2022-2023学年高二上学期开学检测数学试题1(Word版含解析)

文档属性

名称 2022-2023学年高二上学期开学检测数学试题1(Word版含解析)
格式 zip
文件大小 1.3MB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2022-08-03 02:28:25

图片预览

文档简介

2022-2023学年高二上学期开学检测数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.欧拉是18世纪最伟大的数学家之一,在很多领域都有杰出的贡献.由《物理世界》发起的一项调查表明,人们把欧拉恒等式“”与麦克斯韦方程组并称为“史上最伟大的公式”.其中,欧拉恒等式是欧拉公式:的一种特殊情况.由欧拉公式,复数z满足,则z的虚部是( )
A.i B.1 C. D.
2.如图,四边形中,,,则( )
A. B. C. D.
3.下列命题中正确的是( )
A.,,,是空间中的四点,若,,构成空间基底,则,,,共面
B.已知为空间的一个基底,若,则也是空间的基底
C.若直线的方向向量为,平面的法向量为,则直线
D.若直线的方向向量为,平面的法向量为,则直线与平面所成角的正弦值为
4.某地区经过一年的新农村建设,农村的经济收入增加了一倍.实现翻番.为更好地了解该地区农村的经济收入变化情况,统计了该地区新农村建设前后农村的经济收入构成比例.得到如下饼图:
则下面结论中不正确的是
A.新农村建设后,种植收入减少
B.新农村建设后,其他收入增加了一倍以上
C.新农村建设后,养殖收入增加了一倍
D.新农村建设后,养殖收入与第三产业收入的总和超过了经济收入的一半
5.三国时代吴国数学家赵爽所注《周髀算经》中给出了勾股定理的绝妙证明,下面是赵爽的弦图及注文,弦图是一个以勾股形之弦为边的正方形,其面积称为弦实,图中包含四个全等的勾股形及一个小正方形,分别涂成红(朱)色及黄色,其面积称为朱实、黄实,利用2勾股+(股-勾)=4朱实+黄实=弦实,化简,得勾+股=弦,设勾股中勾股比为,若向弦图内随机抛掷1000颗图钉(大小忽略不计),则落在红(朱)色图形内的图钉数大约为( )(参考数据:)
A.866 B.500 C.300 D.134
6.无论k为何值,直线都过一个定点,则该定点为( )
A. B. C. D.
7.一个质地均匀的正四面体的四个面上分别标有数字1,2,3,4.连续抛掷这个正四面体两次,并记录每次正四面体朝下的面上的数字.记事件为“两次记录的数字和为奇数”,事件为“两次记录的数字和大于4”,事件为“第一次记录的数字为奇数”,事件为“第二次记录的数字为偶数”,则( )
A.与互斥 B.与对立
C.与相互独立 D.与相互独立
8.设三棱锥的底面是正三角形,侧棱长均相等,是棱上的点(不含端点),记直线与直线所成角为,直线与平面所成角为,二面角的平面角为,则
A. B.
C. D.
二、多选题
9.已知圆和圆相交于 两点,下列说法正确的为( )
A.两圆有两条公切线 B.直线的方程为
C.线段的长为 D.圆上点,圆上点,的最大值为
10.随机地排列数字1,5,6得到一个三位数,则( )
A.可以排成9个不同的三位数 B.所得的三位数是奇数的概率为
C.所得的三位数是偶数的概率为 D.所得的三位数大于400的概率为
11.如图,已知正方体的棱长为2,则下列四个结论正确的是( )
A.直线与为异面直线 B.平面
C.三棱锥的表面积为 D.三棱锥的体积为
12.已知函数 则下面叙述正确的是( )
A.最小正周期为 B.在区间是增函数
C.是对称轴 D.最大值为
三、填空题
13.若两条直线和互相垂直,则的值为________.
14.某校在高一、高二、高三三个年级中招募志愿者50人,现用分层抽样的方法分配三个年级的志愿者人数,已知高一、高二、高三年级的学生人数之比为4:3:3,则应从高三年级抽取______名志愿者.
15.费马点是指三角形内到三角形三个顶点距离之和最小的点.当三角形最大内角小于时,费马点与三个顶点连线正好三等分费马点所在的周角,即该点所对的三角形三边的张角相等均为.根据以上性质,函数的最小值为__________.
16.三棱柱的所有棱长均为2,且平面,为的中点,为棱上的点,且,若点、、、在同一球面上,则该球的表面积为______.
四、解答题
17.已知三个顶点分别为,,.
(1)求经过两边AB和AC的中点的直线的方程;
(2)求的外接圆方程.
18.北京冬季奥运会将于2022年2月4日至2022年2月20日在中华人民共和国北京市和河北省张家口市联合举行.这是中国历史上第一次举办冬季奥运会,北京,张家口同为主办城市,也是中国继北京奥运会,南京青奥会之后第三次举办奥运赛事.北京冬奥组委对报名参加北京冬奥会志愿者的人员开展冬奥会志愿者的培训活动,并在培训结束后进行了一次考核.为了解本次培训活动的效果,从中随机抽取80名志愿者的考核成绩,根据这80名志愿者的考核成绩,得到的统计图表如下所示.
女志愿者考核成绩频率分布表
分组 频数 频率
2 0.050
13 0.325
18 0.450
a m
b 0.075
若参加这次考核的志愿者考核成绩在内,则考核等级为优秀
(1)分别求这次培训考核等级为优秀的男、女志愿者人数;
(2)若从样本中考核等级为优秀的志愿者中随机抽取3人进行学习心得分享,记抽到女志愿者的人数为X,求X的分布列及期望.
19.如图,在四棱锥中,底面为菱形,,Q为的中点,.
(1)点M在线段上,,试确定t的值,使得平面;
(2)在(1)的条件下,若,求直线和平面所成角的正弦值.
20.某厂生产的产品在出厂前都要做质量检测,每一件一等品都能通过检测,每一件二等品通过检测的概率为.现有10件产品,其中6件是一等品,4件是二等品.
(1)随机选取1件产品,求能够通过检测的概率;
(2)随机选取3件产品,其中一等品的件数记为,求的分布列及数学期望..
21.国家质量监督检验检疫局于2004年5月31日发布了新的《车辆驾驶人员血液、呼气酒精含量阈值与检验》国家标准,新标准规定,车辆驾驶人血液中的酒精含量大于或等于20毫克/百毫升、小于80毫克/百毫升的行为饮酒驾车,血液中的酒精含量大于或等于80毫克/百毫升为醉酒驾车,经过反复试验,喝一瓶啤酒后酒精在人体血液内的变化规律“散点图”如下:
该函数模型如下,
.
根据上述条件,回答以下问题:
(1)试计算喝1瓶啤酒后多少小时血液中的酒精含量达到最大值?最大值是多少?
(2)试计算喝1瓶啤酒后多少小时才可以驾车?(时间以整小时计)(参考数据:)
22.如图(1),平面四边形ABDC中,∠ABC=∠D=90°,AB=BC=2,CD=1,将△ABC沿BC边折起如图(2),使______,点M,N分别为AC,AD中点.在题目横线上选择下述其中一个条件,然后解答此题.
①;②AC为四面体ABDC外接球的直径;③平面ABC⊥平面BCD.
(1)判断直线MN与平面ABD是否垂直,并说明理由;
(2)求二面角的正弦值.
试卷第1页,共3页
试卷第1页,共3页
参考答案:
1.D
【解析】
【分析】
根据题意,化简可得复数z的表达式,根据复数的概念,即可得答案.
【详解】
由题意得,
所以,
所以,则z的虚部是.
故选:D
2.A
【解析】
【分析】
依据图形,结合向量的加法,减法,数乘运算的运算律利用,表示.
【详解】


故选:A.
3.B
【解析】
【分析】
对于选项AB:利用空间向量的基本定理即可判断;对于选项C:结合已知条件,利用空间向量数量积的坐标公式可知,根据方向向量和法向量的概念即可判断直线与平面的位置关系;对于选项D:利用线面夹角的正弦值的空间向量公式即可求解.
【详解】
对于选项A:,,,是空间中的四点,若,,构成空间基底,则,,不共面,则,,,不共面,故错误;
对于选项B:已知为空间的一个基底,则,,不共面,
若,则,,也不共面,则也是空间的基底,故正确;
对于选项C:因为,则,
若,则,但选项中没有,有可能会出现,故错误;
对于选项D:因为,
则直线与平面所成角的正弦值为,故错误.
故选:.
4.A
【解析】
【分析】
首先设出新农村建设前的经济收入为M,根据题意,得到新农村建设后的经济收入为2M,之后从图中各项收入所占的比例,得到其对应的收入是多少,从而可以比较其大小,并且得到其相应的关系,从而得出正确的选项.
【详解】
设新农村建设前的收入为M,而新农村建设后的收入为2M,
则新农村建设前种植收入为0.6M,而新农村建设后的种植收入为0.74M,所以种植收入增加了,所以A项不正确;
新农村建设前其他收入我0.04M,新农村建设后其他收入为0.1M,故增加了一倍以上,所以B项正确;
新农村建设前,养殖收入为0.3M,新农村建设后为0.6M,所以增加了一倍,所以C项正确;
新农村建设后,养殖收入与第三产业收入的综合占经济收入的,所以超过了经济收入的一半,所以D正确;
故选A.
点睛:该题考查的是有关新农村建设前后的经济收入的构成比例的饼形图,要会从图中读出相应的信息即可得结果.
5.A
【解析】
【分析】
计算出朱色的面积、大正方形的面积,然后利用面积比求得图钉数.
【详解】
不妨设勾长,股长,
则朱色面积为,
大正方形的边长为,面积为,
所以落在红(朱)色图形内的图钉数大约为.
故选:A
6.D
【解析】
【分析】
把直线都过一个定点转化为求直线和直线的交点,联立方程组即可求解.
【详解】
直线方程可化为,则此直线过直线和直线的交点.由解得因此所求定点为.
故选:D.
7.D
【解析】
【分析】
列举出基本事件,对四个选项一一判断:
对于A:由事件A与D有相同的基本事件,否定结论;对于B:由事件C与D有相同的基本事件,否定结论;对于C、D:利用公式法进行判断.
【详解】
连续抛掷这个正四面体两次,基本事件有:.
其中事件A包括: .
事件B包括: .
事件C包括:.
事件D包括: .
对于A:因为事件A与D有相同的基本事件,故与互斥不成立.故A错误;
对于B:因为事件C与D有相同的基本事件,故C与对立不成立.故B错误;
对于C:因为,,而.因为,所以与不是相互独立.故C错误;
对于D:因为,,而.因为两个事件的发生与否互不影响,且,所以与相互独立.故D正确.
故选:D
8.B
【解析】
本题以三棱锥为载体,综合考查异面直线所成的角、直线与平面所成的角、二面角的概念,以及各种角的计算.解答的基本方法是通过明确各种角,应用三角函数知识求解,而后比较大小.而充分利用图形特征,则可事倍功半.
【详解】
方法1:如图为中点,在底面的投影为,则在底面投影在线段上,过作垂直,易得,过作交于,过作,交于,则,则,即,,即,综上所述,答案为B.
方法2:由最小角定理,记的平面角为(显然)
由最大角定理,故选B.
方法3:(特殊位置)取为正四面体,为中点,易得
,故选B.
【点睛】
常规解法下易出现的错误有,不能正确作图得出各种角.未能想到利用“特殊位置法”,寻求简便解法.
9.ABD
【解析】
【分析】
由给定条件判断圆O与圆M的位置关系,再逐项分析、推理、计算即可作答.
【详解】
圆的圆心,半径,圆的圆心,,
,显然有,于是得圆O与圆M相交,
圆O与圆M有两条公切线,A正确;
由得:,则直线的方程为,B正确;
圆心O到直线:的距离,
则,C不正确;
,当且仅当点E,O,M,F四点共线时取“=”,如图,
因此,当点E,F分别是直线OM与圆O交点,与圆M交点时,,D正确.
故选:ABD
10.BD
【解析】
【分析】
利用列举法列出所有的基本事件,再根据概率公式计算可得结果.
【详解】
随机地排列数字1,5,6可以得到的三位数有:156,165,516,561,615,651,共6个,故A不正确;
其中奇数有:165,561,651,615,共4个,所以所得的三位数是奇数的概率为
,故B正确;
其中偶数有:156,516,共2个,所以所得的三位数是偶数的概率为,故C不正确;
其中大于400的有:516,561,615,651,共4个,所以所得的三位数大于400的概率为,故D正确.
故选:BD
11.ABC
【解析】
【分析】
根据异面直线定义即可判断选项A;根据题意得到,再利用线面平行的判定定理即可判断选项B;求出三棱锥的表面积可判断选项 C;计算三棱锥的体积即可判断选项D,进而可得正确选项.
【详解】
对选项A,因为平面,平面,面,
,所以直线与为异面直线.故选项A正确;
对选项B,因为,,所以四边形是平行四边形,
所以,平面,平面,所以平面,故选项B正确;
对选项C,
所以三棱锥的表面积为,故选项C正确;
对选项D,,故选项D错误.
故选:ABC.
12.AC
【解析】
【分析】
利用辅助角公式化简已知可得,结合三角函数的性质依次判断选项即可得解.
【详解】
由题意
对于A,函数的最小正周期,故A正确;
对于B,由,得,令,得,,故B错误;
对于C,由,得,令,得,故C正确;
对于D,,,,即函数的最大值为,故D错误;
故选:AC
【点睛】
方法点睛:函数的性质:
(1) .
(2)周期
(3)由 求对称轴,由求对称中心.
(4)由求增区间;由求减区间.
13.0或3
【解析】
【分析】
根据两直线垂直的判定条件,列出方程求解,即可得出结果.
【详解】
因为直线和互相垂直,
所以,解得:和.
故答案为:0或3.
【点睛】
本题主要考查由两直线垂直求参数,属于基础题型.
14.15
【解析】
【分析】
根据分层抽样的特征可知,抽取人数等于样本容量乘以抽样比,即可求出.
【详解】
高三年级抽取的人数为.
故答案为:15.
【点睛】
本题主要考查分层抽样的特征的理解和运用,属于容易题.
15.
【解析】
【分析】
函数表示的是点(x,y)到点C(1,0)的距离与到点B(-1,0),到A(0,2)的距离之和,连接这三个点构成了三角形ABC,由角DOB为,角DOC为,OD=,OC=,OA=,距离之和为:2OC+OA,求和即可.
【详解】
根据题意画出图像并建系,D为坐标原点
函数表示的是点(x,y)到点C(1,0)的距离与到点B(-1,0),到A(0,2)的距离之和,设三角形这个等腰三角形的费马点在高线AD上,设为O点即费马点,连接OB,OC,则角DOB为,角DOC为,B(-1,0)C(1,0),A(0,2),OD=,OC=,OA=,距离之和为:2OC+OA=+=2+.
故答案为.
【点睛】
这个题目考查了点点距的公式,以及解三角形的应用,解三角形的范围问题常见两类,一类是根据基本不等式求范围,注意相等条件的判断;另一类是根据边或角的范围计算,解题时要注意题干信息给出的限制条件.
16.
【解析】
【分析】
如图,先利用垂直关系确定为的中点,找到球心的位置,利用已知条件求出半径,代入球的表面积公式即可.
【详解】
连接,
,,
平面,,
又,
所以面,
即,又,,
则面,
,为的中点,
,也为的中点,
取的中点为,的中点为,设球心为,
连接,
所以为的外接圆圆心,平面,
平面,所以,即在平面内
,则,
所以四边形为矩形,
,又,

球的表面积为.
故答案为:.
【点睛】
本题主要考查线面垂直的判定定理和性质定理,以及四点共球求球的表面积问题.属于较难题.
17.(1)
(2)
【解析】
【分析】
(1)求出AB和AC的中点坐标,用两点求直线方程
(2)设圆的一般方程,将三点代入求出参数即可
(1)
AB的中点坐标为,AC的中点坐标为,所以直线的斜率,将代入得直线方程为:,即
(2)
设圆的一般方程为,将三点代入得:
解得: ,所以圆方程为:,化为标准方程为:
18.(1),
(2)分布列见解析,
【解析】
【分析】
(1)由图表数据求解
(2)由超几何分布公式求解
(1)
由女志愿者考核成绩频率分布表可知被抽取的女志愿者的人数为.
因为,所以,
所以这次培训考核等级为优秀的女志愿者人数为.
因为被抽取的志愿者人数是80,所以被抽取的男志愿者人数是.
由男志愿者考核成绩频率分布直方图可知男志愿者这次培训考核等级为优秀的频率为
则这次培训考核等级为优秀的男志愿者人数为.
(2)
由题意可知X的可能取值为.


X的分布列为
X 0 1 2 3
P
故.
19.(1);(2).
【解析】
【分析】
(1)若平面,易得,再根据,得到求解;
(2)在平面内作于T, 论证平面,然后以点Q为原点,QA为x轴,QB为y轴,建立空间直角坐标系,求得平面的一个法向量,和直线的一个方向向量,设直线和平面所成角为,由求解.
【详解】
(1)当时,平面.
如图所示:
连接交于点N,
连接,由题设,得.
若平面,
由平面平面,得,
所以.
当,
所以,
所以平面.
(2)由题设都是等边三角形,
Q是中点,平面.
,在中,.
因为,
所以.
在平面内作于T,则,.
由平面,可得平面.
以点Q为原点,建立如图所示的空间直角坐标系,
则,
由可得,
所以,
设平面的一个法向量,
则,可取,则,
直线的一个方向向量是,
设直线和平面所成角为,则
所以直线和平面所成角的正弦值等于.
【点睛】
方法点睛:利用向量求线面角的方法:(1)分别求出斜线和它所在平面内的射影直线的方向向量,转化为求两个方向向量的夹角(或其补角);(2)通过平面的法向量来求,即求出斜线的方向向量与平面的法向量所夹的锐角,取其余角就是斜线和平面所成的角.
20.(1);(2)见解析.
【解析】
【详解】
试题分析:
(Ⅰ)分两种情况抽出的为一等品和二等品,利用互斥事件的概率可得;
(Ⅱ)求的分布列,首先要确定变量的取值,由于10件中有6件一等品,因此的取值依次为,由古典概型概率公式可得各概率,从而得分布列,再由期望公式可计算出期望.
试题解析:
(Ⅰ)
所以随机选取3件产品,至少有一件通过检测的概率为.
(Ⅱ)由题可知可能取值为.
,,
,.
则随机变量的分布列为
0 1 2 3
21.(1)喝一瓶啤酒后1.5小时血液中的酒精达到最大值,最大值是44.42毫克/百毫升;(2)喝一瓶啤酒后6小时才可以驾车
【解析】
【分析】
(1)由图可知,当函数取得最大值时,,此时时,取得最大值,即可求得.
(2)由题意知当车辆驾驶人员血液中的酒精小于20毫克/100毫升可以驾车,此时,解不等式,两边取对数,即可求出..
【详解】
(1)由图可知,当函数取得最大值时,.
此时.
当时,即时,函数取得最大值为,
故喝一瓶啤酒后1.5小时血液中的酒精达到最大值,最大值是44.42毫克/百毫升,
(2)由题意知当车辆驾驶人员血液中的酒精小于20毫克/100毫升可以驾车,此时,
由,得,
两边取自然对数得,
即,
∴,
故喝一瓶啤酒后6小时才可以驾车.
【点睛】
本题考查函数模型应用和分段函数,考查分析问题的能力和运算求解的能力,属于中档题.
22.(1)垂直,理由见解析;
(2).
【解析】
【分析】
(1)结合条件及线面垂直的判定定理,可得平面,进而证得平面.
(2)由题可得∠ANB为二面角的平面角,然后利用余弦定理及同角关系式即得.
(1)若选①:,在中,,,,,可得,所以,又由,且,平面,所以平面,又因为平面,所以,又由,且,平面,所以平面,又因为,分别为,中点,可得,所以平面.若选②:为四面体外接球的直径,则,可得,又由,且,平面,所以平面,因为,分别为,中点,可得,所以平面.若选③:平面平面,平面平面,因为,且平面,所以平面,又因为平面,所以,又由,且,平面,所以平面,因为,分别为,中点,可得,所以平面.
(2)若选①:∵MN⊥平面ABD,AN,平面ABD,∴MN⊥AN,MN⊥BN,且,,∴∠ANB为二面角的平面角,∵AB⊥BD,N为BD中点,,∴,∴,∴;若选②:∵∠ABC=90°,AB=BC=2,∴,又∵∠ADC=90°,CD=1,∴,在中,BC=2,CD=1,∴,又∵AB=2,∴,即AB⊥BD,∵MN⊥平面ABD,AN,平面ABD,∴MN⊥AN,MN⊥BN,且,,∴∠ANB为二面角的平面角,∵AB⊥BD,N为BD中点,,∴,∴,∴;若选③:平面ABC⊥平面BCD,∵∠ABC=90°,AB=BC=2,∴,∵CD⊥平面ABD,平面ABD,∴CD⊥AD,又∵∠ADC=90°,CD=1,∴,∵MN⊥平面ABD,AN,平面ABD,∴MN⊥AN,MN⊥BN,且,,∴∠ANB为二面角的平面角,∵AB⊥BD,N为BD中点,,∴,∴,.
答案第1页,共2页
答案第1页,共2页
同课章节目录