′和BB′所成的锐角就是BA′和CC′所成的角.
∵=∠A′BB′=45°,
∴BA′和CC′所成的角是45°.
(3)∵AB⊥AA′,AB∩AA′=A,
又∵AB⊥BC,AB∩BC=B,
∴AB是BC和AA′的公垂线段.
∵AB=a,
∴BC和AA′的距离是a.
说明:本题是判定异面直线,求异面直线所成角与距离的综合题,解题时要注意书写规范.
【练习】
(P.16练习1、3.)
1.(1)两条直线互相垂直,它们一定相交吗?
答:不一定,还可能异面.
(2)垂直于同一直线的两条直线,有几种位置关系?
答:三种:相交,平行,异面.
3.画两个相交平面,在这两个平面内各画一条直线使它们成为(1)平行直线;(2)相交直线;(3)异面直线.
解:
(五)总结
本节课我们学习了两条异面直线所成的角,以及两条异面直线间的距离和有关概念.并学会如何求两条异面直线所成角及距离,懂得将其转化为平面几何问题来解决.
五、作业
P.17-18中9、10.
第 6 页 共 6 页两个平面垂直的判定和性质(二)
一、素质教育目标
(一)知识教学点
1.两个平面垂直的性质定理.
2.异面直线上两点间的距离公式.
(二)能力训练点
1.弄清反证法与同一法之间的关系,并会应用同一法证题,进一步培养学生的逻辑思维能力.
2.掌握两个平面垂直的性质定理,理解面面垂直问题可能化为线面垂直的问题.
3.异面直线上任意两点间的距离公式不仅可用于求其值,还可以证明两条异面直线的距离是异面直线上两点的距离中最小的.另外,还可解决分别在二面角的面内两点的距离问题.
二、教学重点、难点、疑点及解决方法
1.教学重点:掌握两个平面垂直的性质;会运用异面直线上两点间的距离公式.
2.教学难点:异面直线上两点间距离公式的应用.
3.教学疑点:
(1)弄清反证法与同一法的联系与区别.
(2)正确理解、应用异面直线上两点间的距离公式:EF=
三、课时安排
本课题安排2课时.本节课为第二课时,主要讲解两个平面垂直的性质及异面直线上两点间的距离公式.
四、教与学的过程设计
(一)复习两个平面垂直的定义,判定
师:什么是两个平面互相垂直?
生:两个平面相交,如果所成的二面角是直二面角,就说这两个平面互相垂直.
师:如何判定两个平面互相垂直?
生:第一种方法根据定义,判定两个平面所成的二面角是直二面角;第二种方法是根据判定定理,判定其中一个平面内有一条直线垂直于另一个平面.
(二)两个平面垂直的性质
师:今天我们接着研究两个平面垂直的性质.
两个平面垂直的性质定理:如果两个平面垂直,那么在一个平面内垂直于它们交线的直线垂直于另一个平面.
已知:平面α⊥β,α∩β=CD,AB α且AB⊥CD于B.
求证:AB⊥β.
证明:在平面β内引直线BE⊥CD,则∠ABE是二面角α-CD-β的平面角.
∵α⊥β,∴AB⊥BE.
又∵AB⊥CD,∴AB⊥β.
师:从性质定理可以得出,把面面垂直的问题转化为线面垂直的问题.
例1 如果两个平面互相垂直,那么经过第一个平面内的一点垂直于第二个平面的直线,在第一个平面内.
已知:α⊥β,P∈α,P∈a,a⊥β.
求证:a α.
师提示:要证明a α,一般用反证法,即否定结论→推出矛盾→肯定结论.下面请同学们写出它的证明过程.
其中c为α与β的交线.
∵α⊥β,∴b⊥β.
又∵P∈α,P∈a,a⊥β,
这与“过一点P有且只有一条直线与已知平面垂直”矛盾.
∴a α.
师:现在我们来看课本P.44的证明,这种方法叫同一法.什么是同一法呢?(幻灯显示)
一个命题,如果它的题设和结论所指的事物都是唯一的,那么原命题和它的逆命题中,只要有一个成立,另一个就一定成立,这个道理叫做同一法则.在符合同一法则的前提下,代替证明原命题而证明它的逆命题成立的一种方法叫做同一法.
同一法的一般步骤是什么?(幻灯显示)
1.不从已知条件入手,而另作图形使它具有求证的结论中所提的特性;
2.证明所作的图形的特性,与已知条件符合;
3.因为已知条件和求证的结论所指的事物都是唯一的,从而推出所作的图形与已知条件要求的是一个东西,由此断定原命题成立.
证明(同一法):设α∩β=c,过点P在平面α内作直线b⊥c,根据上面的定理有b⊥β.
因为经过一点只能有一条直线与平面β垂直,所以直线a应与直线b重合.
即a α.
师:比较反证法与同一法,我们可以知道:凡可用同一法证明的命题也可用反证法来证;反证法可适用于各种命题,同一法只适用于符合同一法则的命题.
另外,例1的结论也可作为两个平面垂直的另一个性质,可直接应用.
下面请同学们一齐完成例2.
(三)异面直线上两点间的距离
例2 已知两条异面直线a、b所成的角为θ,它们的公垂线段AA'的长度为d.在直线a、b上分别取点E、F,设,A'E=m,AF=n,求EF.
解:设经过b与a平行的平面为α,经过a和AA'的平面为β,α∩β=c,则c∥a,因而b、c所成的角等于θ,且AA'⊥C.
又∵AA'⊥b,
∴AA'⊥α.
根据两个平面垂直的判定定理,β⊥α,在平面β内作EG⊥C,则EG=AA'.并且根据两个平面垂直的性质定理,EG⊥α.连结FG,则EG⊥FG.在Rt△FEG中.
EF2=EG2+FG2
∵AG=m,
∴在△AFG中.
FG2=m2+n2-2mncosθ.
又∵EG2=d2
∴EF2=dw+m2+n2-2mncosθ.
如果点F(或E)在点A(或A')的另一侧,则EF2=d2+m2+n2+2mncosθ.
师:例2不仅求出两条异面直线上任意两点间的距离公式,还解决了下面的三个问题:
(1)证明了两条异面直线公垂线的存在性.
(2)证明两条异面直线的距离是异面直线上两点的距离最小的.
∵AA'=EG,且AA',EG是平面α的垂线,而EF是斜线,
∴AA'<EF.
如在实际中,两条交叉的高压电线如果放电时,火花正是通过它们的最短距离.
(3)也可以解决分别在二面角的面内两点的距离问题,请看下面练习.
(四)练习
在60°二面角的枝上,有两个点A、B,AC、BD分别是在这个二面角的两个面内垂直于AB的线段.已知:AB=4cm,AC=6cm,BD=8cm,利用异面直线上两点距离公式求CD.(P.45中练习3)
∴AC与BD是异面直线.
∵AB⊥AC交于点A,AB⊥BD交于点B,
∴AB是AC、BD的公垂线,AC、BC所成角是60°.
已知AB=4cm,AC=6cm,BD=8cm.
师点评:根据二面角的平面角来求异面直线上两点间的距离时,应用异面直线上两点间的距离公式一定要注意cosθ前正负号的选择(当θ≤90°时取“-”号).
(五)总结
本节课我们学习了两个平面垂直的性质及异面直线上两点间距离的求法.正确理解、掌握异面直线上两点间的距离公式及其应用是本节课学习的关键.
五、作业
P.46中习题六9、10(2)、11、12.
第 6 页 共 6 页二面角练习课
教学目标
1.使学生进一步掌握好二面角及二面角的平面角的概念;
2.使学生掌握求二面角平面角的基本方法,不断提高分析问题和解决问题的能力.
教学重点和难点
重点:使学生能够作出二面角的平面角;
难点:根据题目的条件,作出二面角的平面角.
教学设计过程
重温二面角的平面角的定义.
(本节课设计的出发点:空间图形的位置关系是立体几何的重要内容.解决立体几何问题的关键在于做好:定性分析,定位作图,定量计算,其中定性是定位、定量的基础,而定量则是定位,定性的深化.在面面关系中,二面角是其中的重要概念之一,它的度量归结为平面上角的度量,一般说来,对其平面角的定位是问题解决的关键一步.可是学生往往把握不住其定位的基本思路而导致思维混乱,甚至错误地定位,使问题的解决徒劳无益.这正是本节课要解决的问题.)
教师:二面角是怎样定义的?
学生:从空间一直线出发的两个半平面所组成的图形叫二面角.
教师:二面角的平面角是怎样定义的?
学生:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.
教师:请同学们看下图.
如图1:α,β是由l出发的两个半平面,O是l上任意一点,OC α,且OC⊥l;OD β,且OD⊥l.这就是二面角的平面角的环境背景,即∠COD是二面角α-l-β的平面角.从中我们可以得到下列特征:
(1)过棱上任意一点,其平面角是唯一的;
(2)其平面角所在平面与其两个半平面均垂直;
另外,如果在OC上任取一点A,作AB⊥OD,垂足为B,那么由特征(2)可知AB⊥β.突出l,OC,OD,AB,这便是另一特征.
(3)体现出一完整的三垂线定理(或逆定理)的环境背影.
教师:请同学们对以上特征进行剖析.
学生:由于二面角的平面角是由一点和两条射线构成,所以二面角的定位可化归为“定点”或“定线”的问题.
教师:特征(1)表明,其平面角的定位可先在棱上取一“点”.耐人寻味的是这一点可以随便取,但又总是不随便取定的,它必须与问题背影互相沟通,给计算提供方便.
(上面的引入力争符合练习课教学的特点.练习是形成技能的重要途径,练习课主要是训练学生良好的数学技能,同时伴随着巩固知识,发展智能和培育情感.特别要注意做到第一,知识的激活.激活知识有两个目的,一是突出了知识中的重要因素;二是强化知识中的基本要素.第二,思维的调理.练习课成功的关键在于对学生思维激发的程度.学生跃跃欲试正是思维准备较好的体现.因此,准备阶段安排一些调理思维的习题,确保学生思维的启动和运作.请看下面两道例题.)
例1 已知:如图2,四面体V-ABC中,VA=VB=VC=a,AB=BC=CA=b,VH⊥面ABC,垂足为H,求侧面与底面所成的角的大小.
分析:由已知条件可知,顶点V在底面ABC上的射影H是底面的中心,所以连结CH交AB于O,且OC⊥AB,由三垂线定理可知,
VO⊥AB,则∠VOC为侧面与底面所成二面角的平面角.(图2)
正因为此四面体的特性,解决此问题,可以取AB的中点O为其平面角的顶点,而且使得题设背影突出在面VOC上,给进一步定量创造了得天独厚的条件.
特征(2)指出,如果二面角α-l-β的棱l垂直某一平面γ,那么l必垂直γ与α,β的交线,而交线所成的角就是α-l-β的平面角.(如图3)
由此可见,二面角的平面角的定位可以考虑找“垂平面”.
例2 矩形ABCD,AB=3,BC=4,沿对角线BD把△ABD折起,使点A在平面BCD上的射影A′落在BC上,求二面角A-BD-C的大小的余弦值.
这是一道由平面图形折叠成立体图形的问题,解决问题的关键在于搞清折叠前后的“变”与“不变”.
如果在平面图形中过A作AE⊥BD交BD于O、交BC于E,则折叠后OA,OE与BD的垂直关系不变.但OA与OE此时变成相交两线并确定一平面,此平面必与棱垂直.
由特征(2)可知,面AOE与面ABD、面CBD的交线OA与OE所成的角,即为所求二面角的平面角.
另外,A在面BCD上的射影必在OE所在的直线上,又题设射影落在BC上,所以E点就是A′,这样的定位给下面的定量提供了可能.
在Rt△AA′O中,∠AA′O=90°,
通过对例2的定性分析、定位作图和定量计算,特征(2)从另一角度告诉我们:要确定二面角的平面角,我们可以把构成二面角的两个半平面“摆平”,然后,在棱上选取一适当的垂线段,即可确定其平面角.“平面图形”与“立体图形”相映生辉,不仅便于定性、定位,更利于定量.
特征(3)显示,如果二面角α-l-β的两个半平面之一,存在垂线段AB,那么过垂足B作l的垂线交l于O,连结AO,由三垂线定理可知OA⊥l;或者由A作l的垂线交l于O,连结OB,由三垂线定理的逆定理可知OB⊥l.此时,∠AOB就是二面角α-l-β的平面角.(如图6)
由此可见,二面角的平面角的定位可以找“垂线段”.
课堂练习
1.在正方体ABCD-A1B1C1D1中,棱长为2,E为BC的中点,求面B1D1E与面BB1C1C所成的二面角的大小的正切值.
练习1的环境背景表明,面B1D1E与面BB1C1C构成两个二面角,由特征(2)可知,这两个二面角的大小必定互补.
为创造一完整的三垂线定理的环境背景,线段C1D1会让我们眼睛一亮,我们只须由C1(或D1)作B1E的垂线交B1E于O,然后连结OD1(或OC1)即得面D1B1E与面CC1B1E所成二面角的平面角∠C1OD1,
2.将棱长为a的正四面体的一个面与棱长为a的正四棱锥的一个侧面吻合,则吻合后的几何体呈现几个面?
分析:这道题,考生答“7个面”的占99.9%,少数应服从多数吗?
从例题中三个特征提供的思路在解决问题时各具特色,它们的目标分别是找“点”、“垂面”、“垂线段”.事实上,我们只要找到其中一个,另两个就接踵而来.掌握这种关系对提高解题技能和培养空间想象能力非常重要.
本题如果能融合三个特征对思维的监控,可有效地克服、抑制思维的消极作用,培养思维的广阔性和批判性.
如图9,过两个几何体的高线VP,VQ的垂足P,Q分别作BC的垂线,则垂足重合于O,且O为BC的中点.
OP延长过A,OQ延长交ED于R,考虑到三垂线定理的环境背影,∠AOR为二面角A-BC-R的平面角,结合特征(1),(2),可得VAOR为平行四边形,VA∥BE,所以V,A,B,E共面.
同理V,A,C,D共面.
所以这道题的正确答案应该是5个面.
(这一阶段的教学主要是通过教师精心设计的一组例题与练习题,或边练边评,或由学生一鼓作气练完后再逐题讲评,达到练习的目的.其间要以学生“练”为主,教师“评”为辅)
为了提高“导练”质量,教师要力求解决好三个问题:
1.设计好练习.设计好练习是成功练习的前提.如何设计好练习是一门很深的学问,要注意:围绕重点,精选习题;由易到难,呈现题组;形式灵活,题型多变.
2.组织好练习.组织练习是“导练”的实质,“导练”就是有指导、有组织的练习过程.要通过一题多用、一题多变、一题多解等使学生举一反三,从而提高练习的效果.有组织的练习还包括习题的临时增删、节奏的随时控制、要求的适时调整等.
3.讲评好练习.讲评一般安排在练习后进行,也可以在练习前或练习时.练习前的讲评,目的是唤起学生的注意,提醒学生避免出错起到前馈控制的作用;练习时的讲评,属于即时反馈,即学生练习,教师巡视,从中发现共性问题及时指出来,以引起学生的注意;更多的是练习后的讲评,如果采用题组练习,那么最常用的办法是一组练习完毕后教师讲评,再进行下一组练习,以此类推.
教师:由例1、例2和课堂练习,我们已经看到二面角的平面角有三个特征,这三个特征互相联系,客观存在,但在许多问题中却表现得含糊而冷漠,三个特征均藏而不露,在这种形势下,需认真探索.
学生:应探索体现出一完整的三垂线定理的环境背景,有了“垂线段”,便可以定位.
教师:请大家研究下面的例题.
例3 如图10,在正方体ABCD-A1B1C1D1中,E是BC的中点,F在AA1上,且A1F∶FA=1∶2,求平面B1EF与底面A1C1所成的二面角大小的正切值.
分析:在给定的平面B1EF与底面A1C1所成的二面角中,没有出现二面角的棱,我们可以设法在二面角的两个面内找出两个面的共点,则这两个公共点的连线即为二面角的棱,最后借助这条棱作出二面角的平面角.
略解:如图10.
在面BB1CC1内,作EH⊥B1C1于H,连结HA1,显然直线EF在底面A1C1的射影为HA1.
延长EF,HA1交于G,过G,B1的直线为所求二面角的棱.
在平面A1B1C1D1内,作HK⊥GB1于K,连EK,
则∠HKE为所求二面角的平面角.
在平面A1B1C1D1内,作B1L⊥GH于L,利用Rt△GLB1∽Rt△GKH,可求得KH.
又在Rt△EKH中,设EH=a,容易得到:所求二面角大小的正切值
教师:有时我们也可以不直接作出二面角的平面角,而通过等价变换或具体的计算得出其平面角的大小.
例如我们可以使用平移法.由两平面平行的性质可知,若两平行平面同时与第三个平面相交,那么这两个平行平面与第三个平面所成的二面角相等或互补.因而例3中的二面角不易直接作出其平面角时,可利用此结论平移二面角的某一个面到合适的位置,以便等价地作出该二面角的平面角.
略解:过F作A′B′的平行线交BB′于G,过G作B′C′的平行线交B′E于H,连FH.
显见平面FGH∥平面A′B′C′D′.
则二面角B′-FH-G的平面角度数等于所求二面角的度数.
过G作GM⊥HF,垂足为M,连B′M,由三垂线定理知B′M⊥HF.
所以∠B′MG为二面角B′-FH-G的平面角,其大小等于所求二面角平面角的大小.
(练习课的一个重要特征是概括.解题重要的不是统计做了多少题目,而是是否掌握了一类题的实质,即有无形成基本的解题模式,只有真正掌握了一类问题的解题思路,才算掌握了解答这类题目的基本规律.当学生练习到一定程度就应不失时机地引导他们总结和概括出练习的基本经验和教训,获得有意义的练习成果)
例4 已知:如图12,P是正方形ABCD所在平面外一点,PA=PB=PC=PD=a,AB=a.
求:平面APB与平面CPD相交所成较大的二面角的余弦值.
分析:为了找到二面角及其平面角,必须依据题目的条件,找出两个平面的交线.
解:因为 AB∥CD,CD 平面CPD,AB 平面CPD.
所以 AB∥平面CPD.
又 P∈平面APB,且P∈平面CPD,
因此 平面APB∩平面CPD=l,且P∈l.
所以 二面角B-l-C就是平面APB和平面CPD相交所得到的一个二面角.
因为 AB∥平面CPD,AB 平面APB,平面CPD∩平面APB=l,
所以 AB∥l.
过P作PE⊥AB,PE⊥CD.
因为 l∥AB∥CD,
因此 PE⊥l,PF⊥l,
所以 ∠EPF是二面角B-l-C的平面角.
因为 PE是正三角形APB的一条高线,且AB=a,
因为 E,F分别是AB,CD的中点,
所以 EF=BC=a.
在△EFP中,
小结:二面角及其平面角的正确而合理的定位,要在正确理解其定义的基础上,掌握其基本特征,并灵活运用它们考察问题的背景.
我们已经看到,定位是为了定量,求角的大小往往要化归到一个三角形中去解,因此寻找“垂线段”,把问题化归是十分重要的.
作业
1.120°二面角α-l-β内有一点P,若P到两个面α,β的距离分别为3和1,求P到l的距离.
2.正方体ABCD-A1B1C1D1中,求以BD1为棱,B1BD1与C1BD1为面的二面角的度数.
第 1 页 共 10 页直线和平面平行的判定与性质(一)
一、素质教育目标
(一)知识教学点
1.直线和平面平行的定义.
2.直线和平面的三种位置关系及相应的图形画法与记法.
3.直线和平面平行的判定.
(二)能力训练点
1.理解并掌握直线和平面平行的定义.
2.掌握直线和平面的三种位置关系,体现了分类的思想.
3.通过对比的方法,使学生掌握直线和平面的各种位置关系的图形的画法,进一步培养学生的空间想象能力.
4.掌握直线和平面平行的判定定理的证明,证明用的是反证法和空间直线与平面的位置关系,进一步培养学生严格的逻辑思维。除此之外,还要会灵活运用直线和平面的判定定理,把线面平行转化为线线平行.
(三)德育渗透点
让学生认识到研究直线与平面的位置关系及直线与平面平行是实际生产的需要,充分体现了理论来源于实践,并应用于实践.
二、教学重点、难点、疑点及解决方法
1.教学重点:直线与平面的位置关系;直线与平面平行的判定定理.
2.教学难点:掌握直线与平面平行的判定定理的证明及应用.
3.教学疑点:除直线在平面内的情形外,空间的直线和平面,不平行就相交,课本中用记号a≮α统一表示a‖α,a∩α=A两种情形,统称直线a在平面α外.
三、课时安排
1.7直线和平面的位置关系与1.8直线和平面平行的判定与性质这两个课题安排为2课时.本节课为第一课时,讲解直线和平面的三种位置关系及直线和平面平行的判定定理.
四、教与学过程设计
(一)直线和平面的位置关系.
师:前面我们已经研究了空间两条直线的位置关系,今天我们开始研究空间直线和平面的位置关系.直线和平面的位置关系有几种呢?我们来观察:黑板上的一条直线在黑板面内;两墙面的相交线和地面只相交于一点;墙面和天花板的相交线和地面没有公共点,等等.如果把这些实物作出抽象,如把“墙面”、“天花板”等想象成“水平的平面”,把“相交线”等想象成“水平的直线”,那么上面这些关系其实就是直线和平面的位置关系,有几种,分别是什么?
生:直线和平面的位置关系有三种:直线在平面内;直线和平面相交;直线和平面平行.
师:什么是直线和平面平行?
生:如果一条直线和一个平面没有公共点,那么这条直线和这个平面平行.
师:直线和平面的位置关系是否只有这三种?为什么?
生:只有这三种情况,这可以从直线和平面有无公共点来进一步验证:若直线和平面没有公共点,说明直线和平面平行;若直线和平面有且只有一个公共点,说明直线和平面相交;若直线和平面有两个或两个以上的公共点,根据公理1,说明这条直线在平面内.
师:为了与“直线在平面内”区别,我们把直线和平面相交或平行的情况统称为“直线在平面外”,归纳如下:
直线在平面内——有无数个公共点.
师:如何画出表示直线和平面的三种位置关系的图形呢?
生:直线a在平面α内,应把直线a画在表示平面α的平行四边形内,直线不要超出表示平面的平行四边形的各条边;直线a与平面α相交,交点到水平线这一段是不可见的,注意画成虚线或不画;直线a与平面α平行,直线要与表示平面的平行四边形的一组对边平行.如图1-57:
注意,如图1-58画法就不明显我们不提倡这种画法.
下面请同学们完成P.19.练习1.
1.观察图中的吊桥,说出立柱和桥面、水面,铁轨和桥面、水面的位置关系:(图见课本)
答:立柱和桥面、水面都相交;铁轨在桥面内,铁轨与水面平行.
(二)直线和平面平行的判定
师:直线和平面平行的判定不仅可以根据定义,一般用反证法,还有以下的方法.我们先来观察:门框的对边是平行的,如图1-59,a∥b,当门扇绕着一边a转动时,另一边b始终与门扇不会有公共点,即b平行于门扇.由此我们得到:
直线和平面平行的判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行.
求证:a∥α.
师提示:要证明直线与平面平行,只有根据定义,用反证法,并结合空间直线和平面的位置关系来证明.
∴ a∥α或 a∩α=A.
下面证明a∩α=A不可能.
假设a∩α=A
∵a∥b,
在平面α内过点A作直线c∥b.根据公理4,a∥c.这和a∩c=A矛盾,所以a∩α=A不可能.
∴a∥α.
师:从上面的判定定理可以知道,今后要证明一条直线和一个平面平行,只要在这个平面内找出一条直线和已知直线平行,就可断定这条已知直线必和这个平面平行,即可由线线平行推得线面平行.
下面请同学们完成例题和练习.
(三)练习
例1 空间四边形相邻两边中点的连线,平行于经过另外两边的平面.
已知:空间四边形ABCD中,E、F分别是AB、AD的中点.
求证:EF∥平面BCD.
师提示:根据直线与平面平行的判定定理,要证明EF∥平面BCD,只要在平面BCD内找一直线与EF平行即可,很明显原平面BCD内的直线BD∥EF.
证明:连结BD.
性,这三个条件是证明直线和平面平行的条件,缺一不可.
练习(P.22练习1、2.)
1.使一块矩形木板ABCD的一边AB紧靠桌面α,并绕AB转动,AB的对边CD在各个位置时,是不是都和桌面α平行?为什么?(模型演示)
答:不是.
2.长方体的各个面都是矩形,说明长方体每一个面的各边及对角线为什么都和相对的面平行?(模型演示)
答:因为长方体每一个面的对边及对角线都和相对的面内的对应部分平行,所以,它们都和相对的面平行.
(四)总结
这节课我们学习了直线和平面的三种位置关系及直线和平面平行的两种判定方法.学习直线和平面平行的判定定理,关键是要会把线面平行转化为线线平行来解题.
五、作业
P.22中习题三1、2、3、4.
六、板书设计
一、直线和平面的位置关系直线在平面内——有无数个公共点.
直线在平面外
二、直线和平面平行的判定
1.根据定义:一般用反证法.
2.根据判定定理:如果平面外一条直线和这个平面内的一条直线平行,那么这条直线和这个平面平行.
直线和平面的位置关系:
直线和平面平行的判定定理
求证:a∥α
例:
已知:空间四边形ABCD中,E、F分别是AB、AD的中点.
求证:EF∥平面BCD.
第 6 页 共 6 页平面的基本性质(一)
平面的基本性质是研究空间图形性质的理论基础,也是以后演绎推理的逻辑依据.平面的基本性质是通过三条公理及其重要推论来刻划的,通过这些内容的教学,使学生初步了解从具体的直观形象到严格的数学表述的方法,使学生的思维从直觉思维上升至分析思维,使学生的观念逐步从平面转向空间.
一、素质教育目标
(一)知识教学点
平面的基本性质是通过三个与平面的特征有关的公理来规定的.
1.公理1说明了平面与曲面的本质区别.通过直线的“直”来刻划平面的“平”,通过直线的“无限延伸”来描述平面的“无限延展性”,它既是判断直线在平面内,又是检验平面的方法.
2.公理2揭示了两个平面相交的主要特征,提供了确定两个平面交线的方法.
3.公理3及其三个推论是空间里确定一个平面位置的方法与途径,而确定平面是将空间问题转化为平面问题的重要条件,这个转化使得立体几何的问题得以在确定的平面内充分使用平面几何的知识来解决,是立体几何中解决相当一部分问题的主要的思想方法.
4.“有且只有一个”的含义分两部分理解,“有”说明图形存在,但不唯一,“只有一个”说明图形如果有顶多只有一个,但不保证符合条件的图形存在,“有且只有一个”既保证了图形的存在性,又保证了图形的唯一性.在数学语言的叙述中,“确定一个”,“可以作且只能作一个”与“有且只有一个”是同义词,因此,在证明有关这类语句的命题时,要从“存在性”和“唯一性”两方面来论证.
5.公理3的三个推论是以公理3为主要的推理论证的依据,是命题间逻辑关系的体现,为使命题的叙述和论证简明、准确,应将其证明过程用数学的符号语言表述.
(二)能力训练点
1.通过由模型示范到三条公理的文字叙述培养观察能力与空间想象能力.
2.通过由公理3导出其三个推论的思考与论证培养逻辑推理能力.
3.将三条定理及三个推论用符号语言表述,提高几何语言水平.
(三)德育渗透点
借助模型和实物来说明三个公理,进行“数学来源于实践”的唯物主义观念的教育,通过三条公理及公理3的三个推论的学习,逐步渗透事物间既有联系又有区别的观点,更由于对三个推论的证明培养言必有据,一丝不苟的学习品质和公理法思想.
二、教学重点、难点、疑点及解决办法
1.教学重点
(1)体现平面基本性质的三条公理及其作用.
(3)两条公理及公理3的三个推论中的“有且只有一个”的含义.
(3)用图形语言和符号语言表述三条公理及公理3的三个推论.
(4)理解用反证法和同一法证明命题的思路,并会证一些简单问题.
2.教学难点
(1)对“有且只有一个”语句的理解.
(2)对公理3的三个推论的存在性与唯一性的证明及书写格式.
(3)确定两相交平面的交线.
3.解决办法
(1)从实物演示中引导学生观察和实验,阐明公理的条件和结论间的直观形象,加深对“有且只有一个”语句的理解.
(2)通过系列设问,帮助学生渐次展开思维和想象,理解公理的实质和作用.
三、课时安排
2课时.
四、学生活动设计
准备好两块纸板,一块薄平的泡沫板,四根长15cm左右的小竹针,其中三根一样长,一根稍短.针对三条公理设计不同的活动,对公理1,可作如下示范:把直尺的两端紧按在玻璃黑板上,完全密接;对公理2,可用两块硬纸板进行演示(如图1-9);对公理3,使用图1-10所示的模型进行演示.
五、教学步骤
(一)明确目标
(1)理解井熟记平面基本性质的三条公理及公理3的三个推论.
(2)掌握这三个公理和三个推论的文字语言、图形语言、符号语言间的互译.
(3)理解“有且只有一个”的含义,在此基础上,以公理3为主要依据,推证其三个推论.
(4)能够用模型来说明有关平面划分空间的问题.
(5)理解并掌握证明命题的常用方法——反证法和同一法.
(二)整体感知
本课以平面基本性质的三条公理及公理3的三个推论为主要内容,既有学生熟悉的事实,又有学生初次接触的证明,因此以“设问——实验——归纳”法和讲解法相结合的方式进行教学.首先,对于平面基本性质的三条公理,因为是“公理”,无需证明,教学中以系列设问结合模型示范引导学生共同思考、观察和实验,从而归纳出三条公理并加以验证.其中公理1应以直线的“直”和“无限延伸”来刻划平面的“平”和“无限延展”;公理2要抓住平面在空间的无限延展特征来讲;公理3应突出已知点的个数和位置,强调“三个点”且“不在同一直线上”.通过三条公理的教学培养学生的观察能力和空间观念,加深对“有且只有一个”语句的理解.对于公理3的三个推论的证明,学生是初次接触“存在性”和“唯一性”的证明,应引导学生以公理3为主要的推理依据进行分析,逐渐摆脱对实物模型的依赖,培养推理论证能力,证明过程不仅要进行口头表述,而且教师应进行板书,使学生熟悉证明的书写格式和符号.最后,无论定理还是推论,都要将文字语言转化为图形语言和符号语言,并且做到既不遗漏又不重复且忠于原意.
三、教学重点、难点的学习与完成过程
A.公理
师:立体几何中有一些公理,构成一个公理体系.人们经过长期的观察和实践,把平面的三条基本性质归纳成三条公理.请同学们思考下列问题(用幻灯显示).
问题1:直线l上有一个点P在平面α内,直线l是否全部落在平面α内?
问题2:直线l上有两个点P、Q在平面α内,直线l是否全部落在平面α内?
(用竹针穿过纸板演示问题1,用直尺紧贴着玻璃黑板演示问题2,学生思考回答后教师归纳.)
这就是公理1:如果一条直线上的两个点在一个平面内,那么这条直线上所有的点都在这个平面内.这里的条件是什么?结论是什么?
生:条件是直线(a)上有两点(A、B)在平面(α)内,结论是:直线(a)在平面(α)内.
师:把条件表示为A∈a,B∈b且A∈α,B∈α,把结论表示
11).
这条公理是判定直线是否在平面内的依据,也可用于验证一个面是否是平面,如泥瓦工用直的木条刮平地面上的水泥浆.
在这里,我们用平行四边形来表示平面,那么平面是不是只有平行四边形这么个范围呢?
生:不是,因为平面是无限延展的.
师:对,根据公理1,直线是可以落在平面内的,因为直线是无限延伸的,如果平面是有限的,那么无限延伸的直线又怎么能在有限的平面内呢?所以平面具有无限延展的特征.
现在我们根据平面的无限延展性来观察一个现象(演示图1-9-(1)给学生看).问:两个平面会不会只有一个公共点?
生甲:只有一个公共点.
生乙:因为平面是无限延展的,应当有很多公共点.
师:生乙答得对,正因为平面是无限延展的,所以有一个公共点,必有无数个公共点.那么这无数个公共点在什么位置呢?(教师随手一压,一块纸板随即插入另一块纸板上事先做好的缝隙里).可见,这无数个公共点在一条直线上.这说明,如果两个平面有一个公共点,那么它们有且只有一条通过这个点的公共直线.此时,就说两平面相交,交线就是公共点的集合,这就是公理2,其条件和结论分别是什么?
生:条件是两平面(α、β)有一公共点(A),结论
是:它们有且只有一条过这个点的直线.
师:条件表示为A∈α,A∈β,结论表示为:α∩β=a,A∈a,图形表示为图1-9-(2)或图1-12.
公理2是判定两平面相交的依据,提供了确定相交平面的交线的方法.
下面请同学们思考下列问题(用幻灯显示):
问题1:经过空间一个已知点A可能有几个平面?
问题2:经过空间两个已知点A、B可能有几个平面?
问题3:经过空间三个已知点A、B、C可能有几个平面?
(教师演示图1-10给学生看,学生思考后回答,教师归纳).这说明,经过不在同一直线上的三点,有且只有一个平面,即公理3,其条件、结论分别是什么?
生:条件是:不在同一直线上的三点(A、B、C),结论是:过这三点(A、B、C)有且只有一个平面(α).
A∈α,B∈α,C∈α,图形表示为图1-13,公理3是确定平面位置的依据之一.
以上三个公理是平面的基本性质.其中公理2和公理3中的“有且只有一个”有两层含义,在数学中,“有一个”是说明“存在”、但不唯一;“只有一个”是说明“唯一”,但不保证图形存在.也就是说,如果有顶多只有一个.因此,在证明有关“有且只有一个”语句的命题时,要证明两个方面——存在性和唯一性.
B.推论
师:确定一个平面的依据,除公理3外,还有它的三个推论.
推论1:经过一条直线和这条直线外的一点,有且只有一个平面.说出推论1的条件和结论.
生:条件是:一条直线和直线外一点,结论是:经过这条直线和这一点有且只有一个平面.
求证:经过a和A有且只有一个平面.
证明:“存在性”即存在过A、a的平面,在直线a上任取两点B、C.
∴A、B、C三点不在同一直线上.
∴过A、B、C三点有且只有一个平面α(公理3).
∴B∈α,C∈α.
即过直线a和点A有一个平面α.
“唯一性”,假设过直线a和点A还有一个平面β.
∴B∈β,C∈β.
∴过不共线三点A、B、C有两个平面α、β,这与公理3矛盾.
∴假设不成立,即过直线a和点A不可能还有另一个平面β,而只能有一个平面α.
这里证明“唯一性”时用了反证法.
推论2:经过两条相交直线,有且只有一个平面.
其条件、结论分别是什么?
生:条件是:两条直线相交,结论是:经过这两条直线有且只有一个平面.
师(板书):已知:直线a∩直线b=A.
求证:经过a、b有且只有一个平面.
证明:“存在性”.
在a、b上分别取不同于点A的点B、C,得不在同一直线上的三点A、B、C,则过A、B、C三点有且只有一个平面α(公理3).
∵A∈a,B∈a,A∈α,B∈α,
∴平面α是经过相交直线a、b的一个平面.
“唯一性”.
设过直线a和b还有另一个平面β,则A、B、C三点也一定都在平面β内.
∴过不共线三点A、B、C就有两个平面α和β.
∴平面α与平面β重合.
∴过直线a、b的平面只有一个.
这里证明唯一性时,用的是“同一法”.
推论3:经过两条平行直线,有且只有一个平面.(证明作为思考题)
C.练习
1.下面是一些命题的叙述语(A、B表示点,a表示直线,α、β表示平面)
A.∵A∈α,B∈α,∴AB∈α.
B.∵a∈α,a∈β,∴α∩β=a.
其中命题和叙述方法都正确的是. [ ]
2.下列推断中,错误的是 [ ]
D.A、B、C∈α,A、B、C∈β,且A、B、C不共
3.一个平面把空间分成____部分,两个平面把空间最多分成____部分,三个平面把空间最多分成____部分.
4.确定经过A、B、C三点的平面与已知平面α、β的交线.(图1-16)
四、总结、扩展
本课主要的学习内容是平面的基本性质,有三条公理及公理3的三推论.其中公理1用于判定直线是否在平面内,公理2用于判定两平面相交,公理3及三个推论是确定平面的依据.“确定一个平面”与“有且只有一个平面”是同义词.“有”即“存在”,“只有一个”即“唯一”.所以证明有关“有且只有一个”语句的命题时,要证两方面——存在性和唯一性.证明的方法是反证法和同一法.
五、布置作业
1.复习课本有关内容并预习课本例题.
2.课本习题(略).
3.确定经过A、B、C三点的平面与已知平面α、β、γ的交线.
4.思考题:(1)三个平面把空间可能分成几部分?(2)如何证明推论3?
六、答案
练习:1.D,2.C,3.图1-18.
作业:3.图1-19.
七、板书设计
第 10 页 共 10 页直线和平面垂直的判定与性质(二)
一、素质教育目标
(一)知识教学点
1.直线和平面垂直的性质定理.
2.点到平面的距离.
3.直线和平面的距离.
(二)能力训练点
1.掌握直线和平面垂直的性质定理,并能应用它们灵活解题.
2.掌握用反证法证明命题.
(三)德育渗透点
通过例题2的学习向学生渗透转化的思想和化归的解题意识.
二、教学重点、难点、疑点及解决方法
1.教学重点:
(1)掌握直线和平面垂直的性质定理:
若a⊥α,b⊥α,则a∥b.
(2)掌握点到平面的距离及一条直线和一个平面平行时这条直线和平面的距离的定义.
2.教学难点:性质定理证明中反证法的学习和掌握,应让学生明确,对于一些条件简单而结论复杂的命题,可考虑使用反证法.
3.教学疑点:设计一个综合题,引导学生思考点到平面的距离和直线到平面的距离问题的互化.
三、课时安排
本课题共安排2课时,本节课为第二课时.
四、学生活动设计(常规活动,略)
五、教学步骤
(一)温故知新,引入课题
师:上节课,我们学习了直线和平面垂直的定义和判定定理,请两个同学来叙述一下定义和判定定理的内容.
生(甲):一条直线和平面内的任何一条直线都垂直,我们说这两条直线和这个平面互相垂直.
生(乙):直线和平面垂直的判定定理是:如果一条直线和一个平面内的两条相交直线都垂直,那么这条直线垂直于这个平面.
(板书如右)
师:利用判定定理我们还证明了线线平行的性质定理(即例题1),也请一个同学叙述一下.
生(丙):如果两条平行直线中的一条垂直于一个平面,那么另一条也垂直于同一个平面.
(板书)若a∥b,a⊥α则b⊥α.
师:这个用黑体字写成的例题可以当作直线和平面垂直的又一个判定定理,现在请同学们改变这个定理的题设和结论,写出它的逆命题.
生:若a⊥α,b⊥α,则a∥b.
师:下面就让我们看看这个命题是否正确?
(二)猜想推测,激发兴趣
教师写出已知条件并画出图形,作探讨性证明
已知:a⊥α, b⊥α(如图1-73)
求证:a∥b.
分析:a、b是空间中的两条直线,要证明它们互相平行,一般先证明它们共面,然后转化为平面几何中的平行判定问题,但这个命题的条件比较简单,想说明a、b共面就很困难了,更何况还要证明平行.
我们能否从另一个角度来证明,比如,a、b不平行会有什么矛盾?这就是我们提到过的反证法.
师:您知道用反证法证明命题的一般步骤吗?
生:否定结论→推出矛盾→肯定结论
师:第一步,我们做一个反面的假设,假定b与a不平行,现在应该要推出矛盾,从已知条件中的垂直关系,让我们想起例题1(线线平行定理),在这个定理的已知条件中,平面有一条垂线,垂线有一条平行线,因此需要添加一条辅助线.
(三)层层推进,证明定理
证明:假定b与a不平行
设b∩α=O,b′是经过点O与直线a平行的直线,
∵ a∥b′,a⊥α,∴b′⊥α.
经过同一点O的两条直线b,b′都垂直于平面α是不可能的.
因此,a∥b.
由此,我们得到:
如果两条直线同垂直于一个平面,那么这两条直线平行.
师:这就是直线和平面垂直的性质定理;
师:学习了直线与平面垂直的判定定理和性质定理,我们再来看看点到平面的距离的定义:
从平面外一点引一个平面的垂线,这个点和垂足间的距离叫做这个点到这个平面的距离.
(四)初步运用,提高能力
1.例题2
已知:一条直线l和一个平面α平行.求证:直线l上各点到平面α的距离相等.
分析:首先,我们应该明确,点到平面的距离定义,在直线l上任意取两点A、B,并过这两点作平面α的垂线段,现在只要证明这两条垂线段长相等即可.
证明:过直线l上任意两点A、B分别引平面α的垂线AA1、BB1,垂足分别为A1、B1
∵ AA1⊥α,BB1⊥α,
∴ AA1∥BB1(直线与平面垂直的性质定理).
设经过直线AA1和BB1的平面为β,
β∩α=A1B1.
∵ l∥α,∴ l∥A1B1.
∴ AA1=BB1(直线与平面平行的性质定理)即直线上各点到平面的距离相等.
师:我们再来学习直线和平面的距离的定义:
一条直线和一个平面平行,这条直线上任意一点到平面的距离,叫做这条直线和平面的距离.
师:本例题的证明,实际上是把立体几何中直线上的点到平面的距离问题转化成平面几何中两条平行直线的距离问题.这种把立体几何的问题转化成平面几何的问题的方法,是解决立体几何问题时常常用到的方法.
2.思考(课后练习4)
安装日光灯时,怎样才能使灯管和天棚、地板平行?
生:只要两条吊线等长.
师:转化为数学模型是,
如图1-76已知:直线l上A、B两点到平面α的距离相等,求证:l∥α.
师:本题仿照例题2方法很容易证明,但以下的论述却是假命题,你知道是为什么吗?
直线l上A、B两点到平面α的距离相等,那么l∥α.
3.如图1-77,已知E,F分别是正方形ABCD边AD,AB的中点,EF交AC于M,GC垂直于ABCD所在平面.
(1)求证:EF⊥平面GMC.
(2)若AB=4,GC=2,求点B到平面EFG的距离.
分析:第1小题,证明直线与平面垂直,常用的方法是判定定理;第2小题,如果用定义来求点到平面的距离,因为体现距离的垂线段无法直观地画出,因此,常常将这样的问题转化为直线到平面的距离问题.
解:
(1)连结BD交AC于O,
∵E,F是正方形ABCD边AD,AB的中点,AC⊥BD,
∴EF⊥AC.
∵AC∩GC=C,
∴EF⊥平面GMC.
(2)可证BD∥平面EFG,由例题2,正方形中心O到平面EFG
(五)归纳小结,强化思想
本节课,我们学习了直线和平面垂直的性质定理,以及两个距离的定义.定理的证明用到反证法,证明几何问题常规的方法有两种:直接证法和间接证法,直接证法常依据定义、定理、公理,并适当引用平面几何的知识;用直接法证明比较困难时,我们可以考虑间接证法,反证法就是一种间接证法.
六、布置作业
作为一般要求,完成习题四5、6、7、8;提高要求,完成以下两个补充练习.
1.已知矩形ABCD的边长AB=6cm,BC=4cm,在CD上截取CE=4cm,以BE为棱将矩形折起,使△BC′E的高C′F⊥平面ABED,求:
(1)点C′到平面ABED的距离;
(2)C′到边AB的距离;
(3)C′到AD的距离.
参考答案:
(1)作FH⊥AB于H,作FG⊥AD于G,则C′H⊥AB,
2.如图1-79,已知:ABCD是矩形,SA⊥平面ABCD,E是SC上一点.
求证:BE不可能垂直于平面SCD.
参考答案:用到反证法,假设BE⊥平面SCD,
∵ AB∥CD;∴AB⊥BE.
∴ AB⊥SB,这与Rt△SAB中∠SBA为锐角矛盾.
∴ BE不可能垂直于平面SCD.
第 8 页 共 8 页三垂线定理(一)
一、素质教育目标
(一)知识教学点
1.三垂线定理及其逆定理的形成和论证.
2.三垂线定理及其逆定理的简单应用.
(二)能力训练点
1.猜想和论证能力的训练.
2.由线面垂直证明线线垂直的方法(线面垂直法);
3.训练学生分清三垂线定理及其逆定理中各条直线之间的关系;
4.善于在复杂图形中分离出适用的直线用于解题.
(三)德育渗透点
通过定理的论证和练习的训练渗透化繁为简的思想和转化的思想.
二、教学重点、难点、疑点及解决方法
1.教学重点
(1) 掌握三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.
(2)掌握三垂线定理的逆定理:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直.
2.教学难点:两个定理的证明及应用.
3.教学疑点及解决方法
(1)三垂线定理及其逆定理,揭示了平面内的直线与平面的垂线、斜线及斜线在平面内的射影这三条直线的垂直关系,其实质是平面内的一条直线与平面的一条斜线(或斜线在平面内的射影)垂直的判定定理.
(2)本节课的两个定理,涉及的直线较多,学生在认识和理解上都会存在困难,为了加深印象并说明复杂的直线位置关系,可以采用一些教具,或者让学生准备三根竹签,按照教师的要求摆放.在学生感性认识的基础上,进行理性的证明和记忆,有助于定理的掌握.
(3)三垂线定理是先有直线a垂直于射影AO的条件,然后得到a垂直于斜线PO的结论;而其逆定理则是已知直线a垂直于斜线PO,再推出a垂直于射影AO.在引用时容易引起混淆,解决的办法是,构造一个同时使用这两个定理的问题,引导学生分清.
(4)教学核心是定理的形成教学,教学的指导思想是:遵循由具体探究抽象、由简单到复杂的认识规律,启发学生反复思考,不断内化成为自己的认知结构.
三、课时安排
本课题共安排2课时,本节课为第一课时.
四、学生活动设计
三垂线定理及其逆定理的条件和结论都比较简单,但应用却很广泛,为了培养学生的能力,应让学生探索定理的命题形式,充分利用好手中的三根竹签.
设计学生活动符合建构主义的教学思想,也符合教师为主导、学生为主体的教学思想;教师根据教学要求,提出问题,创设情景,引导学生观察、猜想,主动发现,主动发展,从而调动了学生学习的积极性.
五、教学步骤
(一)温故知新,引入课题
师:我们已经学习了直线和平面的垂直关系,学新课之前,让我们作个简单的回顾:
1.直线和平面垂直的定义?
2.直线和平面垂直的判定定理.
3.什么叫做平面的斜线、斜线在平面上的射影?
4.已知平面α和斜线l,如何作出l在平面α上的射影?
(板书)l∩α=A,作出l在平面α上的射影
(二)猜想推测,激发兴趣
师:根据直线与平面垂直的定义我们知道,平面内的任意一条直线都和平面的垂线垂直,那么,平面内的任意一条直线是否也都和平面的一条斜线垂直呢?
(教师演示教具,用一个三角板的一条直角边当平面的斜线,一根包有色纸的竹竿摆放在桌面的不同位置当作平面内的不同直线,学生容易看出它们不一定互相垂直.)
师:是否平面内的任意一条直线都不和这条平面的斜线垂直呢?
(教师将三角板的另一条直角边平放在桌面上,并提示学生注意这条直角边与平面的关系——在平面上,与斜线的关系——垂直.)
师:在平面上有几条直线和这条斜线垂直?
(学生可能会回答一条,也可能回答无数条,教师应调整桌面上的竹竿位置,使其平行于三角板的直角边,然后平行移动,并向学生说明,这些直线都与斜线垂直.)
师:平面内一条直线具备什么条件,才能和平面的一条斜线垂直?
(学生的直觉判断是要与那条和桌面接触的直角边平行,这是正确的,但无多大用途;这时教师提醒学生注意斜线在平面内的射影,并调整教具,将三角板的斜边当作平面的斜线,构成垂线、斜线和射影的立体模型;要求学生与同桌配合,摆放课前准备的竹签成教师示范的模型;然后在教师的引导之下观察、猜想,与同桌的探讨中发现了只要与斜线的射影垂直就和斜线垂直.)
(三)层层推进,证明定理
师:猜测和实验的结论不一定正确,那么你想怎样证明这个猜想呢?
(若用幻灯或投影仪,可以节省板书时间.)
已知:PA、PO分别是平面α的垂线、斜线,AO是PO在平面α
求证:a⊥PO.
师:这是证明两条直线互相垂直的问题,你准备怎么证明?
分析:从直线和平面垂直的定义可知,要证两条直线互相垂直,只要证明其中一条直线垂直于另一条直线所在的平面即可.
师:这个平面你找到了吗?
生:是平面PAO.
师:怎样证明a⊥平面PAO呢?
生:只要证明a垂直于平面PAO内的两条相交直线.
证明:
说明:
1.定理的证明,体现了“由线面垂直证明线线垂直”的方法;
2.上述命题反映了平面内的直线、平面的斜线和斜线在平面内的射影这三条直线之间的垂直关系,这就是著名的三垂线定理:在平面内的一条直线,如果和这个平面的一条斜线的射影垂直,那么它也和这条斜线垂直.
3.改变定理的题设和结论,得到逆命题:在平面内的一条直线,如果和这个平面的一条斜线垂直,那么它也和这条斜线的射影垂直.可以用同样的方法证明,这就是三垂线定理的逆定理(请学生简要说明其证明方法和步骤).
4.定理中包含了三个垂直关系:PA⊥α,AO⊥a,PO⊥a,
看出三垂线定理名称的来由.
5.从定理的条件看,关键的是直线和平面的相对位置关系,而与平面本身是否水平放置无关;在平面内的直线a与斜线或斜线的射影的位置关系关键在于垂直;这样直线a的如下四种位置关系,都是三垂线定理及其逆定理常见的情形.
6.从定理的结论看,三垂线定理及其逆定理是判断直线垂直的重要命题.
(四)初步运用,提高能力
1.(见课后练习题1.)
已知:点O是△ABC的垂心,OP⊥平面ABC.
求证:PA⊥BC.
(学生先思考,教师作如下点拨)
(1)什么叫做三角形垂心?
(2)点O是△ABC的垂心可以得到什么结论?
(3)可以考虑使用三垂线定理证明:你能找出本题中,应用三垂线定理必须涉及到的几个重要元素?
生:首先先确定一个平面——平面ABC,斜线是PA,PA在平面ABC上的射影是AD,∵AD垂直于BC,∴PA⊥BC.
师:他的回答是否有缺漏?
生:应该交代BC是平面ABC上的一条直线.
师:对,这个交代是必需的!(视学生程度作适当补充,用教具演示,还可以举反例说明.)
证明:连接AO并延长交BC与D.
师:三垂线定理是证明空间两条直线互相垂直的重要方法,上面的示例反映了应用三垂线定理解题的一般步骤,即确定一个平面、平面的垂线、斜线和斜线在平面上的射影.同时要注意的是平面内的一条直线和射影垂直,有这条直线和斜线垂直(定理);平面内的一条直线和斜线垂直,有这条直线和射影垂直(逆定理),同学们必须理解掌握.
2.(见课本例1)如果一个角所在平面外一点到角的两边距离相等,那么这一点在平面上的射影在这个角的平分线上.
⊥AC,PO⊥α,垂足分别是E、F、O,PE=PF.
求证:∠BAO=∠CAO.
(学生思考,教师作适当的点拨.)
(1)在平面几何中,证明点在角的平分线上的常规方法是什么?
(2)PE=PF给我们提供了什么结论?
(3)所缺的垂直关系可以用三垂线定理或逆定理证明,你能列出证明所需的条件吗?
证明:
3.(课堂练习,师生共同完成.)
如图1-91,点P为平面ABC外一点,PA⊥BC,PC⊥AB,
求证:PB⊥AC.
分析:证明直线与直线垂直的问题,可以考虑三垂线定理及其逆定理,图形中缺少的平面的垂线需要添加上去.
证明:过P作平面ABC的垂线,垂足为O,连结AO、BO、CO.
∵ PA⊥BC,∴AO⊥BC(三垂线逆定理).
同理可证 CO⊥AB,∴O是△ABC的垂心.
∵OB⊥AC,∴PB⊥AC(三垂线定理).
(五)归纳小结,强化思想
师:这节课,我们学习了三垂线定理及其逆定理,定理的证明方法是证明空间两条直线互相垂直的基本方法,我们称之为线面垂直法;还通过三个练习的训练加深了定理的理解,同时得到立体几何问题解决的一般思路.
六、布置作业
作为一般要求,完成习题四11、12、13.
提高要求,完成以下两个补充练习:
1.如图1-92,PA⊥△ABC所在平面,AB=AC=13,BC=10,PA=5,求点P到直线BC的距离.
参考答案:
设BC的中点为D,连结PD.
∵AB=AC=13,BC=10,∴AD⊥BC.
且AD=12.
又∵PA⊥平面ABC,∴PD⊥BC.
即 PD的长度就是P到直线BC的距离.
而 PD=13.
2.(课后练习题2略作改变)
如图1-93,l是平面α的斜线,斜足是O,A是l上任意一点,AB是平面α的垂线,B是垂足,设OD是平面α内与OB不同的一条直线,AC垂直于OD于C,若直线l与平面α所成的角θ=45°,∠BOC=45°,求∠AOC的大小.
参考答案:连结BC.
中,有∠AOC=60°.
讲评作业时说明:求角大小的问题,往往先确定(或构造)一个包含这个角的三角形,然后解三角形.由此,我们还验证了∠AOC>θ.
第 9 页 共 9 页两个平面垂直的判定和性质(一)
一、素质教育目标
(一)知识教学点
1.两个平面垂直的定义、画法.
2.两个平面垂直的判定定理.
(二)能力训练点
1.应用演绎的数学方法理解并掌握两个平面垂直的定义.
2.掌握两个平面垂直的判定定理的证明过程,培养学生严格的逻辑推理,增强学生分析、解决问题的能力.
3.利用转化的方法掌握和应用两个平面垂直的判定定理.
(三)德育渗透点
1.理解并掌握两个平面垂直定义的过程是培养学生从一般到特殊的思维方法的过程.
2.让学生认识到掌握两个平面垂直的判定定理是人类生产实践的需要,并且应用于实践,进一步培养学生理论与实践相结合的观点.
二、教学重点、难点、疑点及解决方法
1.教学重点:掌握两个平面垂直的判定.
2.教学难点:掌握两个平面垂直的判定及应用.
三、课时安排
本课题安排2课时.本节课为第一课时:主要讲解两个平面垂直的判定.
四、教与学的过程设计
(一)复习平面角的有关知识
师:什么是二面角的平面角?
生:以二面角的棱上任意一点为端点,在两个面内分别作垂直于棱的两条射线,这两条射线所成的角叫做二面角的平面角.
师:一般地,作二面角的平面角有哪几种方法?
生:三种.一是利用定义;二是利用三垂线(逆)定理;三是利用棱的垂面.
师:下面我们来做道练习(幻灯显示).
已知:二面角α-AB-β等于45°,CD<α,D∈AB,∠CDB=45°.
求:CD与平面β所成的角.
生证明:作CO⊥β交β于点O,连结DO,则∠CDO为DC与β所成的角.
过点O作OE⊥AB于E,连结CE,则CE⊥AB,∴∠CEO为二面角α-AB-β的平面角,即∠CEO=45°.
∵CO⊥OE,OC=OE,
∴∠CDO=30°.
即DC与β成30°角.
师点评:本题涉及到直线与平面所成角的范围[0°,90°]以及利用三垂线定理寻找二面角的平面角.事实上,利用三垂线定理作二面角的平面角是最常用,也是最有效的一种方法.
(二)两个平面垂直的定义、画法
师:两个平面垂直是两个平面相交的特殊情况,日常我们见到的墙面和地面、以及一个长方体中,相邻的两个面都是互相垂直的.那么,什么是两个平面互相垂直呢?
生:两个平面相交,如果所成的二面角是直二面角,就说这两个平面互相垂直.
师:回答得很好.这个定义与平面几何里的两条直线互相垂直的定义相类似,也是用它们所成的角是直角来定义.知道了两个平面互相垂直的概念.如何画它们呢?
生:如图1-128,把直立平面的竖边画成和水平平面的横边垂直.记作α⊥β.
练习:(P.45中练习1)
画互相垂直的两个平面、两两垂直的三个平面.
如图1-129.
(三)两个平面垂直的判定
师:判定两个平面互相垂直,除了定义外,还有下面的判定定理.
两个平面垂直的判定定理:如果一个平面经过另一个平面的一条垂线,那么这两个平面互相垂直.
求证:α⊥β.
师提示:要证明两个平面互相垂直,只有根据两个平面互相垂直的定义,证明由它们组成的二面角是直二面角,因此必须作出它的一个平面角,并证明这个平面角是直角.如何作平面角呢?根据平面角的定义,可以作BE⊥CD,使∠ABE为二面角α-CD-β的平面角.
让学生独自写出证明过程.
证明:设a∩β=CD,则B∈CD.
∴AB⊥CD.
在平面β内过点B作直线BE⊥CD,则∠ABE是二面角α-CD-β的平面角,又AB⊥BE,即二面角α-CD-β是直二面角.
∴α⊥β.
师:两个平面垂直的判定定理,不仅是判定两个平面互相垂直的依据,而且是找出垂直于一个平面的另一个平面的依据.如:建筑工人在砌墙时,常用一端系有铅锤的线来检查所砌的墙面是否和水平面垂直(图见课本P.43中图1-49),实际上,就是依据这个原理.
另外,这个定理说明要证明面面垂直,实质上是转化为线面垂直来证明.下面我们来做一道练习.
练习:(P.45中练习2)
如图1-131,检查工件的相邻两个面是否垂直时,只要用曲尺的一边紧靠在工件的一个面上,另一边在工件的另一个面上转动一下,观察尺边是否和这个面密合就可以了.为什么?如果不转动呢?
如果不转动,只能确定两条直线OA⊥OB,无法确定OA⊥β,从而无法确定α⊥β.
(四)练习
例:⊙O在平面α内,AB是⊙O的直径,PA⊥α,C为圆周上不同于A、B的任意一点.
求证:平面PAC⊥平面PBC.
证明:在θO内.
∵AB为θO的直径,
∴BC⊥AC.
又PA⊥BC,
∴BC⊥平面PAC.
∴平面PAC⊥平面PBC.
(五)总结
本节课我们讲解了两个平面垂直的定义、画法及判定方法.判定方法有两种,一是利用定义,二是利用判定定理.如何应用两个平面垂直的判定定理,把面面垂直的问题转化为线面垂直的问题是本节课学习的关键.
五、作业
P.46中习题六.6、7、8、10(1),
第 6 页 共 6 页两个平面平行的判定和性质(一)
一、素质教育目标
(一)知识教学点
1.两个平面平行的定义.
2.两个平面的位置关系及画法.
3.两个平面平行的判定.
(二)能力训练点
1.理解并掌握两个平面平行的定义.
2.掌握两个平面的位置关系应用了类比的方法,体现了分类的数学思维方法.
3.会画平行或相交平面的空间图形,并用字母或符号表示,进一步培养学生的空间想象能力.
4.掌握两个平面的判定定理的证明,进一步培养学生严密的逻辑思维能力.
(三)德育渗透点
让学生认识研究两个平面的位置关系以及掌握和应用两个平面平行的判定是实际生产的需要,体现了理论联系实践的原则,并更好地培养学生分析问题与解决问题的能力.
二、教学重点、难点、疑点及解决方法
1.教学重点:掌握两个平面的位置关系;掌握两个平面平行的判定.
2.教学难点:掌握两个平面平行的判定定理的证明及其应用.
3.教学疑点:正确理解并应用两个平面平行的判定定理时,要注意定理中的关键词:相交.
三、课时安排
1.12两个平面的位置关系及1.13两个平面平行的判定和性质这两个课题调整安排为2课时.本节课为第一课时,主要讲解两个平面的位置关系及两个平面平行的判定.
四、教与学过程设计
(一)两个平面的位置关系
师:让我们一起来观察:教室的正面和背面、左面和右面的墙面有没有公共点?教室的正面和侧面的墙面呢?思考问题:两个平面的位置关系可分为几种情况?
学生通过直观观察得出结论:两种,平行或相交.
师:什么是平行的平面?
生:两个平面没有公共点叫做两个平面互相平行.
师:能否再举出一些两个平面平行和相交的实例?(P.35中练习1.)
学生自由回答,教师点评.
师:从上面的例子,我们知道:两个平面的位置关系同平面内两条直线的位置关系相类似,可从有无公共点来区分.若两个平面有不共线的两个公共点,则由公理3可知这两个平面必然重合为一个平面;若两个平面有一个公共点,则由公理2可知这两个平面相交于过这个点的一条直线;若两个平面没有公共点,则这两个平面互相平行.由此得出不重合的两个平面的位置关系:
两个平面平行——没有公共点;
两个平面相交——有一条公共直线(至少有一个公共点).
师:那么如何画出并表示两个平行平面和两个相交平面呢?
师边画边答:
画两个平行平面的要点是:表示平面的平行四边形的对应边相互平行.如图1—102.
画两个相交平面的要点是:先画表示两个平面的平行四边形的相交两边,再画表示两个平面交线的线段.成图时注意不相交的直线相互平行且等长,不可见的部分画虚线或不画.如图1—103.
学生练习(P.35中练习2):画两个平行平面和分别在这两个平面内的两条平行直线,再画一个经过这两条平行直线的平面.
如图1—104,α∥β,a∥b,a<α,b<β,a<γ,b<γ.
(二)两个平面平行的判定
师:根据前一小节平面平行的定义,我们来判断两个互逆命题的正误,并说明理由(幻灯显示).
命题1.如果两个平面平行,那么其中一个平面内的所有直线一定都和另一个平面平行.
命题2.如果一个平面内的所有直线都和另一个平面平行,那么这两个平面平行.
生:命题1是正确的.因为在这些直线中如果有一条和另一个平面有公共点,这点也必是这两个平面的公共点.那么这两个平面就不可能平行了.
命题2也是正确的.因为如果这两个平面有公共点,那么在另一个平面内通过这点的直线就不可能平行于另一个平面.
师:通过上面的讨论我们知道:两个平面平行的问题可转化为一个平面内直线和另一个平面平行的问题.实际上判定两个平面平行的条件不需要一个平面内的所有直线都平行于另一个平面,只需要在一个平面内有两条相交直线都平行于另一个平面.
两个平面平行的判定定理:如果一个平面内有两条相交直线都平行于另一个平面,那么这两个平面平行.
师:我们知道,一个定理只有经过证明才能说明它的正确性并直接应用,下面我们来证明这个定理.
已知:在平面β内,有两条相交直线a、b和平面α平行.
求证:β∥α.
师分析:要证明这个定理,先思考几个问题(提出问题并启发学生得出结论)(幻灯显示).
问题1:如果平面α与平面β不平行,那么它们的位置关系怎样?(相交).
问题2:若平面α与平面β相交,那么交线与平行于平面α的直线a和b各有什么关系?(平行).
问题3:相交直线a和b都与交线平行合理吗?(不合理,与平行公理矛盾).
师:总结得出证明定理应该根据定义,利用反证法,让学生写出它的证明过程.
证明:假设α∩β=c.
a∥α,a∩β,
a∥c,同理b∥c.
a∥b,这与题设a与b相交矛盾
α∥β.
师:在实际生活中,也经常利用这个判定定理判断两个平面平行.如在判断一个平面是否水平时,把水准器放在这个平面上交叉放两次,如果水准器的气泡都是居中的,就可以判定这个平面和水平面平行.
下面请同学们完成例1和练习.
(三)练习
例1 垂直于同一直线的两个平面平行.
已知:α⊥AA',β⊥AA',
求证:α∥β.
师提示:要证明两个平面平行,有两种方法:一是利用定义;二是利用判定定理,也是较常用的一种方法.因此利用判定定理证明例1的关键是:如何构造一个平面内的两相交直线都平行于另一个平面?
证明:设经过直线AA'的两个平面γ,δ分别与平面α、β交于直线a,a'和b,b'.
∵AA'⊥α,AA'⊥β,
∴AA⊥a,AA'⊥a',
∴a‖a',则a'∥α.
同理,b'∥α.
又∵a'∩b'= A'
∴α∥β.
师:这个例题的结论可与定理“垂直于同一平面的两条直线平行”联系起来记忆,也可作为判定两个平面平行的一种方法.
练习:判断下列命题的正误(幻灯显示).
1.垂直于同一直线的两直线平行.
2.分别在两个平行平面内的两条直线都平行(P.37中练习1).
3.如果一个平面内的两条直线平行于另一个平面,那么这两个平面平行(P.38中练习2<1>).
4.如果一个平面内的任何一条直线都平行于另一个平面,那么这两个平面平行(P.38中练习2<2>).
答:1.错,这两条直线还可能相交或异面.
2.错,这两条直线还可能异面,但不会相交.
3.错,反例如图1—107.
4.对.
(四)总结
本节课我们学习了两个平面平行的定义;两个平面的位置关系:平行或相交;两个平面平行的判定.掌握两个平面平行的判定的研究可以转化为线线平行、线面平行的研究.
五、作业
P.38中习题五1、2、3.
补充:1.a、b为异面直线,a∥α,b∥α,a∥β,b∥β.
求证:α∥β.
θ2,∠AOD=θ3.
求证:cos·θ3=cosθ1·cosθ2.
第 6 页 共 6 页