2022级高一新生暑假返校自主检测考试——数学试题8(Word版含解析)

文档属性

名称 2022级高一新生暑假返校自主检测考试——数学试题8(Word版含解析)
格式 zip
文件大小 674.7KB
资源类型 教案
版本资源 人教A版(2019)
科目 数学
更新时间 2022-08-07 10:06:04

图片预览

文档简介

2022级高一新生暑假返校自主检测考试——数学试题
学校:___________姓名:___________班级:___________考号:___________
一、单选题
1.已知集合,则( )
A. B. C. D.
2.用表示非空集合A中元素的个数,定义,已知集合,,且,设实数a的所有可能取值构成集合S,则( )
A.0 B.1 C.2 D.3
3.“高铁、扫码支付、共享单车和网购”称为中国的“新四大发明”.某中学为了解本校学生对“新四大发明”的使用情况,随机调查了100位学生,其中使用过共享单车或扫码支付的学生共有80位,使用过扫码支付的学生共有65位,使用过共享单车且使用过扫码支付的学生共有30位,则使用过共享单车的学生人数为( )
A.65 B.55 C.45 D.35
4.设全集为R,集合,则
A. B. C. D.
5.设x,y都是实数,则“且”是“或”的( )条件
A.充分非必要 B.必要非充分
C.充要 D.既非充分也非必要
6.函数的大致图象是( ).
A. B.
C. D.
7.设为实数,则“”是“” 的( )
A.充分不必要条件 B.必要不充分条件
C.充要条件 D.既不充分也不必要条件
8.非空集合具有下列性质:①若、,则;②若、,则,下列判断一定成立的是( )
(1);(2);(3)若、,则;(4)若、,则.
A.(1)(3) B.(1)(2)
C.(1)(2)(3) D.(1)(2)(3)(4)
二、多选题
9.设集合,则下列说法不正确的是( )
A.若有4个元素,则 B.若,则有4个元素
C.若,则 D.若,则
10.已知集合,若集合有且仅有两个子集,则的值是( )
A. B. C. D.
11.下列说法正确的是( )
A.对于任意两个向量,若,且同向,则
B.已知,为单位向量,若,则在上的投影向量为
C.设为非零向量,则“存在负数,使得”是“”的充分不必要条件
D.若,则与的夹角是钝角
12.定义集合运算:,设,,则( )
A.当,时,
B.x可取两个值,y可取两个值,有4个式子
C.中有3个元素
D.中所有元素之和为3
三、双空题
13.已知集合,,则____,____.
14.设A=,B=,若,则实数的取值范围是______函数的定义域是____________
四、填空题
15.已知命题或,命题或,若是的充分非必要条件,则实数的取值范围是________
16.学校举办秋季运动会时,高一(2)班共有24名同学参加比赛,有12人参加游泳比赛,有9人参加田赛,有13人参加径赛,同时参加游泳比赛和田赛的有3人,同时参加游泳比赛和径赛的有3人,没有人同时参加三项比赛,则同时参加田赛和径赛的有______人.
五、解答题
17.已知集合,若,求的值.
18.已知全集,集合,.
(1)若,求;.
(2)若,求实数a的取值范围.
19.已知集合,,其中.
(1)若,,求实数a的取值范围;
(2)若,求实数a的取值范围.
20.命题;命题
(1)若时,在上恒成立,求实数a的取值范围;
(2)若p是q的充分必要条件,求出实数a,b的值
21.在中,内角所对的边分别为,且.
(1)求角的大小;
(2)若是锐角三角形,且,求面积的取值范围.
22.如图,一次函数y1=kx+b的图象交坐标轴于A,B两点,交反比例函数y2=的图象于C,D两点,A(﹣2,0),C(1,3).
(1)分别求出一次函数和反比例函数的表达式;
(2)求△COD的面积;
(3)观察图象,直接写出y1≥y2时x的取值范围.
试卷第1页,共3页
试卷第1页,共3页
参考答案:
1.B
【解析】
【分析】
直接根据交集的定义即可得解.
【详解】
解:因为集合,
所以.
故选:B.
2.D
【解析】
根据条件可得集合要么是单元素集,要么是三元素集,再分这两种情况分别讨论计算求解.
【详解】
由,可得
因为等价于或,
且,所以集合要么是单元素集,要么是三元素集.
(1)若是单元素集,则方程有两个相等实数根,方程无实数根,故;
(2)若是三元素集,则方程有两个不相等实数根,方程有两个相等且异于方程的实数根,即且.
综上所求或,即,故,
故选:D.
【点睛】
关键点睛:本题以这一新定义为背景,考查集合中元素个数问题,考查分类讨论思想的运用,解答本题的关键是由新定义分析得出集合要么是单元素集,要么是三元素集,即方程方程与方程的实根的个数情况,属于中档题.
3.C
【解析】
用集合表示使用过共享单车的人,集合表示使用过扫码支付的人,根据集合运算确定结果.
【详解】
参数调查的所有人组成全集,使用过共享单车的人组成集合,使用过扫码支付的人组成集合,表示集合中的元素,
由题意,,,
∴,∴.
故选:C.
4.D
【解析】
【详解】
试题分析:,
考点:1.解不等式;2.集合的子集关系
5.A
【解析】
【分析】
直接根据充分性和必要性进行判断即可.
【详解】
由题意知:且能推出或,满足充分性;反过来或不能推出且,不满足必要性,
故“且”是“或”的充分非必要条件.
故选:A.
6.C
【解析】
先利用定义判断函数定义域和对称性,结合对数函数图象和平移变换作出y轴右侧部分图象,再结合对称性即得到函数图象.
【详解】
函数中,令得定义域为,且,即是偶函数,图象关于y轴对称,当时,,图象可由向右平移一个单位得到(如图所示),
再关于y轴对称得到时的图像,即函数图象为选项C中的图象.
故选:C.
【点睛】
思路点睛:函数图象的辨识可从以下方面入手:
(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.
(2)从函数的单调性,判断图象的变化趋势;
(3)从函数的奇偶性,判断图象的对称性;
(4)从函数的特征点,排除不合要求的图象.
7.A
【解析】
【分析】
根据充分必要条件的定义判断.
【详解】

时一定有,充分性满足,
但时有,但,必要性不满足,
因此是充分不必要条件.
故选:A
8.C
【解析】
【分析】
假设,可推出,由此可判断(1)的正误;推导出,进而可推导出,,由此可判断(2)的正误;推导出,结合①可判断(3)的正误;若、,假设,推出,可判断(4)的正误.综合可得出结论.
【详解】
由①可知.
对于(1),若,对任意的,,则,
所以,,这与矛盾,(1)正确;
对于(2),若且,则,,,
依此类推可得知,,,,,,(2)正确;
对于(3),若、,则且,由(2)可知,,则,
所以,,(3)正确;
对于(4),由(2)得,,取 ,则,所以(4)错误.
故选:C.
【点睛】
本题考查集合的新定义,考查元素与集合的关系的判断,属于较难题.
9.ABC
【解析】
【分析】
首先解方程得到:或,针对a分类讨论即可.
【详解】
(1)当时,,;
(2)当时,,;
(3)当时,,;
(4)当时,,;
故A,B,C,不正确,D正确
故选:ABC
【点睛】
本题考查了集合的交、并运算,考查了学生分类讨论,数学运算的能力,属于中档题.
10.ABC
【解析】
【分析】
分析可知,集合为单元素集合,分与两种情况讨论,结合方程只有一根可求得实数的值.
【详解】
由于集合有且仅有两个子集,则集合为单元素集合,即方程只有一根.
①当时,方程为,解得,合乎题意;
②当时,对于方程,,解得.
综上所述,或.
故选:ABC.
11.BC
【解析】
【分析】
根据向量不能比较大小可判定选项A;利用投影向量的计算公式可判定选项B;利用充分不必要条件的逻辑关系可判定选项C;若,则与的夹角是钝角或角,可判定选项D.
【详解】
选项A:向量是既有大小又有方向的量,但不能比较大小,故选项A错误;
选项B:在单位向量上的投影向量为,故选项B正确;
选项C:若存在负数,使得,则;
若,则向量与的夹角为钝角或,故选项C正确;
选项D:若,则与的夹角是钝角或角,故选项D错误;
故选:BC.
12.BCD
【解析】
【分析】
根据给定定义,对每一组x,y值代入求出集合的z值,即可判断作答.
【详解】
,,,
当,时,;当,时,;
当,时,;当,时,,
A不正确;B正确;而,C,D都正确.
故选:BCD
13.
【解析】
【分析】
求出集合,利用交集和并集的定义可分别求出集合,.
【详解】
,,,.
故答案为:;.
【点睛】
本题考查交集和并集的计算,同时也考查了一元二次不等式的解法,考查计算能力,属于基础题.
14. ;
【解析】
【详解】
试题分析:由题:,又,得:.
,得:
考点:(1)一元二次不等式的解法及子集的定义. (2)定义域与三角不等式组的解法.
15.
【解析】
【分析】
根据充分条件,必要条件和集合之间的关系等价法,即可求出.
【详解】
因为是的充分非必要条件,所以是的真子集.
当,即时,,解得,又因为,所以;
当时,,显然是
的真子集.
综上,实数的取值范围是.
故答案为:.
16.4
【解析】
【分析】
根据题意,画出韦恩图,列出方程组即可求得解.
【详解】
由题意,画出韦恩图如下图所示:
根据题意可知
解方程组得
所以同时参加田赛与径赛的有4人
【点睛】
本题考查了集合交集关系在实际问题中的综合应用,注意韦恩图解题方法的应用,属于基础题.
17.-1.
【解析】
【分析】
由集合相等,分析两集合中元素,列出方程组,解得后可求值.
【详解】
∵集合,
∴解得,
则.
故答案为:-1.
【点睛】
本题考查集合的相等,解题时注意集合中元素的性质,特别是互异性.
18.(1),或.
(2).
【解析】
【分析】
(1)根据集合的运算法则计算;
(2)由得,结合包含关系可得参数范围.
(1)时,,,又或,所以或.
(2)由得,若,即,则满足题意,若,则,无解,综上,.
19.(1);(2)
【解析】
【分析】
(1)由,列出不等式组,求解出的范围即可;
(2)求解出集合表示元素对应的一元二次方程的根,对采用分类讨论,根据列出不等式,求解出的范围.
【详解】
(1)因为,,所以或,
解得:,所以的取值范围是:;
(2)因为,所以,
当时,,所以或,
当时,,,
因为,所以,解得:,所以;
当时,,所以,,此时不满足;
当时,,,
因为,所以,解得:;
综上可知:的取值范围是.
【点睛】
本题考查根据元素与集合、集合与集合之间的关系求解参数范围,难度一般.利用集合的子集关系求解参数范围时,如:,要注意到集合是否有空集的可能,因此一般情况需要进行分类讨论:,.
20.(1);(2),.
【解析】
【分析】
(1)若在上恒成立,则;
(2)由题意可知的解集是
【详解】
(1)若在上恒成立,
则,
所以有,
所以实数的范围为;
(2)或,
根据条件的解集是,
即方程的二根为2和3,
根据韦达定理有,
所以,.
【点睛】
(1)二次函数图象与x轴交点的横坐标、二次不等式解集的端点值、一元二次方程的解是同一个量的不同表现形式.
(2)二次函数、二次方程与二次不等式统称“三个二次”,它们常结合在一起,而二次函数又是“三个二次”的核心,通过二次函数的图象贯穿为一体.有关二次函数的问题,利用数形结合的方法求解,密切联系图象是探求解题思路的有效方法.
21.(1);
(2)
【解析】
【分析】
(1)先由正弦定理及和角公式得,进而求得,即可求解;
(2)由正弦定理得,结合三角恒等变换得,由角的范围求出的范围,再由面积公式即可求得面积的范围.
(1)
由正弦定理得:,所以,
又因为,所以,,又,所以.
(2)
由(1)知,又是锐角三角形,所以,由正弦定理得,
得,
因为,所以,所以ac的取值范围为,因为,
所以面积的取值范围为.
22.(1)y=x+2,y=;(2)4;(3)﹣3≤x<0或x≥1.
【解析】
(1)用待定系数发法,即可求解;
(2)△COD的面积=S△OBC+S△OBD=×OB×(xC﹣xD)=×2×4=4;
(3)观察图象即可求解.
【详解】
解:(1)将点A、B的坐标代入一次函数表达式得:,解得,
故一次函数表达式为:y=x+2①,
将点C的坐标代入反比例函数表达式并解得:m=3,
故反比例函数表达式为:y=②;
(2)联立①②并解得:x=1或﹣3,
故点C、D的坐标分别为(1,3)、(﹣3,﹣1);
∵点B(0,2),
∴△COD的面积=S△OBC+S△OBD=×OB×(xC﹣xD)=×2×4=4;
(3)由图象可知,当y1≥y2时x的取值范围为﹣3≤x<0或x≥1.
【点睛】
本题考查了反比例函数与一次函数的交点,当有两个函数的时候,着重使用一次函数,体现了方程思想,综合性较强.
答案第1页,共2页
答案第1页,共2页
同课章节目录