班海数学精批——一本可精细批改的教辅
15.2.3 整数指数幂
第1课时
教学目标
1.知道负整数指数幂=(a≠0,n是正整数).
2.掌握整数指数幂的运算性质.
3.会用科学记数法表示小于1的数.
重点难点
1.重点:掌握整数指数幂的运算性质.
2.难点:会用科学记数法表示小于1的数.
3.认知难点与突破方法
复习已学过的正整数指数幂的运算性质:
(1)同底数的幂的乘法:(m,n是正整数);
(2)幂的乘方:(m,n是正整数);
(3)积的乘方:(n是正整数);
(4)同底数的幂的除法:( a≠0,m,n是正整数,m>n);
(5)商的乘方:(n是正整数);
0指数幂,即当a≠0时,. 在学习有理数时,曾经介绍过1纳米=10-9米,即1纳米=米.此处出现了负指数幂,也出现了它的另外一种形式是正指数的倒数形式,但是这只是一种简单的介绍知识,而没有讲负指数幂的运算法则.
学生在已经回忆起以上知识的基础上,一方面由分式的除法约分可知,当a≠0时,===;另一方面,若把正整数指数幂的运算性质(a≠0,m,n是正整数,m>n)中的m>n这个条件去掉,那么==.于是得到=(a≠0),就规定负整数指数幂的运算性质:当n是正整数时,=(a≠0),也就是把的适用范围扩大了,这个运算性质适用于m、n可以是全体整数.
教学过程
一、例、习题的意图分析
1.[思考]提出问题,引出本节课的主要内容负整数指数幂的运算性质.
2.[思考]是为了引出同底数的幂的乘法:,这条性质适用于m,n是任意整数的结论,说明正整数指数幂的运算性质具有延续性.其它的正整数指数幂的运算性质,在整数范围里也都适用.
3.教科书例9计算是应用推广后的整数指数幂的运算性质,教师不要因为这部分知识已经讲过,就认为学生已经掌握,要注意学生计算时的问题,及时矫正,以达到学生掌握整数指数幂的运算的教学目的.
4.教科书中间一段是介绍会用科学记数法表示小于1的数. 用科学记数法表示小于1的数,运用了负整数指数幂的知识. 用科学记数法不仅可以表示小于1的正数,也可以表示一个负数.
5.[思考]提出问题,让学生思考用负整数指数幂来表示小于1的数,从而归纳出:对于一个小于1的数,如果小数点后至第一个非0数字前有几个0,用科学记数法表示这个数时,10的指数就是负几.
6.教科书例10是一个介绍纳米的应用题,使学生做过这道题后对纳米有一个新的认识.更主要的是应用科学记数法表示小于1的数.
二、课堂引入
1.回忆正整数指数幂的运算性质:
(1)同底数的幂的乘法:(m,n是正整数);
(2)幂的乘方:(m,n是正整数);
(3)积的乘方:(n是正整数);
(4)同底数的幂的除法:( a≠0,m,n是正整数,m>n);
(5)商的乘方:(n是正整数);
2.回忆0指数幂的规定,即当a≠0时,.
3.你还记得1纳米=10-9米,即1纳米=米吗?
4.计算当a≠0时,===,再假设正整数指数幂的运算性质(a≠0,m,n是正整数,m>n)中的m>n这个条件去掉,那么==.于是得到=(a≠0),就规定负整数指数幂的运算性质:当n是正整数时,=(a≠0).
三、例题讲解
(教科书)例9 计算
[分析] 是应用推广后的整数指数幂的运算性质进行计算,与用正整数
指数幂的运算性质进行计算一样,但计算结果有负指数幂时,要写成分式形式.
(教科书)例10
[分析] 是一个介绍纳米的应用题,是应用科学记数法表示小于1的数.
四、随堂练习
1. 填空
(1)-22= (2)(-2)2= (3)(-2) 0=
(4)20= ( 5)2 -3= ( 6)(-2) -3=
2. 计算:
(1)(x3y-2)2 (2)x2y-2 ·(x-2y)3 (3)(3x2y-2) 2 ÷(x-2y)3
五、课后练习
1. 用科学记数法表示下列各数:
0.000 04, -0.034, 0.000 000 45, 0.003 009
2. 计算:
(1)(3×10-8)×(4×103) (2) (2×10-3)2÷(10-3)3
六、答案:
四、1.(1)-4 (2)4 (3)1 (4)1(5) (6)
2.(1) (2) (3)
五、1. (1)4×10-5 (2)3.4×10-2 (3)4.5×10-7 (4)3.009×10-3
2.(1) 1.2×10-5 (2)4×103
第2课时
一 学习目标:1、经历把一个绝对值小于1的非零数表示为科学计数法a×10n的形式的过程。
2 会用把一个用科学计数法表示的数写成小数的形式,并体会科学计数法方便、快捷便于进行计算的优点。
3会利用计算器进行科学计数法的有关计算。
二 学习过程
(一)课前延伸:江河湖海都是由一滴滴水汇集而成的,每一滴水又含有许许多多的水分子,一个水分子的质量只有0.000000000000000003克。这样的数字写起来太麻烦了,有没有其他的记法呢?同学们看一下课本125页----126页,进行预习,把下面的内容填一下。
任务一 填写下表
10的幂 表示的意义 化为小数 1前面0的个数
10-1 1/10 0.1 1
10-2 1/100 0.01 2
10-3
10-4
提出问题:10的负整数指数幂用小数表示有什么规律吗?
。
任务二
用科学计数法可以把一个绝对值小于1的非零数表示成
其中 ,n的绝对值等于
任务三,用计算器表示3×10-23
(二)、课内探究
1、预习反馈
以小组为单位交流展示预习成果,初步解决预习中的疑难问题问题。
2、精讲点拨
用科学记数法可以把一个绝对值小于1的非零数表示成±a×10n其中1≤a≤10,n是一个负整数,n的绝对值等于原数中的第一个非零数字前面所有零的个数(包括小数点前面的那个零).
一个小于零的数字写成一个数字乘以10的负整数指数幂的形式,负整数指数的绝对值是第一个数字前的零的个数。
3、拓展训练
用科学计数法表示下列各数:
(1)0.00002 (2)—0.0000307
(3)0.0031 (4)0.00567
4、例题解析
安哥拉长毛兔最细的兔毛直径约为5×10-6,将这个数写成小数的形式。
5、拓展训练 将下列各数写成小数:
(1) 3.1×10-3 (2)-2.8×10-4
6、例题解析
一个氧原子的质量约为2.657×10-23克,一个氢原子的质量约为1.67×10-24克,一个氧原子的质量约为一个氢原子的质量的多少倍?
(三)巩固检测
1. 用科学计数法表示下列各数:
(1)0.00003 (2)—0.000308
(3)0.0047 (4)0.000789
2. 将下列各数写成小数:
(1) 4.2×10-3 (2)-3.6 ×10-4
3. 填空(在括号内填入适当的数)
5.2 ×10( ) =0.0000052
4. 计算(结果用科学计数法表示)
(1)(7.3 ×10-5)×10-2
(2)(2.6 ×10-8)(5.2 ×10-3)
5. 鸵鸟是世界上最大的鸟,体重约160千克,蜂鸟是世界上最小的鸟,体重仅2克,一只蜂鸟相当于多少中鸵鸟的重量(用科学计数法表示)
(四)系统小结
1.我掌握的知识: 2、我不明白的问题:
(五) 教学反思:
感谢您下载使用【班海】教学资源。班海——老师们都在免费用的数学作业精细批改微信小程序!
一键发布配套作业 & AI智能精细批改
(任务-发布任务-选择章节)