中小学教育资源及组卷应用平台
专题09 点和圆的位置关系
【热考题型】
【重难点突破】
考查题型一 判断点和圆的位置关系
1.在平面直角坐标系中,以原点O为圆心,5为半径作圆,若点P的坐标是(3,4),则点P与⊙O的位置关系是( )
A.点P在⊙O外 B.点P在⊙O内
C.点P在⊙O上 D.点P在⊙O上或在⊙O外
【详解】
∵点P的坐标是(3,4),
∴OP==5,
而⊙O的半径为5,
∴OP等于圆的半径,
∴点P在⊙O上,
故选C.
2.矩形ABCD中,AB=8,,点P在边AB上,且BP=3AP,如果圆P是以点P 为圆心,PD为半径的圆,那么下列判断正确的是( ).
A.点B、C均在圆P外; B.点B在圆P外、点C在圆P内;
C.点B在圆P内、点C在圆P外; D.点B、C均在圆P内.
【详解】
∵AB=8,点P在边AB上,且BP=3AP
∴AP=2,
∴根据勾股定理得出,r=PD==7,
PC==9,
∵PB=6<r,PC=9>r
∴点B在圆P内、点C在圆P外,故选C.
3.如图,在△ABC中,∠C=90°,AB=4,以C点为圆心,2为半径作⊙C,则AB的中点O与⊙C的位置关系是( )
A.点O在⊙C外 B.点O在⊙C上 C.点O在⊙C内 D.不能确定
【详解】
解:连接OC,由直角三角形斜边上的中线为斜边的一半,可得:
OC==2=r,故点O在⊙C上,
故选B.
4.已知⊙O的半径OA长为1,OB=,则可以得到的正确图形可能是( )
A.B.C.D.
【详解】
解:∵⊙O的半径OA长1,若OB=,
∴OA<OB,
∴点B在圆外,
故选:D.
5.已知点在线段上(点与点不重合),过点的圆记为圆,过点的圆记为圆,过点的圆记为圆,则下列说法中正确的是( )
A.圆可以经过点 B.点可以在圆的内部
C.点可以在圆的内部 D.点可以在圆内部
【详解】
解:∵点在线段上(点与点不重合),过点的圆记为圆,∴点可以在圆的内部,故A错误,B正确;∵过点的圆记为圆,∴点可以在圆的外部,故C错误;∵过点的圆记为圆,∴点可以在圆的外部,故D错误.
故选B.
6.在公园的O处附近有E、F、G、H四棵树,位置如图所示(图中小正方形为边长均相等),现计划修建一座以O为圆心,OA为半径的圆形水池,要求池中不留树木,则E、F、G、H四棵树中需要被移除的为( )
A.E、F、G B.F、G、H C.G、H、E D.H、E、F
【详解】
解:∵OA=,
∴OE=2<OA,所以点E在⊙O内,
OF=2<OA,所以点F在⊙O内,
OG=1<OA,所以点G在⊙O内,
OH=>OA,所以点H在⊙O外,
故选:A.
考查题型二 利用点和圆的位置关系求半径
7.一个点到圆的最大距离为11 cm,最小距离为5 cm,则圆的半径为( )
A.16cm或6 cm B.3cm或8 cm C.3 cm D.8 cm
【详解】
当点P在圆内时,最近点的距离为5cm,最远点的距离为11cm,则直径是16cm,因而半径是8cm;
当点P在圆外时,最近点的距离为5cm,最远点的距离为11cm,则直径是6cm,因而半径是3cm;
故选B.
8.已知点A在半径为r的⊙O内,点A与点O的距离为6,则r的取值范围是 ( )
A.r < 6 B.r > 6 C.r ≥ 6 D.r ≤ 6
【详解】
点在半径为的内,
小于,
而,
.
故选.
9.已知,以点C为圆心r为半径作圆,如果点A、点B只有一个点在圆内,那么半径r的取值范围是( )
A. B. C. D.
【详解】
解:当点在圆内时点到点的距离小于圆的半径,即:;
点在圆上或圆外时点到圆心的距离应该不小于圆的半径,即:;
即.
故选:.
10.如图,数轴上有A、B、C三点,点A,C关于点B对称,以原点O为圆心作圆,若点A,B,C分别在外,内,上,则原点O的位置应该在
A.点A与点B之间靠近A点 B.点A与点B之间靠近B点
C.点B与点C之间靠近B点 D.点B与点C之间靠近C点
【详解】
由题意知,点A离原点最远,点C次之,点B离原点最近,如图,观察图象可知,
原点O的位置应该在点B与点C之间靠近B点,
故选C.
11.若⊙O所在平面内一点P到⊙O上的点的最大距离为a,最小距离为b(a>b),则此圆的半径为( )
A. B. C.或 D.a+b或a-b
【详解】
解:若⊙O所在平面内一点P到⊙O上的点的最大距离为a,最小距离为b,若这个点在圆的内部或在圆上时时,圆的直径是a+b,因而半径是;当此点在圆外时,圆的直径是a-b,因而半径是.则此圆的半径为或.
故选C.
12.如图是由4个边长为a的正六边形组成的网格图,每个顶点均为格点,若该图中到点A的距离超过3的格点有且仅有6个,则a的取值范围为( )
A. B. C. D.
【详解】
解:通过以点A为圆心,作如下三个半径分别为:a、、2a的圆,
发现半径为2a的圆上有三个点,圆外由3个点,共6个点,
又∵该图中到点A的距离超过3的格点有且仅有6个,
∴解得,
故选:A.
13.以矩形ABCD的顶点A为圆心画⊙A,使得B、C、D中至少有一点在⊙A内,且至少有一点在⊙A外,若BC=12,CD=5.求⊙A的半径r的取值范围.
【详解】
解:根据题意画出图形如下所示:
∵AB=CD=5,AD=BC=12,
根据矩形的性质和勾股定理得到:AC==13.
∵AB=5,AD=12,AC=13,
而A,C,D中至少有一个点在⊙A内,且至少有一个点在⊙A外,
∴点B在⊙A内,点C在⊙A外.
∴5<r<13.
故答案为5<r<13.
14.如图所示,已知△ABC中,∠C=90°,AC=3,BC=4,M为AB的中点.
(1)以C为圆心,3为半径作⊙C,则点A、B、M与⊙C的位置关系如何
(2)若以C为圆心,作⊙C,使A、M两点在⊙A内且B点在⊙C外,求⊙C的半径r的取值范围.
【详解】
解:(1)∵在△ABC中,∠C=90°,AC=3,BC=4,AB的中点为点M,
∴AB=,CM=AB=,
∵以点C为圆心,3为半径作⊙C,
∴AC=3,则A在圆上,CM=<3,则M在圆内,BC=4>3,则B在圆外;
(2)以C为圆心,作⊙C,使A、M两点在⊙内且B点在⊙C外,
3<r<4,
故⊙C的半径r的取值范围为:3<r<4.
15.如图,在Rt△ABC中,∠ACB=90°.
(1)利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)
①作AC的垂直平分线,交AB于点O,交AC于点D;
②以O为圆心,OA为半径作圆,交OD的延长线于点E.
(2)在(1)所作的图形中,解答下列问题.
①点B与⊙O的位置关系是_;(直接写出答案)
②若DE=2,AC=8,求⊙O的半径.
【详解】
解:(1)如图所示;
(2)①连结OC,如图,
∵OD垂直平分AC,
∴OA=OC,
∴∠A=∠ACO,
∵∠A+∠B=90°,∠OCB+∠ACO=90°,
∴∠B=∠OCB,
∴OC=OB,
∴OB=OA,
∴点B在⊙O上;
故答案为点B在⊙O上
②∵OD⊥AC,且点D是AC的中点,
∴AD=AC=4,
设⊙O的半径为r,
则OA=OE=r,OD=OE﹣DE=r﹣2,
在Rt△AOD中,∵OA2=AD2+OD2,
即r2=42+(r﹣2)2,
解得r=5.
∴⊙O的半径为5.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)中小学教育资源及组卷应用平台
专题09 点和圆的位置关系
【热考题型】
【重难点突破】
考查题型一 判断点和圆的位置关系
1.在平面直角坐标系中,以原点O为圆心,5为半径作圆,若点P的坐标是(3,4),则点P与⊙O的位置关系是( )
A.点P在⊙O外 B.点P在⊙O内
C.点P在⊙O上 D.点P在⊙O上或在⊙O外
2.矩形ABCD中,AB=8,,点P在边AB上,且BP=3AP,如果圆P是以点P 为圆心,PD为半径的圆,那么下列判断正确的是( ).
A.点B、C均在圆P外; B.点B在圆P外、点C在圆P内;
C.点B在圆P内、点C在圆P外; D.点B、C均在圆P内.
3.如图,在△ABC中,∠C=90°,AB=4,以C点为圆心,2为半径作⊙C,则AB的中点O与⊙C的位置关系是( )
A.点O在⊙C外 B.点O在⊙C上 C.点O在⊙C内 D.不能确定
4.已知⊙O的半径OA长为1,OB=,则可以得到的正确图形可能是( )
A.B.C.D.
5.已知点在线段上(点与点不重合),过点的圆记为圆,过点的圆记为圆,过点的圆记为圆,则下列说法中正确的是( )
A.圆可以经过点 B.点可以在圆的内部
C.点可以在圆的内部 D.点可以在圆内部
6.在公园的O处附近有E、F、G、H四棵树,位置如图所示(图中小正方形为边长均相等),现计划修建一座以O为圆心,OA为半径的圆形水池,要求池中不留树木,则E、F、G、H四棵树中需要被移除的为( )
A.E、F、G B.F、G、H C.G、H、E D.H、E、F
考查题型二 利用点和圆的位置关系求半径
7.一个点到圆的最大距离为11 cm,最小距离为5 cm,则圆的半径为( )
A.16cm或6 cm B.3cm或8 cm C.3 cm D.8 cm
8.已知点A在半径为r的⊙O内,点A与点O的距离为6,则r的取值范围是 ( )
A.r < 6 B.r > 6 C.r ≥ 6 D.r ≤ 6
9.已知,以点C为圆心r为半径作圆,如果点A、点B只有一个点在圆内,那么半径r的取值范围是( )
A. B. C. D.
10.如图,数轴上有A、B、C三点,点A,C关于点B对称,以原点O为圆心作圆,若点A,B,C分别在外,内,上,则原点O的位置应该在
A.点A与点B之间靠近A点 B.点A与点B之间靠近B点
C.点B与点C之间靠近B点 D.点B与点C之间靠近C点
11.若⊙O所在平面内一点P到⊙O上的点的最大距离为a,最小距离为b(a>b),则此圆的半径为( )
A. B. C.或 D.a+b或a-b
12.如图是由4个边长为a的正六边形组成的网格图,每个顶点均为格点,若该图中到点A的距离超过3的格点有且仅有6个,则a的取值范围为( )
A. B. C. D.
13.以矩形ABCD的顶点A为圆心画⊙A,使得B、C、D中至少有一点在⊙A内,且至少有一点在⊙A外,若BC=12,CD=5.求⊙A的半径r的取值范围.
14.如图所示,已知△ABC中,∠C=90°,AC=3,BC=4,M为AB的中点.
(1)以C为圆心,3为半径作⊙C,则点A、B、M与⊙C的位置关系如何
(2)若以C为圆心,作⊙C,使A、M两点在⊙A内且B点在⊙C外,求⊙C的半径r的取值范围.
15.如图,在Rt△ABC中,∠ACB=90°.
(1)利用直尺和圆规按下列要求作图,并在图中标明相应的字母.(保留作图痕迹,不写作法)
①作AC的垂直平分线,交AB于点O,交AC于点D;
②以O为圆心,OA为半径作圆,交OD的延长线于点E.
(2)在(1)所作的图形中,解答下列问题.
①点B与⊙O的位置关系是_;(直接写出答案)
②若DE=2,AC=8,求⊙O的半径.
21世纪教育网 www.21cnjy.com 精品试卷·第 2 页 (共 2 页)
HYPERLINK "http://21世纪教育网(www.21cnjy.com)
" 21世纪教育网(www.21cnjy.com)