课件18张PPT。猜一猜给你一张足够大的纸,假设其厚度为0.1毫米,那么当你把这张纸对折了51次的时候,所达到的厚度有多少??猜一猜:把一张纸折叠51次,得到的大约是地球与太阳之间的距离!等比数列等比数列忆一忆 一般地,如果一个数列从第2项起,每一项与前一项的差等于同一个常数,那么这个数列叫做等差数列。这个常数叫做等差数列的公差,用d表示。 国际象棋起源于印度,关于国际象 棋有这样一个传说,国王要奖励国际象棋的发明者,问他有什么要求,发明者说:“请在棋盘上的第一个格子上放1粒麦子,第二个格子上放2粒麦子,第三个格子上放4粒麦子,第四个格子上放8粒麦子,依次类推,即每一个格子中放的麦粒都必须是前一个格子麦粒数目的2倍,直到第64个格子放满为止。” 国王慷慨地答应了他。你认为国王有能力满足上述要求吗?左图为国际象棋的棋盘,棋盘有8*8=64格 1 2 3 4 5 6 7 81 2 3 4 5 6 7 8情景展示(1)曰:“一尺之棰,日取其半,万世不竭.”庄子意思:“一尺长的木棒,每日取其一半,永远也取不完” 。如果将“一尺之棰”视为一份,
则每日剩下的部分依次为:9,92,93,94,95,96, 97堤、木,巢、鸟、雏、毛、色依次构成数列: 出门见九堤,每堤有九木,每木有九巢,
每巢有九鸟,每鸟有九雏,每雏有九毛,问
共有几堤,几木,几巢,几鸟,几雏,几毛,
几色?(《孙子算经》) 某种汽车购买时的价格是36万元,每年
的折旧率是10%,求这辆车各年开始时的价
格(单位:万元)。36,36×0.9,36×0.92, 36×0.93,…各年汽车的价格组成数列:比一比共同特点? 从第2项起,每一项与前一项的比都等于同一常数。(1) (2) (3)…………9,92,93,94,95,96, 9736,36×0.9,36×0.92, 36×0.93,…(4)等比数列定义 一般的,如果一个数列从第2项起,每一项与它前一项的比等于同一个常数,这个数列就叫做等比数列。这个常数叫做等比数列的公比,公比通常用字母q表示。(q≠0)或思考:?其数学表达式:如果一个数列从第2项起,每一项与前一项的差都等于同一个常数,那么这个数列叫做等差数列.这个常数叫做等差数列的公差,用d表示如果一个数列从第2项起,每一项与它前一项的比都等于同一个常数,那么这个数列叫做等比数列.这个常数叫做等比数列的公比,用
q表示.注意: 1. 公比是等比数列,从第2项起,每一项与前一项的比,不能颠倒。 2.对于一个给定的等比数列,它的公比是同一个常数。练一练是不是是不是q =1、判别下列数列是否为等比数列?
(2)1.2, 2.4 , -4.8 , -9.6 ……
(3)2, 2, 2, 2, …
(4)1, 0, 1, 0 ……q =……2、指出下列数列是不是等比数列,若是,说明公比;若不是,说出理由. (3) 2, -2, 2, -2, 2(1) 1,2, 4, 16, 64, …(2) 16, 8, 1, 2, 0,…不是是不是不一定(4) a, a, a, a, a …思考:等比数列中(1)公比q为什么不能等于0?首项能等于0吗?(2)公比q=1时是什么数列?(3)q>0数列递增吗?q<0数列递减吗?说明:(1)公比q≠0,则an≠0(n∈N);(2)既是等差又是等比数列为非零常数列;(3)q=1,常数列;q<0,摆动数列; 例1:求出下列等比数列中的未知项.
(1) 2. a, 8 (2) -4 , b, c, 解:解得 a=4或a=-4等比中项 观察如下的两个数之间,插入一个什么数后者三个数就会成为一个等比数列:(1)1, , 9 (2)-1, ,-4
(3)-12, ,-3 (4)1, ,1±3±2±6±1 如果在a与b中间插入一个数G,使a,G,b成等比数列,那么G叫做a与b的等比中项。练习:P48 1、2、3小 结:等比数列等比数列的概念。方程的思想。
类比知识内容研究方法思想方法